C^{2}-smooth functions on finite subsets of \mathbf{R}^{2}

Pavel Shvartsman

Department of Mathematics, Technion - Israel Institute of Technology,
32000 Haifa, Israel

1. The Whitney Extension Problem

Let $C^{2}\left(\mathbf{R}^{2}\right)$ be the space of two times continuously differentiable functions on \mathbf{R}^{2} whose partial derivatives of the second order are bounded function on R^{2}. We equip this space with the seminorm

$$
\begin{gathered}
\|F\|_{C^{2}\left(\mathbf{R}^{2}\right)}:= \\
\sup _{z \in \mathbf{R}^{2}} \max \left\{\left|\frac{\partial^{2} F}{\partial x^{2}}(z)\right|,\left|\frac{\partial^{2} F}{\partial x \partial y}(z)\right|,\left|\frac{\partial^{2} F}{\partial y^{2}}(z)\right|\right\}
\end{gathered}
$$

Let $E \subset \mathbf{R}^{2}$ be a finite subset, and let $f: E \rightarrow \mathbf{R}^{2}$.

Problem. How can we extend a function $f: E \rightarrow \mathbf{R}$ to a function $F \in C^{2}\left(\mathbf{R}^{2}\right)$ with minimal $\|F\|_{C^{2}\left(\mathbf{R}^{2}\right)}$?

What is the order of magnitude of this minimal C^{2}-norm, i.e.,

$$
\|f\|_{\left.C^{2}\left(\mathbf{R}^{2}\right)\right|_{E}}=\inf \left\{\|F\|_{C^{2}\left(\mathbf{R}^{2}\right)}:\left.F\right|_{E}=f\right\} ?
$$

Something of the history:

H. Whitney, TAMS, (1934);
[W1] Analytic extension of differentiable functions defined in closed sets.

An extension problem for jets:

Given a family of polynomials
$\left\{P_{x} \in \mathcal{P}_{1}\left(\mathbf{R}^{2}\right): x \in E\right\}$ find a function $F \in C^{2}\left(\mathbf{R}^{2}\right)$ such that the Taylor polynomial of the first order of F at x

$$
T_{x}^{1}[F]=P_{x} \quad \text { for every } \quad x \in E
$$

[W2] Differentiable functions defined in closed sets. I.
(A description of $\left.C^{2}(\mathbf{R})\right|_{E}$ via divided differences of the second order of f on E.)

2. The finiteness principle.

The Whitney problem of characterization of the trace space $\left.C^{2}\left(\mathbf{R}^{2}\right)\right|_{E}$: we have to restore in an optimal way all partial derivatives of the second order of a function $f: E \rightarrow \mathbf{R}$ using only the values of f on E.

In many cases Whitney-type problems (for different spaces of smooth functions) can be reduced to the same kinds of problems, but for finite sets with prescribed number of points.

Theorem 2.1 (Sh. [1982])

Let $E \subset \mathbf{R}^{2}$ be a finite set and let $f: E \rightarrow \mathbf{R}$.

Suppose that the restriction $\left.f\right|_{E^{\prime}}$ to every $E^{\prime} \subset E$ of card $E^{\prime} \leq 6$ can be extended to a function $F_{E^{\prime}} \in C^{2}\left(\mathbf{R}^{2}\right)$ with the norm

$$
\left\|F_{E^{\prime}}\right\|_{C^{2}\left(\mathbf{R}^{2}\right)} \leq 1
$$

Then f itself can be extended to a function $F \in C^{2}\left(\mathbf{R}^{2}\right)$ with

$$
\|F\|_{C^{2}\left(\mathbf{R}^{2}\right)} \leq 12
$$

The finiteness number $N=6$ for the space $C^{2}\left(R^{2}\right)$ is sharp.

Let $0<\varepsilon<1 / 4$ and

$$
\begin{gathered}
A_{\varepsilon}=\left\{(1-\varepsilon, 0),\left(-1,-\varepsilon^{2}\right)\right. \\
\left.(-1+\varepsilon, 0),(1-\varepsilon, 0),\left(1, \varepsilon^{2}\right)(1+\varepsilon, 0)\right\}
\end{gathered}
$$

Define $f: A_{\varepsilon} \rightarrow \mathbf{R}$ by
$f\left(1, \varepsilon^{2}\right)=\varepsilon, f(x)=0, x \in A_{\varepsilon} \backslash\left\{\left(1, \varepsilon^{2}\right)\right\}$
$f\left(A_{5}\right)=0 \quad f\left(A_{4}\right)=0$
$f\left(A_{6}\right)=0$
For each $A^{\prime} \subset A_{\varepsilon}, \quad$ card $A^{\prime}=5$, $\left.f\right|_{A^{\prime}}$ extends to an $F_{A^{\prime}} \in C^{2}\left(\mathbf{R}^{2}\right)$, $\left\|F_{A^{\prime}}\right\|_{C^{2}\left(\mathbf{R}^{2}\right)} \leq 1$. However,
$\|F\|_{C^{2}\left(\mathbf{R}^{2}\right)} \geq 1 / 4 \varepsilon, \quad \forall F,\left.F\right|_{A_{\varepsilon}}=f$

Theorem 2.2 For every finite

 set $E \subset \mathbf{R}^{2}$ and for every $f: E \rightarrow \mathbf{R}$$$
\begin{gathered}
\|f\|_{\left.C^{2}\left(\mathbf{R}^{2}\right)\right|_{E}} \sim \\
\sup _{\substack{z_{0}, z_{1}, z_{2} \in E \\
z_{1} \in\left(z_{0}, z_{2}\right)}}\left|\frac{\frac{f\left(z_{0}\right)-f\left(z_{1}\right)}{\left\|z_{0}-z_{1}\right\|}-\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{\left\|z_{1}-z_{2}\right\|}}{\left\|z_{0}-z_{2}\right\|}\right| \\
\sup \frac{\left\|\nabla P_{Z_{1}}[f]-\nabla P_{Z_{2}}[f]\right\|}{R_{\square}+R_{7}+\operatorname{diam}\left(7_{1}| | 7_{2}\right.}
\end{gathered}
$$

3. A geometrical approach to the Whitney problem: main ideas.

Theorem (E. Helly, 1913).

Let \mathcal{K} be a family of convex sets
in \mathbf{R}^{n}. Suppose that \mathcal{K} is finite or
that each member of \mathcal{K} is compact.

If every $n+1$ members of \mathcal{K}

have a common point, then
there is a point common to all members of \mathcal{K}.

The Whitney Extension Problem

 for the space $C^{2}\left(\mathbf{R}^{2}\right)$Let $E \subset \mathbf{R}^{2}$ be finite and let
$f: E \rightarrow \mathbf{R}$.
Theorem (Whitney). (Necessity)
Suppose $\exists F \in C^{2}\left(\mathbf{R}^{2}\right),\left.F\right|_{E}=f$.
Let $\quad \vec{g}=\left.\nabla F\right|_{E} \quad$ and $\quad \lambda=\|F\|_{C^{2}\left(\mathbf{R}^{2}\right)}$.
Then for every $x, y \in E$
$|f(y)-(f(x)+\langle\vec{g}(x), y-x\rangle)| \leq C \lambda\|x-y\|^{2}$
and

$$
\|\vec{g}(x)-\vec{g}(y)\| \leq C \lambda\|x-y\|
$$

where C is an absolute constant.
The first inequality is an estimate of the Taylor reminder of F of the first order at points x, y.
(Sufficiency). Let $f: E \rightarrow \mathbf{R}$. Suppose that $\exists \lambda>0$ and a mapping $\vec{g}: E \rightarrow \mathbf{R}^{n}$ such that for every $x, y \in E$

$$
|f(y)-(f(x)+\langle\vec{g}(x), y-x\rangle)| \leq \lambda\|x-y\|^{2}
$$

and

$$
\|\vec{g}(x)-\vec{g}(y)\| \leq \lambda\|x-y\|
$$

Then $\exists F \in C^{2}\left(\mathbf{R}^{2}\right)$ such that
$\left.F\right|_{E}=f,\left.\nabla F\right|_{E}=\vec{g}$, and

$$
\|F\|_{C^{2}\left(\mathbf{R}^{2}\right)} \leq C \lambda
$$

The conditions

$$
|f(x)-f(y)-\langle\vec{g}(x), x-y\rangle| \leq \lambda\|x-y\|^{2}
$$

and

$$
\|\vec{g}(x)-\vec{g}(y)\| \leq \lambda\|x-y\|
$$

where $x, y \in E$, are a chain (system) of inequalities.

Our goal is to find the minimal $\lambda>0$ (up to an absolute constant) such that this system has a solution with respect to $\vec{g}: E \rightarrow \mathbf{R}^{2}$.

A geometrical background of

 the Whitney theorem.Fix $x \in E$. For each $y \in E$ the set

$$
\begin{gathered}
A(x, y):=\left\{z \in \mathbf{R}^{2}:\right. \\
\left.|f(x)-f(y)-\langle z, x-y\rangle| \leq \lambda\|x-y\|^{2}\right\}
\end{gathered}
$$

is a strip between two parallel hyperplanes.

Put

$G(x)$ is a convex closed subset of R^{2}. We may assume that $G(x)$ is compact $\Rightarrow G(x) \in \mathcal{K}\left(\mathbf{R}^{2}\right)$.
$\mathcal{K}\left(\mathrm{R}^{2}\right)$ - all convex closed subsets of R^{2}.

We say that $G: E \rightarrow \mathcal{K}\left(\mathrm{R}^{2}\right)$ is a set-valued mapping. $\quad G(x)$

The condition:

$|f(x)-f(y)-\langle\vec{g}(x), x-y\rangle| \leq \lambda\|x-y\|^{2}$
$\forall y \in E \Leftrightarrow \underline{\vec{g}}(x) \in G(x), x \in E$.
We say that $\vec{g}: E \rightarrow \mathbf{R}^{2}$ is a selection of G.

The second condition \Leftrightarrow

$$
\vec{g} \in \operatorname{Lip}\left(\mathcal{M} ; \mathbf{R}^{2}\right)
$$

Here $\mathcal{M}:=(E, \rho)$ where

$$
\rho(x, y):=\|x-y\|
$$

$\operatorname{Lip}\left(\mathcal{M} ; \mathbf{R}^{2}\right)$ denotes the space of all Lipschitz mappings from \mathcal{M} into \mathbf{R}^{2} equipped with the seminorm

$$
\|\vec{g}\|_{\operatorname{Lip}\left(\mathcal{M} ; \mathbf{R}^{2}\right)}:=\sup _{x, y \in \mathcal{M}} \frac{\|\vec{g}(x)-\vec{g}(y)\|}{\rho(x, y)}
$$

We call \vec{g} a Lipschitz selection of the set-valued mapping G.

4. Lipschitz selections

of set-valued mappings.

- (\mathcal{M}, ρ) - a finite metric space;
- $\mathcal{K}\left(\mathbf{R}^{2}\right)$ - all convex closed subsets
of \mathbf{R}^{2};
- $F: \mathcal{M} \rightarrow \mathcal{K}\left(\mathbf{R}^{2}\right)$ - a set-valued mapping.

The Lipschitz Selection Problem.

 Let f be a Lipschitz selection of F, i.e., a mapping $f: \mathcal{M} \rightarrow \mathbf{R}^{2}$:(i) $f(x) \in F(x), \quad x \in \mathcal{M}$.
(ii) $f \in \operatorname{Lip}\left(\mathcal{M} ; \mathbf{R}^{2}\right)$

How small can its Lipschitz seminorm $\|f\|_{\operatorname{Lip}\left(\mathcal{M} ; \mathbf{R}^{2}\right)} \mathbf{b e}$?

Theorem 4.1 Let (\mathcal{M}, ρ) be a

 finite metric space and let $F: \mathcal{M} \rightarrow \mathcal{K}\left(\mathbf{R}^{2}\right)$ be a set-valued mapping.Suppose that for every subset $\mathcal{M}^{\prime} \subset \mathcal{M}$ consisting of at most 4 elements the restriction $\left.F\right|_{\mathcal{M}^{\prime}}$ has a Lipschitz selection

$$
f_{\mathcal{M}^{\prime}}: \mathcal{M}^{\prime} \rightarrow \mathbf{R}^{2}
$$

such that

$$
\left\|f_{\mathcal{M}^{\prime}}\right\|_{\operatorname{Lip}\left(\mathcal{M}^{\prime} ; \mathbf{R}^{2}\right)} \leq 1
$$

Then F on all of the set \mathcal{M} has a Lipschitz selection $f: \mathcal{M} \rightarrow \mathbf{R}^{2}$ with

$$
\|f\|_{\operatorname{Lip}\left(\mathcal{M} ; \mathbf{R}^{2}\right)} \leq 5
$$

This theorem is also true for

 pseudometric spaces, i.e., $\rho(x, y)$ may take the value 0 for $x \neq y$.
Example 4.2 Let $\rho \equiv 0$. Let

 $F: \mathcal{M} \rightarrow \mathcal{K}\left(\mathbf{R}^{2}\right)$ be a set-valued mapping and let $f: \mathcal{M} \rightarrow \mathbf{R}^{2}$ be its Lipschitz selection. Then$\|f(x)-f(y)\| \leq \rho(x, y)=0 \quad \forall x, y \in \mathcal{M}$
so that $f(x)=c \in \mathbf{R}^{2}, x \in \mathcal{M}$.
Since $f(x) \in F(x), x \in \mathcal{M}, \Longrightarrow$

$$
c \in F(x), \quad \forall x \in \mathcal{M}
$$

Thus F has a Lipschitz selecton with respect to $\rho \equiv 0 \Longleftrightarrow$

$$
\bigcap\{F(x): x \in \mathcal{M}\} \neq \varnothing
$$

By Helly's Theorem

$$
\bigcap\{F(x): x \in \mathcal{M}\} \neq \varnothing
$$

\Longleftrightarrow

$$
\bigcap\left\{F(x): x \in \mathcal{M}^{\prime}\right\} \neq \varnothing
$$

for every $\mathcal{M}^{\prime} \subset \mathcal{M}, \quad \operatorname{card} \mathcal{M} \leq 3$,
$\left.\Longleftrightarrow \quad F\right|_{\mathcal{M}^{\prime}}$ has a Lipchitz selection for every subset

$$
\mathcal{M}^{\prime} \subset \mathcal{M}, \quad \operatorname{card} \mathcal{M} \leq 3
$$

Let $F: \mathcal{M} \rightarrow \mathcal{K}(\mathrm{R})$

be a set-valued mapping, ie., $F(x):=[a(x), b(x)], x \in \mathcal{M}$.

Assume that for every $F(x), F\left(x^{\prime}\right)$ there exist
$g(x) \in F(x), g\left(x^{\prime}\right) \in F\left(x^{\prime}\right)$ such that

$$
\left|g(x)-g\left(x^{\prime}\right)\right| \leq \rho\left(x, x^{\prime}\right)
$$

Given $x \in \mathcal{M}$ we define

$$
f(x):=\inf _{y \in \mathcal{M}}\{b(y)+\rho(x, y)\}
$$

Then $f(x) \leq b(x)$ (put $y=x$).

For every $y \in \mathcal{M}$ there are points $g(x) \in[a(x), b(x)], g(y) \in[a(y), b(y)]$ such that

$$
|g(x)-g(y)| \leq \rho(x, y)
$$

$$
\begin{aligned}
& a(y) \quad b(y) \quad a(x) \quad b(x) \\
& \rho(x, y) \\
& a(x) \leq g(x) \leq g(y)+\rho(x, y) \leq b(y)+\rho(x, y) \\
& a(x) \leq \inf _{y \in \mathcal{M}}\{b(y)+\rho(x, y)\}=f(x) . \\
& \text { Hence, } a(x) \leq f(x) \leq b(x) \Leftrightarrow \\
& f(x) \in F(x) \\
& \text { Clearly, }\|f\|_{\operatorname{Lip}(\mathcal{M} ; \mathbf{R})} \leq 1 .
\end{aligned}
$$

Let

$$
\|a\|_{\infty}:=\max _{i=1,2}\left|a_{i}\right|
$$

Consider

$$
F(x):=\prod_{k=1}^{2}\left[a_{k}(x), b_{k}(x)\right], x \in \mathcal{M}
$$

Then F has a selection f with $\|f\|_{\text {Lip }(\mathcal{M})} \leq 1 \quad \Leftrightarrow \forall \mathcal{M}^{\prime} \subset \mathcal{M}$, $\operatorname{card} \mathcal{M}^{\prime}=2$, the restriction $\left.F\right|_{\mathcal{M}^{\prime}}$ has such a selection.

22

Prove that the theorem is true for $X=\mathrm{R}^{2}$ (equipped with the Euclidean norm) with $N=4$ and $\gamma=2 \sqrt{2}$.

We know that $\forall \mathcal{M}^{\prime} \subset \mathcal{M}$ with $\operatorname{card} \mathcal{M}^{\prime} \leq 4$, the restriction $\left.F\right|_{\mathcal{M}^{\prime}}$ has a Lipschitz selection $f_{\mathcal{M}^{\prime}}$ with $\left\|f_{\mathcal{M}^{\prime}}\right\|_{\operatorname{Lip}\left(\mathcal{M}^{\prime} ; \mathbf{R}^{2}\right)} \leq 1$. We have to prove that F on \mathcal{M} has a Lipschintz selection $f: \mathcal{M} \rightarrow \mathbf{R}^{2}$ satisfying $\|f\|_{\operatorname{Lip}\left(\mathcal{M} ; \mathrm{R}^{2}\right)} \leq 2 \sqrt{2}$.

Step 1. Let $x_{1}, x_{2} \in \mathcal{M}, x_{1} \neq x_{2}$ and let $F\left(x_{1}\right) \nVdash F\left(x_{2}\right)$.

Put

$$
\begin{gathered}
C\left(x_{1}, x_{2}\right):= \\
F\left(x_{1}\right) \cap\left\{F\left(x_{2}\right)+B\left(0, \rho\left(x_{1}, x_{2}\right)\right)\right\} \\
C\left(x_{1}, x_{2}\right) \text { is a line segment on } \\
F\left(x_{1}\right) \text { with center } \\
c\left(x_{1}, x_{2}\right)=F\left(x_{1}\right) \cap F\left(x_{2}\right)
\end{gathered}
$$

$F\left(x_{1}\right)$

Put

$$
r\left(x_{1}, x_{2}\right)=\frac{1}{2} \operatorname{diam} C\left(x_{1}, x_{2}\right)
$$

If $F\left(x_{1}\right) \| F\left(x_{2}\right) \Rightarrow C\left(x_{1}, x_{2}\right):=F\left(x_{1}\right)$. We put $r\left(x_{1}, x_{2}\right)=+\infty$ and $c\left(x_{1}, x_{2}\right)$ to be an arbitrary point on $F\left(x_{1}\right)$.

$$
M^{\prime}=\frac{\underbrace{c\left(x_{1}, x_{2}\right)}_{\rho\left(x_{1}, x_{2}\right\}}}{\rho\left(x_{1}, x_{2}\right) \geqslant \sum_{\mu_{\mu^{\prime}}\left(x_{2}\right)}^{f_{\mu^{\prime}}\left(x_{1}\right)}} F F\left(x_{1}\right)
$$

We have

$C\left(x_{1}, x_{2}\right)=F\left(x_{1}\right) \cap B\left(c\left(x_{1}, x_{2}\right), r\left(x_{1}, x_{2}\right)\right)$

$$
C\left(x_{2}, x_{1}\right)=F\left(x_{2}\right) \cap B\left(c\left(x_{1}, x_{2}\right), r\left(x_{1}, x_{2}\right)\right)
$$

$$
\mathrm{d}_{\mathrm{H}}\left(C\left(x_{1}, x_{2}\right), C\left(x_{2}, x_{1}\right)\right) \leq \rho\left(x_{1}, x_{2}\right)
$$

$$
F\left(x_{1}\right)
$$

Here d_{H} stands for the Hausdorff distance:

$$
\begin{gathered}
\mathrm{d}_{\mathrm{H}}\left(A_{1}, A_{2}\right):=\inf \{\varepsilon>0: \\
\left.A_{1}+B(0, \varepsilon) \supset A_{2}, A_{2}+B(0, \varepsilon) \supset A_{1}\right\}
\end{gathered}
$$

or, equivalently,

$$
\mathrm{d}_{\mathrm{H}}\left(A_{1}, A_{2}\right):=
$$

$$
\max \left\{\sup _{x \in A_{1}} \operatorname{dist}\left(x, A_{2}\right), \sup _{x \in A_{1}} \operatorname{dist}\left(x, A_{2}\right)\right\}
$$

We introduce a family of

 ordered pairs of points from \mathcal{M} :$$
\widetilde{\mathcal{M}}:=\left\{\tilde{x}=\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in \mathcal{M}, x_{1} \neq x_{2}\right\}
$$

Given $\tilde{x}=\left(x_{1}, x_{2}\right) \in \widetilde{\mathcal{M}}$ we put
$C(\tilde{x}):=C\left(x_{1}, x_{2}\right), c(\tilde{x}):=c\left(x_{1}, x_{2}\right)$, $r(\tilde{x}):=r\left(x_{1}, x_{2}\right)$ and

$$
\mathbb{B}(\tilde{x}):=B\left(c\left(x_{1}, x_{2}\right), r\left(x_{1}, x_{2}\right)\right)
$$

We know that

$\mathrm{d}_{\mathrm{H}}\left(F\left(x_{1}\right) \cap \mathbb{B}(\tilde{x}), F\left(x_{2}\right) \cap \mathbb{B}(\tilde{x})\right) \leq \rho\left(x_{1}, x_{2}\right)$
Prove that
$\operatorname{dist}\left(\mathbb{B}(\tilde{x}), \mathbb{B}\left(\tilde{x}^{\prime}\right)\right) \leq \rho\left(x_{1}, x_{1}^{\prime}\right)$
for every

$$
\tilde{x}=\left(x_{1}, x_{2}\right), \tilde{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in \widetilde{\mathcal{M}}
$$

$$
\begin{aligned}
& \mu^{\prime}=\left\{x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right\} \\
& A=f_{M^{\prime}}\left(x_{1}\right) \in K(\tilde{x}), A^{\prime}=f_{\mu^{\prime}}\left(x_{1}^{\prime}\right) \in K\left(\tilde{x}^{\prime}\right) \\
& \left\|A-A^{\prime}\right\| \leqslant \rho\left(x_{1}, x_{1}^{\prime}\right)
\end{aligned}
$$

In fact, let

$$
A:=f_{\mathcal{M}^{\prime}}\left(x_{1}\right), \quad A^{\prime}:=f_{\mathcal{M}^{\prime}}\left(x_{1}^{\prime}\right)
$$

Then $A \in \mathbb{B}(\tilde{x})$ and $A^{\prime} \in \mathbb{B}\left(\tilde{x}^{\prime}\right)$. Furthermore,

$$
\left\|A-A^{\prime}\right\| \leq \rho\left(x_{1}, x_{1}^{\prime}\right)
$$

Hence $A \in K(\tilde{x})$ and $A^{\prime} \in K\left(\tilde{x}^{\prime}\right)$, and

$$
\left\|A-A^{\prime}\right\|_{\infty} \leq \rho\left(x_{1}, x_{1}^{\prime}\right)
$$

Step 2. Given

$$
\tilde{x}=\left(x_{1}, x_{2}\right), \quad \tilde{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in \widetilde{\mathcal{M}}
$$

let

$$
\tilde{\rho}\left(\tilde{x}, \tilde{x}^{\prime}\right):=\rho\left(x_{1}, x_{1}^{\prime}\right)
$$

Let

$$
K:=K(\tilde{x}), \quad \tilde{x} \in \widetilde{\mathcal{M}}
$$

be a set-valued mapping from $\widetilde{\mathcal{M}}$ into the family of all squares in \mathbf{R}^{2}.

We have proved that the restriction $\left.K\right|_{\left\{\tilde{x}, \tilde{x}^{\prime}\right\}}$ to every subset $\left\{\tilde{x}, \tilde{x}^{\prime}\right\}$ of $\widetilde{\mathcal{M}}$ has a Lipschitz selection (with respect to $\tilde{\rho}$) with the Lipschitz constant (in ℓ_{∞}^{2}) at most 1.

Then K on all of $\widetilde{\mathcal{M}}$ has a Lip-

 schitz selection $g: \widetilde{M} \rightarrow \mathbf{R}^{2}$ with $\|g\|_{\operatorname{Lip}\left(\widetilde{\mathcal{M}}, \ell_{\infty}^{2}\right)} \leq 1$.

Compare $g\left(x, x_{2}\right)$ and $g\left(x, x_{2}^{\prime}\right)$:

$\left\|g(\tilde{x})-g\left(\tilde{x}^{\prime}\right)\right\|_{\infty} \leq \tilde{\rho}\left(\tilde{x}, \tilde{x}^{\prime}\right)=: \rho(x, x)=0$ $\Rightarrow g(\tilde{x})=g\left(\tilde{x}^{\prime}\right)$ if

$$
\tilde{x}=\left(x, x_{2}\right), \quad \tilde{x}^{\prime}=\left(x, x_{2}^{\prime}\right)
$$

$g(\tilde{x})=g\left(x_{1}, x_{2}\right)$ depends only on $x_{1} \Rightarrow g$ defines a mapping on \mathcal{M} which we denote by the same symbol g.

$$
f(x):=\operatorname{Pr}(g(x), F(x))
$$

where $\operatorname{Pr}(\cdot, L)$ stands for the orthogonal projection on a straight line $L \subset \mathbf{R}^{2}$.

Clearly, $f(x) \in F(x)$, i.e., f is a selection of F. Prove
$\|f(x)-f(y)\| \leq 2 \sqrt{2} \rho(x, y), \quad x, y \in \mathcal{M}$.

For every $x, y \in \mathcal{M}$ we have $g(x)=g(x, y), g(y)=g(y, x) \Rightarrow$ $\|g(x)-g(y)\| \leq \sqrt{2}\|g(x)-g(y)\|_{\infty}$ $=\sqrt{2}\|g(x, y)-g(y, x)\|_{\infty} \leq \sqrt{2} \rho(x, y)$

Since g is a selection of K, for every $\tilde{x}=(x, y) \in \widetilde{\mathcal{M}}$ we have

$$
g(x)=g(\tilde{x}) \in K(\tilde{x}), \quad y \in \mathcal{M}
$$

But $K(\tilde{x}) \subset \sqrt{2} \circ \mathrm{~B}(\tilde{x})$ so that

$$
g(x) \in \sqrt{2} \circ \mathrm{~B}(\tilde{x})=B(c(x, y), \sqrt{2} r(x, y))
$$

By dilation with respect to $c(x, y)$

$$
\begin{gathered}
\mathrm{d}_{\mathrm{H}}(F(x) \cap \sqrt{2} \circ \mathrm{~B}(\tilde{x}), F(y) \cap \sqrt{2} \circ \mathrm{~B}(\tilde{x})) \\
\leq \sqrt{2} \rho(x, y)
\end{gathered}
$$

