C²-smooth functions on finite subsets of R²

Pavel Shvartsman

Department of Mathematics, Technion - Israel Institute of Technology, 32000 Haifa, Israel

1. The Whitney Extension Problem

Let $C^2(\mathbb{R}^2)$ be the space of two times continuously differentiable functions on \mathbb{R}^2 whose partial derivatives of the second order are bounded function on \mathbb{R}^2 . We equip this space with the seminorm

$$\|F\|_{C^{2}(\mathbb{R}^{2})} :=$$

$$\sup_{z \in \mathbb{R}^{2}} \max \left\{ \left| \frac{\partial^{2} F}{\partial x^{2}}(z) \right|, \left| \frac{\partial^{2} F}{\partial x \partial y}(z) \right|, \left| \frac{\partial^{2} F}{\partial y^{2}}(z) \right| \right\}$$

Let $E \subset \mathbb{R}^2$ be a finite subset, and let $f : E \to \mathbb{R}^2$. Problem. How can we extend a function $f: E \to \mathbf{R}$ to a function $F \in C^2(\mathbf{R}^2)$ with minimal $||F||_{C^2(\mathbf{R}^2)}$?

What is the order of magnitude of this minimal C²-norm, i.e.,

 $||f||_{C^2(\mathbf{R}^2)|_E} = \inf\{||F||_{C^2(\mathbf{R}^2)} : F|_E = f\}?$

Something of the history:

H. Whitney, TAMS, (1934);

[W1] Analytic extension of differentiable functions defined in closed sets. An extension problem for jets: Given a family of polynomials $\{P_x \in \mathcal{P}_1(\mathbb{R}^2) : x \in E\}$ find a function $F \in C^2(\mathbb{R}^2)$ such that the Taylor polynomial of the first order of F at x

 $T_x^1[F] = P_x$ for every $x \in E$

[W2] Differentiable functions defined in closed sets. I.

(A description of $C^2(\mathbf{R})|_E$ via <u>divided differences</u> of the second order of f on E.)

2. The finiteness principle.

The Whitney problem of characterization of the trace space $C^2(\mathbb{R}^2)|_E$: we have to restore in an optimal way all partial derivatives of the second order of a function $f: E \to \mathbb{R}$ using only the values of f on E.

In many cases Whitney-type problems (for different spaces of smooth functions) can be reduced to the same kinds of problems, but <u>for finite sets with prescribed</u> number of points. <u>Theorem 2.1</u> (Sh. [1982])

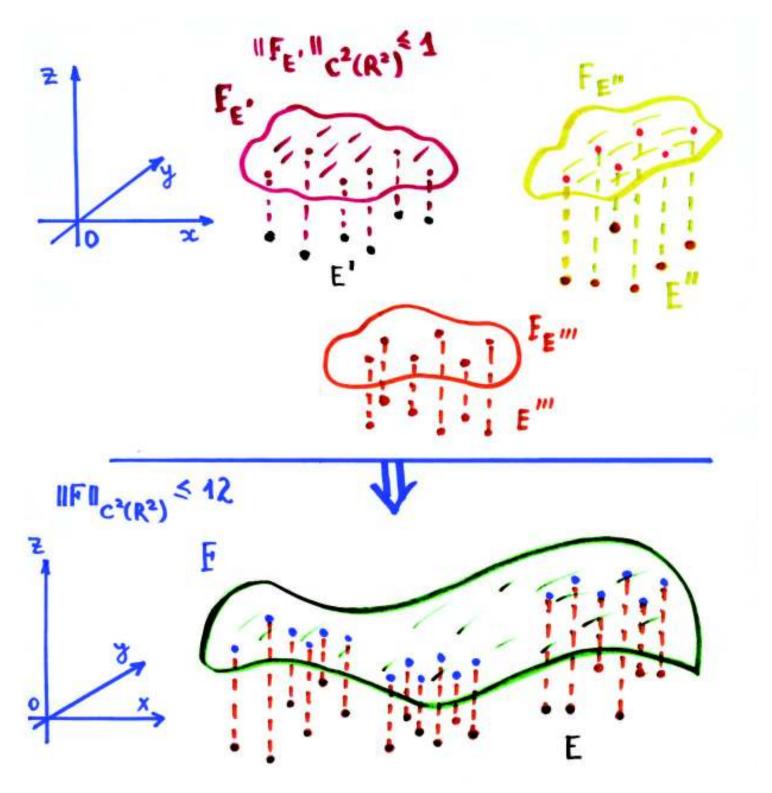
Let $E \subset \mathbb{R}^2$ be a finite set and let $f : E \to \mathbb{R}$.

Suppose that the restriction $f|_{E'}$ to every $E' \subset E$ of card $E' \leq 6$ can be extended to a function $F_{E'} \in C^2(\mathbb{R}^2)$ with the norm

 $\|F_{E'}\|_{C^2(\mathbf{R}^2)} \le 1$

Then *f* itself can be extended to a function $F \in C^2(\mathbb{R}^2)$ with

 $||F||_{C^2(\mathbf{R}^2)} \le 12.$



The finiteness number N = 6for the space $C^2(\mathbb{R}^2)$ is sharp.

Let $0 < \varepsilon < 1/4$ and $A_{\varepsilon} = \{(1 - \varepsilon, 0), (-1, -\varepsilon^2),$ $(-1+\varepsilon,0), (1-\varepsilon,0), (1,\varepsilon^2)(1+\varepsilon,0)\}.$ Define $f : A_{\varepsilon} \to \mathbf{R}$ by $f(1,\varepsilon^2) = \varepsilon, f(x) = 0, x \in A_{\varepsilon} \setminus \{(1,\varepsilon^2)\}$ 4(A3)=E f(A4)= D f(As)=D 1 2/4 f(A2)=0 f(A,)=0 f(A_)=0

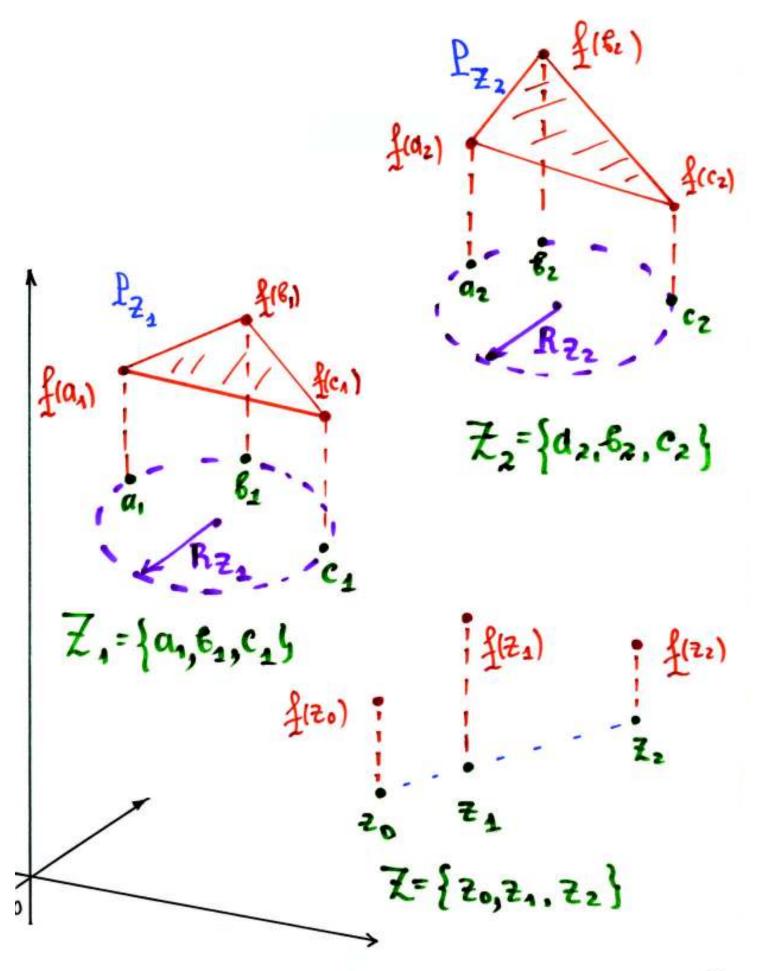
For each $A' \subset A_{\varepsilon}$, card A' = 5, $f|_{A'}$ extends to an $F_{A'} \in C^2(\mathbb{R}^2)$, $\|F_{A'}\|_{C^2(\mathbb{R}^2)} \leq 1$. However,

 $\|F\|_{C^{2}(\mathbb{R}^{2})} \geq 1/4\varepsilon, \quad \underbrace{\forall F, F|_{A_{\varepsilon}}}_{----} = f$

Theorem 2.2 For every finite set $E \subset \mathbb{R}^2$ and for every $f: E \to \mathbb{R}$ $\|f\|_{C^2(\mathbb{R}^2)|_E} \sim$ $\sup_{\substack{z_0, z_1, z_2 \in E\\z_1 \in (z_0, z_2)}} \left| \frac{\frac{f(z_0) - f(z_1)}{\|z_0 - z_1\|} - \frac{f(z_1) - f(z_2)}{\|z_1 - z_2\|}}{\|z_0 - z_2\|} \right| +$

 $\sup_{Z_1, Z_2 \subset E} \frac{\|\nabla P_{Z_1}[f] - \nabla P_{Z_2}[f]\|}{R_{Z_1} + R_{Z_2} + \operatorname{diam}(Z_1 \cup Z_2)}$

8



3. A geometrical approach to the Whitney problem: main ideas.

Theorem (E. Helly, 1913).

Let \mathcal{K} be a family of convex sets in \mathbb{R}^n . Suppose that \mathcal{K} is finite or that each member of \mathcal{K} is compact.

If every n+1 members of \mathcal{K} have a common point, then there is a point common to all members of \mathcal{K} .

The Whitney Extension Problem for the space $C^2(\mathbf{R}^2)$

Let $E \subset \mathbb{R}^2$ be finite and let $f: E \to \mathbb{R}$. Theorem (Whitney). (Necessity) Suppose $\exists F \in C^2(\mathbb{R}^2)$, $F|_E = f$. Let $\vec{g} = \nabla F|_E$ and $\lambda = ||F||_{C^2(\mathbb{R}^2)}$. Then for every $x, y \in E$

 $|f(y) - (f(x) + \langle \vec{g}(x), y - x \rangle)| \le C\lambda \, \|x - y\|^2$

and

 $\|\vec{g}(x) - \vec{g}(y)\| \le C\lambda \|x - y\|$

where C is an absolute constant.

The first inequality is an estimate of the Taylor reminder of *F* of the first order at points *x*, *y*. (Sufficiency). Let $f : E \to \mathbb{R}$. Suppose that $\exists \lambda > 0$ and a mapping $\vec{g} : E \to \mathbb{R}^n$ such that for every $x, y \in E$

 $|f(y) - (f(x) + \langle \vec{g}(x), y - x \rangle)| \le \lambda \, ||x - y||^2$

and

 $\|\vec{g}(x) - \vec{g}(y)\| \leq \lambda \|x - y\|$ Then $\exists F \in C^2(\mathbb{R}^2)$ such that $F|_E = f$, $\nabla F|_E = \vec{g}$, and

 $\|F\|_{C^2(\mathbf{R}^2)} \le C\,\lambda$

The conditions

 $|f(x) - f(y) - \langle \vec{g}(x), x - y \rangle| \le \lambda ||x - y||^2$ and

$$\|\vec{g}(x) - \vec{g}(y)\| \le \lambda \|x - y\|$$

where $x, y \in E$, are a chain (system) of inequalities.

Our goal is to find the minimal $\lambda > 0$ (up to an absolute constant) such that this system has a solution with respect to $\vec{g}: E \rightarrow \mathbb{R}^2$.

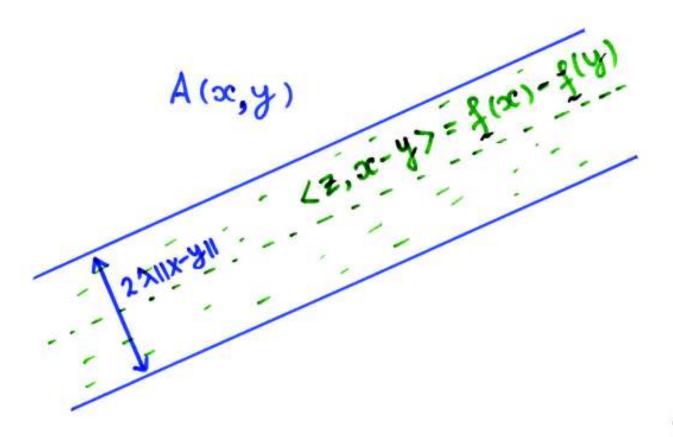
A geometrical background of the Whitney theorem.

Fix $x \in E$. For each $y \in E$ the set

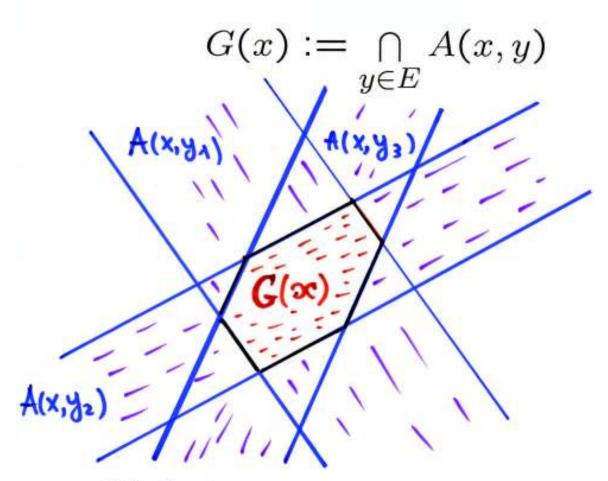
$$A(x,y) := \{z \in \mathbf{R}^2 :$$

 $|f(x) - f(y) - \langle z, x - y \rangle| \le \lambda ||x - y||^2 \}$

is a strip between two parallel hyperplanes.

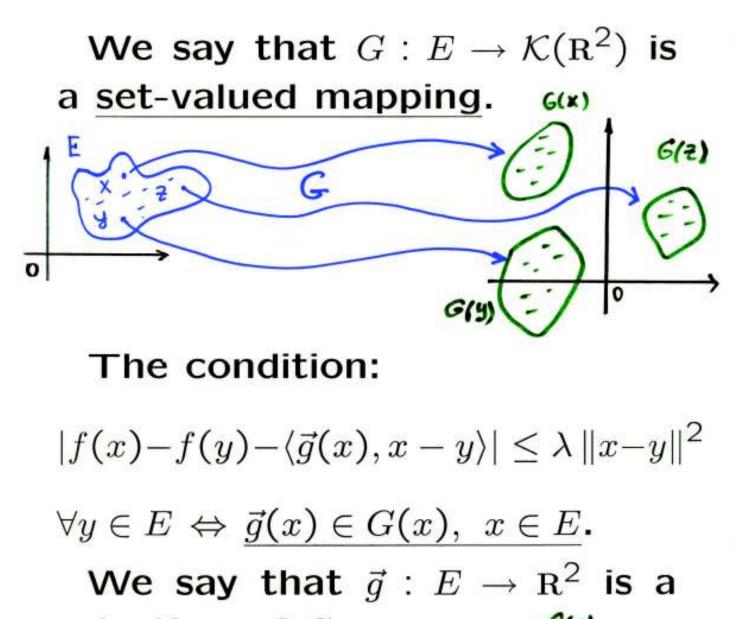


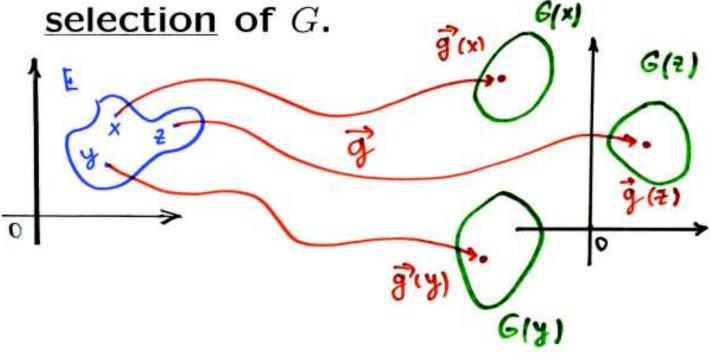
Put



G(x) is a *convex* closed subset of \mathbb{R}^2 . We may assume that G(x) is compact $\Rightarrow G(x) \in \mathcal{K}(\mathbb{R}^2)$.

 $\mathcal{K}(\mathbf{R}^2)$ – all convex closed subsets of \mathbf{R}^2 .





The second condition \Leftrightarrow $\vec{g} \in \operatorname{Lip}(\mathcal{M}; \mathbb{R}^2)$ Here $\mathcal{M} := (E, \rho)$ where $\rho(x, y) := ||x - y||$

 $\operatorname{Lip}(\mathcal{M}; \mathbb{R}^2)$ denotes the space of all Lipschitz mappings from \mathcal{M} into \mathbb{R}^2 equipped with the seminorm

$$\|\vec{g}\|_{\operatorname{Lip}(\mathcal{M};\mathbf{R}^2)} := \sup_{x,y\in\mathcal{M}} \frac{\|\vec{g}(x) - \vec{g}(y)\|}{\rho(x,y)}$$

We call \vec{g} a Lipschitz selection of the set-valued mapping G.

4. Lipschitz selections

of set-valued mappings.

- (\mathcal{M}, ρ) a finite metric space;
- $\mathcal{K}(\mathbf{R}^2)$ all convex closed subsets of \mathbf{R}^2 ;
- $F: \mathcal{M} \to \mathcal{K}(\mathbf{R}^2)$ a set-valued mapping.
- The Lipschitz Selection Problem. Let f be a Lipschitz selection of F, i.e., a mapping $f : \mathcal{M} \to \mathbb{R}^2$:

(i)
$$f(x) \in F(x), x \in M$$
.
(ii) $f \in Lip(M; \mathbb{R}^2)$

How small can its Lipschitz seminorm $\|f\|_{\text{Lip}(\mathcal{M}; \mathbb{R}^2)}$ be?

Theorem 4.1 Let (\mathcal{M}, ρ) be a finite metric space and let $F : \mathcal{M} \to \mathcal{K}(\mathbb{R}^2)$ be a set-valued mapping.

Suppose that for every subset $\mathcal{M}' \subset \mathcal{M}$ consisting of at most 4 elements the restriction $F|_{\mathcal{M}'}$ has a Lipschitz selection

$$f_{\mathcal{M}'}: \mathcal{M}' \to \mathbf{R}^2$$

such that

$$\|f_{\mathcal{M}'}\|_{\operatorname{Lip}(\mathcal{M}';\mathbf{R}^2)} \leq 1$$

Then F on all of the set \mathcal{M} has a Lipschitz selection $f: \mathcal{M} \to \mathbb{R}^2$ with

 $\|f\|_{\operatorname{Lip}(\mathcal{M};\mathbf{R}^2)} \le 5$

This theorem is also true for pseudometric spaces, i.e., $\rho(x,y)$ may take the value 0 for $x \neq y$.

Example 4.2 Let $\rho \equiv 0$. Let $F : \mathcal{M} \to \mathcal{K}(\mathbb{R}^2)$ be a set-valued mapping and let $f : \mathcal{M} \to \mathbb{R}^2$ be its Lipschitz selection. Then

 $\|f(x) - f(y)\| \le \rho(x, y) = 0 \quad \forall \quad x, y \in \mathcal{M}$

so that $f(x) = c \in \mathbb{R}^2$, $x \in \mathcal{M}$.

Since $f(x) \in F(x), x \in \mathcal{M}, \Longrightarrow$

 $c \in F(x), \quad \forall x \in \mathcal{M}$

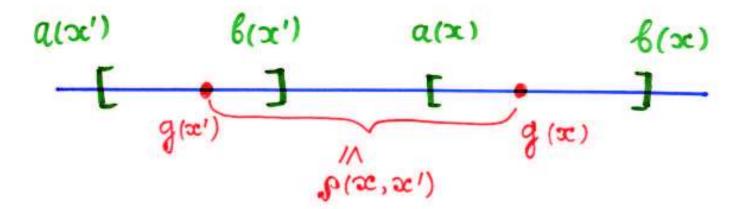
Thus F has a Lipschitz selection with respect to $\rho \equiv 0 \iff$ $\bigcap \{F(x) : x \in \mathcal{M}\} \neq \emptyset$ By Helly's Theorem $\bigcap \{F(x) : x \in \mathcal{M}\} \neq \emptyset$ \iff $\bigcap \{F(x) : x \in \mathcal{M}'\} \neq \emptyset$ for every $\mathcal{M}' \subset \mathcal{M}$, card $\mathcal{M} < 3$, $F|_{\mathcal{M}'}$ has a Lipschitz \Leftrightarrow selection for every subset $\mathcal{M}' \subset \mathcal{M}$, card $\mathcal{M} < 3$

Let $F : \mathcal{M} \to \mathcal{K}(\mathbb{R})$ be a set-valued mapping, i.e., $F(x) := [a(x), b(x)], x \in \mathcal{M}.$

Assume that for every F(x), F(x')there exist

 $g(x) \in F(x), g(x') \in F(x')$ such that

 $|g(x) - g(x')| \le \rho(x, x')$



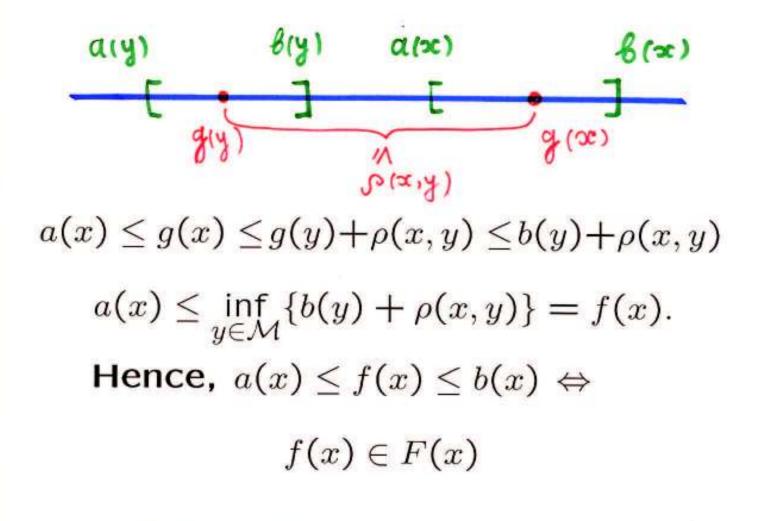
Given $x \in \mathcal{M}$ we define

 $f(x) := \inf_{y \in \mathcal{M}} \{b(y) + \rho(x, y)\}$

Then $f(x) \leq b(x)$ (put y = x).

For every $y \in \mathcal{M}$ there are points $g(x) \in [a(x), b(x)], g(y) \in [a(y), b(y)]$ such that

$$|g(x) - g(y)| \le \rho(x, y)$$



Clearly, $||f||_{Lip(\mathcal{M};\mathbf{R})} \leq 1$.

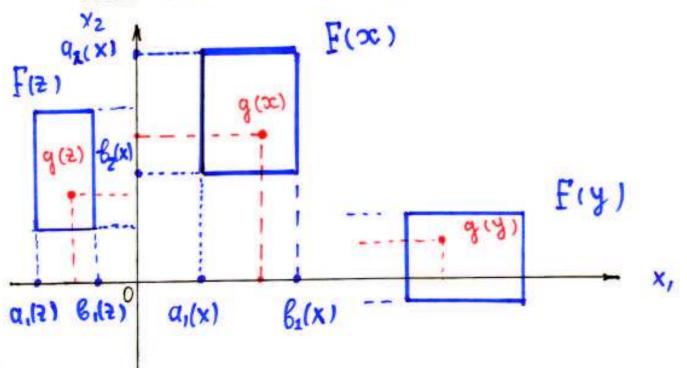
Let

$$||a||_{\infty} := \max_{i=1,2} |a_i|$$

Consider

$$F(x) := \prod_{k=1}^{2} [a_k(x), b_k(x)], x \in \mathcal{M}$$

Then *F* has a selection *f* with $||f||_{\text{Lip}(\mathcal{M})} \leq 1 \quad \Leftrightarrow \forall \mathcal{M}' \subset \mathcal{M},$ card $\mathcal{M}' = 2$, the restriction $F|_{\mathcal{M}'}$ has such a selection.



22

Prove that the theorem is true for $X = \mathbb{R}^2$ (equipped with the Euclidean norm) with N = 4 and $\gamma = 2\sqrt{2}$.

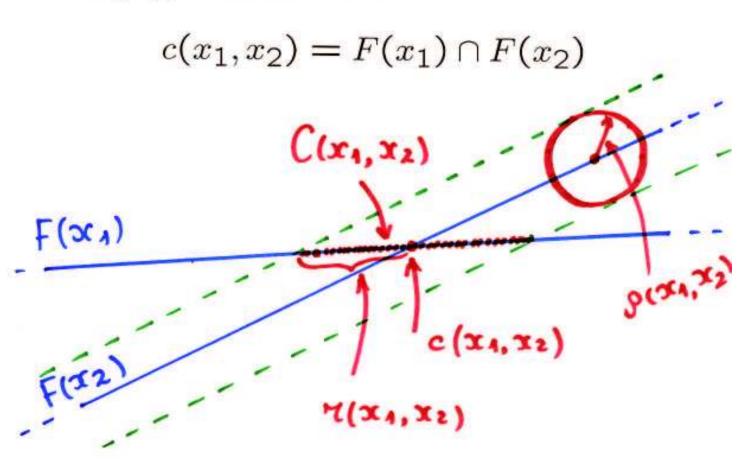
We know that $\forall \mathcal{M}' \subset \mathcal{M}$ with card $\mathcal{M}' \leq 4$, the restriction $F|_{\mathcal{M}'}$ has a Lipschitz selection $f_{\mathcal{M}'}$ with $||f_{\mathcal{M}'}||_{Lip(\mathcal{M}'; \mathbb{R}^2)} \leq 1$. We have to prove that F on \mathcal{M} has a Lipschitz selection $f : \mathcal{M} \to \mathbb{R}^2$ satisfying $||f||_{\text{Lip}(\mathcal{M};\mathbb{R}^2)} \leq 2\sqrt{2}$. FX 5 p(x.y) ell = { X1, X2, X3, X4} gui (20) D(X1,X4) F(xu) tay 212 (2,w) f (X4) F(v) Fizi p(x,, x2) > F(x3) 1 4 7(4) Fiu) F.M. (x2) F(x2) 23 Step 1. Let $x_1, x_2 \in \mathcal{M}, x_1 \neq x_2$ and let $F(x_1) \notin F(x_2)$.

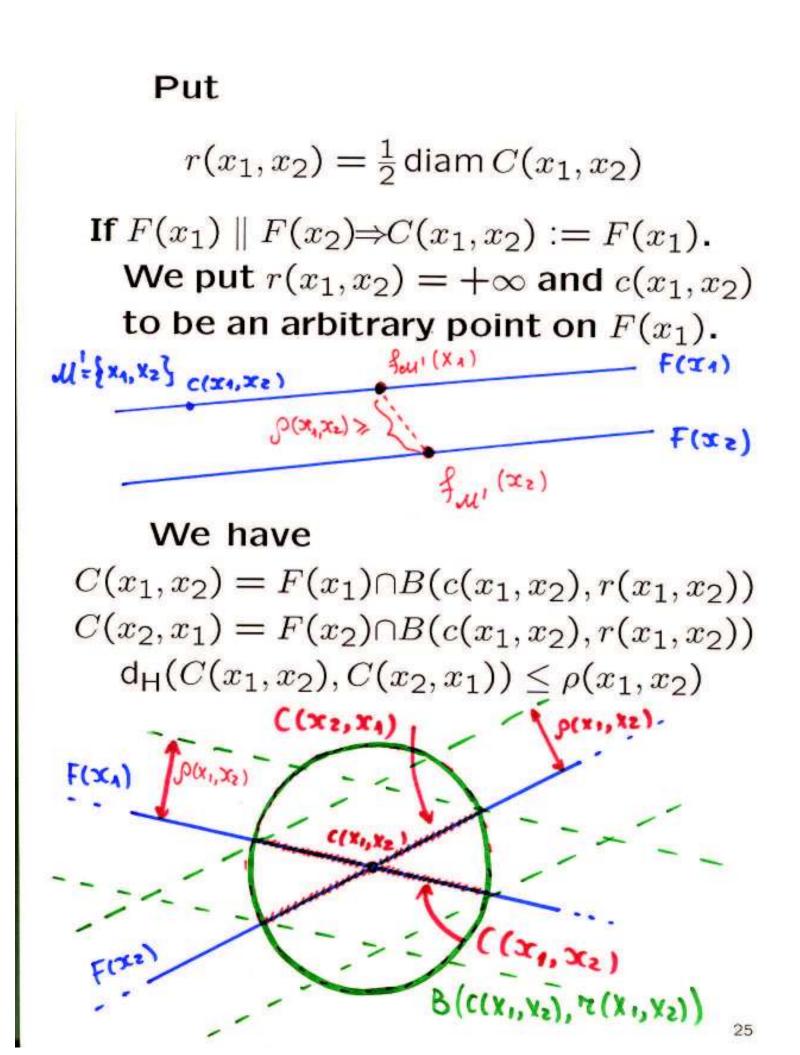
Put

$C(x_1, x_2) :=$

 $F(x_1) \cap \{F(x_2) + B(0, \rho(x_1, x_2))\}$

 $C(x_1, x_2)$ is a line segment on $F(x_1)$ with center





Here d_H stands for the Hausdorff distance:

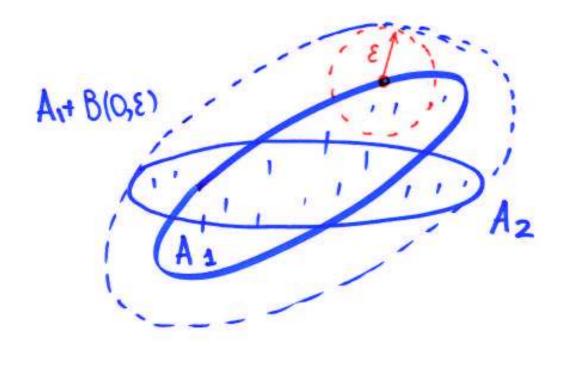
 $d_{H}(A_{1}, A_{2}) := \inf \{ \varepsilon > 0 :$

 $A_1 + B(0,\varepsilon) \supset A_2, A_2 + B(0,\varepsilon) \supset A_1 \}$

or, equivalently,

 $d_{H}(A_{1}, A_{2}) :=$

 $\max\{\sup_{x\in A_1} \operatorname{dist}(x, A_2), \sup_{x\in A_1} \operatorname{dist}(x, A_2)\}$



We introduce a family of
ordered pairs of points from
$$\mathcal{M}$$
:
 $\widetilde{\mathcal{M}} := \{ \tilde{x} = (x_1, x_2) : x_1, x_2 \in \mathcal{M}, x_1 \neq x_2 \}$
Given $\tilde{x} = (x_1, x_2) \in \widetilde{\mathcal{M}}$ we put
 $C(\tilde{x}) := C(x_1, x_2), \ c(\tilde{x}) := c(x_1, x_2),$
 $r(\tilde{x}) := r(x_1, x_2)$ and
 $\mathbb{B}(\tilde{x}) := B(c(x_1, x_2), r(x_1, x_2))$

We know that

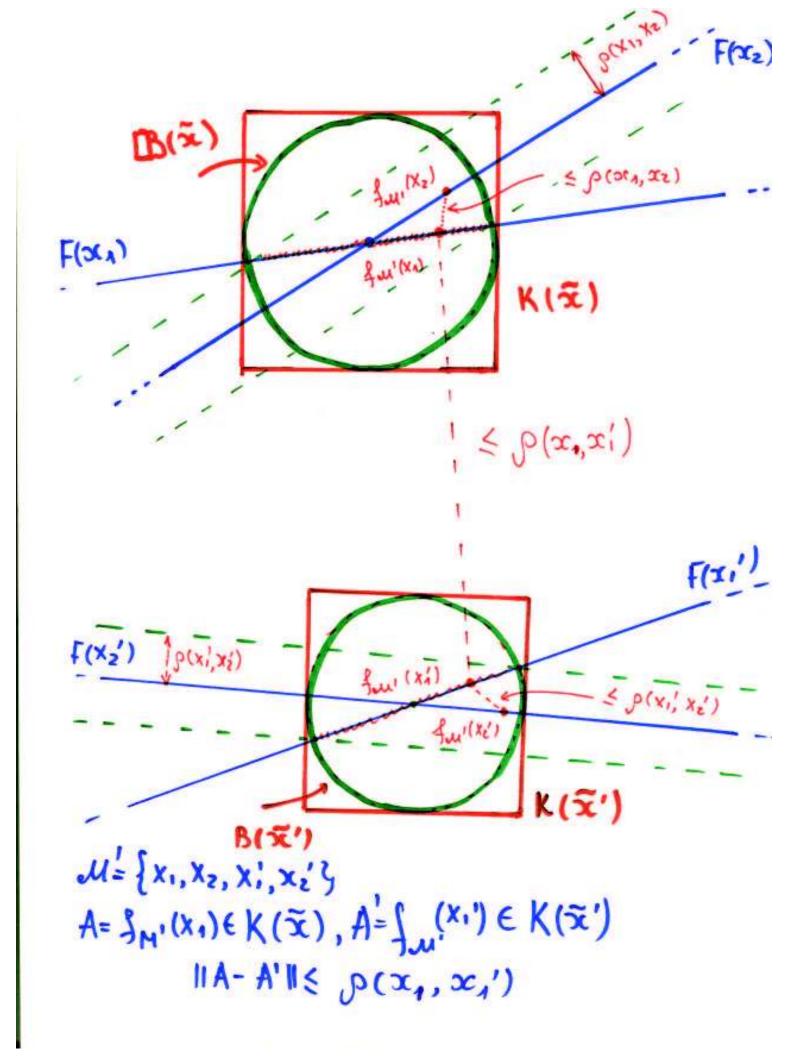
 $d_{\mathrm{H}}(F(x_1) \cap \mathbb{B}(\tilde{x}), F(x_2) \cap \mathbb{B}(\tilde{x})) \leq \rho(x_1, x_2)$

Prove that

dist($\mathbb{B}(\tilde{x}), \mathbb{B}(\tilde{x}')$) $\leq \rho(x_1, x_1')$

for every

$$\tilde{x} = (x_1, x_2), \ \tilde{x}' = (x_1', x_2') \in \widetilde{\mathcal{M}}$$



In fact, let

$$A := f_{\mathcal{M}'}(x_1), \quad A' := f_{\mathcal{M}'}(x_1')$$

Then $A \in \mathbb{B}(\tilde{x})$ and $A' \in \mathbb{B}(\tilde{x}')$. Furthermore,

$$||A - A'|| \le \rho(x_1, x_1')$$

Hence $A \in K(\tilde{x})$ and $A' \in K(\tilde{x}')$, and

$$||A - A'||_{\infty} \le \rho(x_1, x_1')$$

Step 2. Given

$$ilde{x} = (x_1, x_2), \quad ilde{x}' = (x_1', x_2') \in \widetilde{\mathcal{M}}$$
 let

$$\tilde{\rho}(\tilde{x}, \tilde{x}') := \rho(x_1, x_1')$$

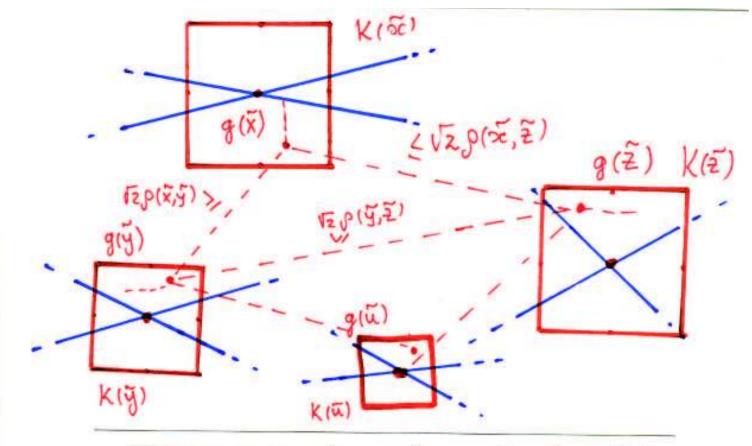
Let

$$K := K(\tilde{x}), \quad \tilde{x} \in \widetilde{\mathcal{M}}$$

be a set-valued mapping from $\widetilde{\mathcal{M}}$ into the family of all squares in \mathbb{R}^2 .

We have proved that the restriction $K|_{\{\tilde{x},\tilde{x}'\}}$ to every subset $\{\tilde{x},\tilde{x}'\}$ of \mathcal{M} has a Lipschitz selection (with respect to $\tilde{\rho}$) with the Lipschitz constant (in ℓ_{∞}^2) at most 1.

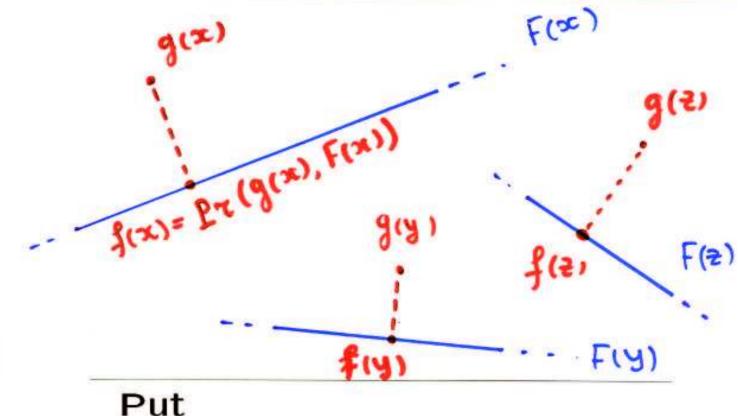
Then *K* on all of $\widetilde{\mathcal{M}}$ has a Lipschitz selection $g : \widetilde{\mathcal{M}} \to \mathbb{R}^2$ with $\|g\|_{\operatorname{Lip}(\widetilde{\mathcal{M}}, \ell_{\infty}^2)} \leq 1.$



Compare $g(x, x_2)$ and $g(x, x'_2)$: $\|g(\tilde{x}) - g(\tilde{x}')\|_{\infty} \leq \tilde{\rho}(\tilde{x}, \tilde{x}') =: \rho(x, x) = 0$ $\Rightarrow g(\tilde{x}) = g(\tilde{x}')$ if

 $\tilde{x} = (x, x_2), \quad \tilde{x}' = (x, x_2')$

 $g(\tilde{x}) = g(x_1, x_2)$ depends only on $x_1 \Rightarrow g$ defines a <u>mapping on \mathcal{M} </u> which we denote by the same symbol g.



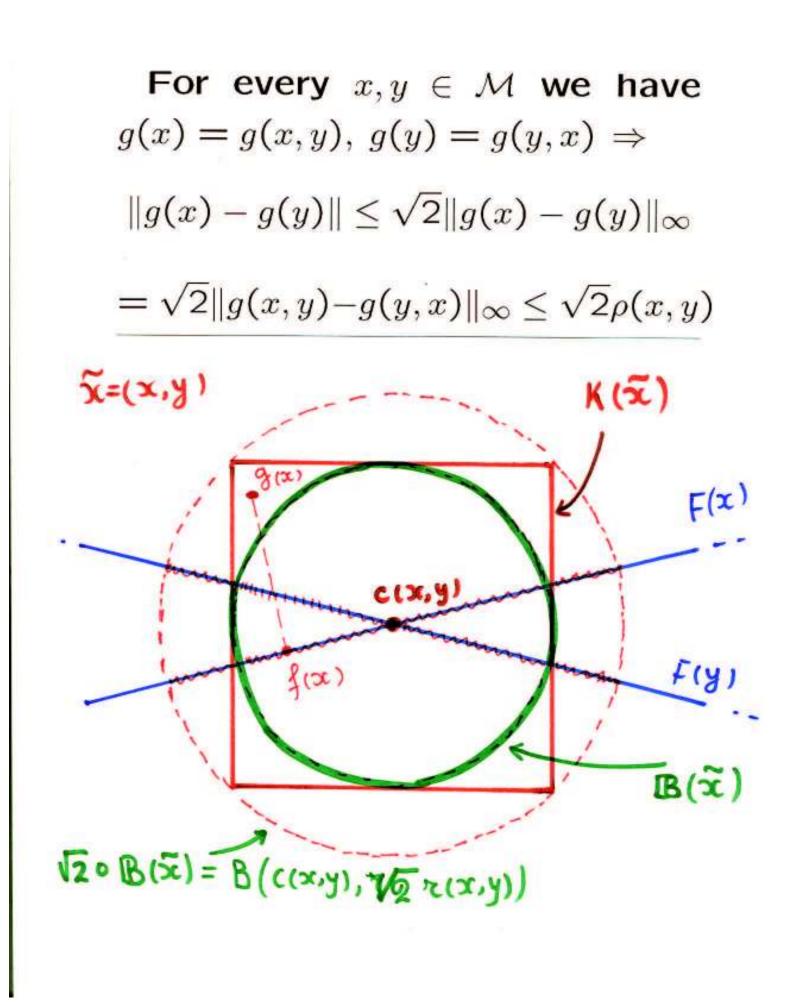
Pul

$f(x) := \Pr(g(x), F(x))$

where $Pr(\cdot, L)$ stands for the orthogonal projection on a straight line $L \subset \mathbb{R}^2$.

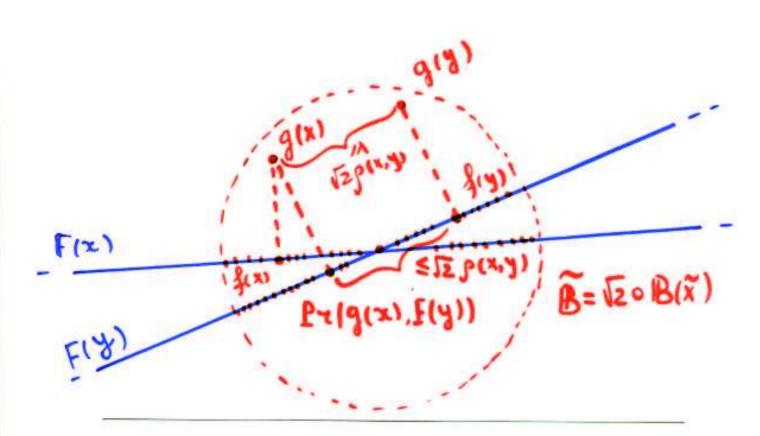
Clearly, $f(x) \in F(x)$, i.e., f is a <u>selection of F.</u> Prove

 $||f(x)-f(y)|| \leq 2\sqrt{2}\rho(x,y), \quad x,y \in \mathcal{M}.$



Since g is a selection of K, for every $\tilde{x} = (x, y) \in \mathcal{M}$ we have $q(x) = q(\tilde{x}) \in K(\tilde{x}), \quad y \in \mathcal{M}.$ But $K(\tilde{x}) \subset \sqrt{2} \circ B(\tilde{x})$ so that $g(x) \in \sqrt{2} \circ \mathsf{B}(\tilde{x}) = B(c(x,y), \sqrt{2}r(x,y)).$ By dilation with respect to c(x, y) $\mathsf{d}_{\mathsf{H}}(F(x) \cap \sqrt{2} \circ \mathsf{B}(\tilde{x}), F(y) \cap \sqrt{2} \circ \mathsf{B}(\tilde{x}))$

 $\leq \sqrt{2}\rho(x,y)$



Lemma. L_1, L_2 - subspaces of R^2 , dim L_1 = dim L_2 = 1. Let B = B(0, r), and let $a \in B$. Then

 $\|\operatorname{Pr}(a,L_1)-\operatorname{Pr}(a,L_2))\| \leq \mathsf{d}_{\mathsf{H}}(L_1 \cap B,L_2 \cap B)$

