Gradual Variation and Numerical Solution of Partial Differential Equations

Li CHEN, Ph.D., Associate Professor

Department of Computer Science and Information Technology University of the District of Columbia 4200 Connecticut Avenue, N.W. Washington, DC 20008 Office Tel: (202) 274-6301 Email: lchen@udc.edu

Outlines

- ¹ The construction method of McShane-Whitney-Kirszbraun Lipschitz function extension is Good in theory, but may not work for actual data reconstruction. (A bounded function is always Lipschitz. The Lipschitz constant may be too big for data fitting) x² is not Lipschitz; Lipschitz is too narrow for real data reconstruction.
- Any continuous function on the constructivecompact-metric-space will have a uniform gradually varied approximation on ε-net (Chen 1990,2005). Gradually varied functions can be applied to all local Lipschitz function.

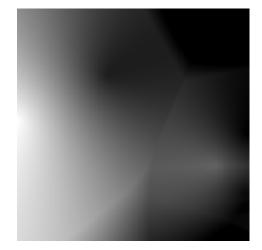
Outlines

- 1 Digital-Discrete Methods(Chen 2010)
 - Get gradually varied extension (digital)
 - Replace the actual values (discrete). Do finite differences
 - Get gradually varied derivatives; repeat. This is an important conceptual change.

Outlines

- Use Taylor Expansion to get C[{](k)}. (Inspirited by Whitney Workshop 2009.) This is the solution for single surface. It can be used as initial surface for Heat equations.
- 1 Use implicit finite difference formula for heat equations.
- 1 Application for groundwater equations
- 1 Other work: Piecewise harmonic reconstruction for functions on manifolds.
- 1 Other connection: Use absolute retract; gradually varied extension to trees

Whitney Construction



McShane-Whitney mid extensions: set one containing 10 points ; set two containing 29 points. F = (INF + SUP)/2 where INF = minimal extension that is Lipschitz. SUP = maximum extension (SUP).

Gradual Variation and PDE

1

Gradually Varied Construction

Let $A_1 < A_2 < ... < A_n$. The Concept of Gradual Variation. Let function $f: D \{A_1, A_2, ..., A_n\}$. If a and b are adjacent in graph D, then it is implied that f(a)=f(b), or $f(b) = A_{i-1}$ or A_{i+1} when $f(a)=A_i$. Point (a,f(a)) and (b,f(b)) are then said to be gradually varied. A 2D function (surface) is said to be gradually varied if every adjacent pair is gradually varied.

Discrete Surface Fitting: Given $J \subseteq D$, and $f: J \{A_1, A_2, \dots, A_n\}$, decide if there is exists an F: $D \{A_1, A_2, \dots, A_n\}$ such that F is gradually varied where f(x) = F(x), x in J.

Theorem (Chen, 1989) The necessary and sufficient conditions for the existence of a gradually varied extension F is: for all x, y in J, $d(x,y) \ge |i-j|$, $f(x) = A_i$ and $f(y) = A_j$, where d is the distance between x and y in D.

2012-9-17

Gradually Varied Approximation in Constructive Compact Space

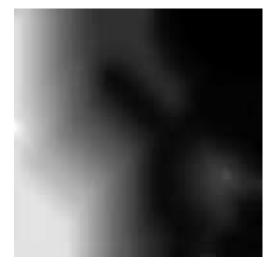
 \mathbb{P} Any continuous function on the constructive-compactmetric-space will have a uniform gradually varied approximation on ε -net (Chen 1990,2005). Gradually varied functions can be applied to all local Lipschitz function.

L. Chen, Gradually varied surfaces and gradually varied functions, in Chinese, 1990; in English 2005 CITR-TR 156, U of Auckland.

Professor Douglas Bridge, the co-author of the famous book "Constructive Analysis," replied: "I've had a look (not a detailed one) at the relevant section of your paper. It seems fine to me."

2012-9-17

Gradually Varied Construction

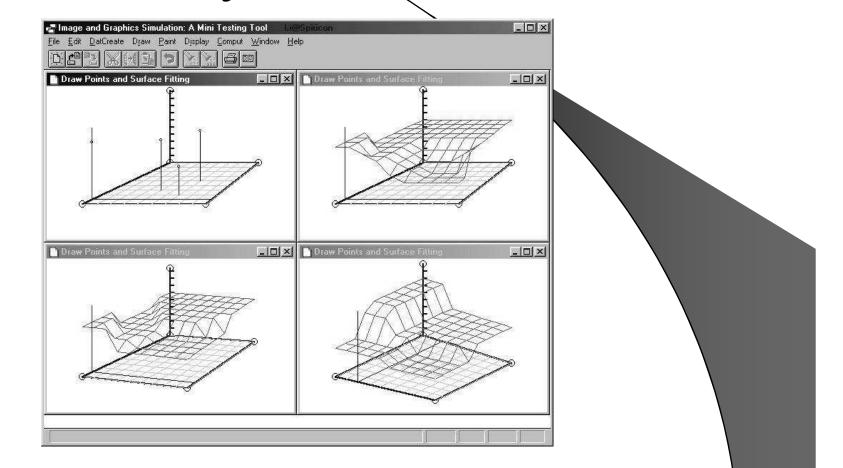


Gradually varied function extensions: set one containing 10 points ; set two containing 29 points.

Gradual Variation and PDE

2012-9-17

Gradually varied functions



 ∇

Gradually Varied Derivatives

Force result of the finite difference to be gradually varied.

- 1 selecte derivatives on at least sample points
- 1 do gradually vaired interpolation

Taylor Extension Based on Gradually Varied Derivatives

 $f(x_1, \cdots, x_d) = \sum_{n_1=0}^{\infty} \cdots \sum_{n_d=0}^{\infty} \frac{(x_1 - a_1)^{n_1} \cdots (x_d - a_d)^{n_d}}{n_1! \cdots n_d!} \left(\frac{\partial^{n_1 + \cdots + n_d} f}{\partial x_1^{n_1} \cdots \partial x_d^{n_d}}\right) (a_1, \dots, a_d).$

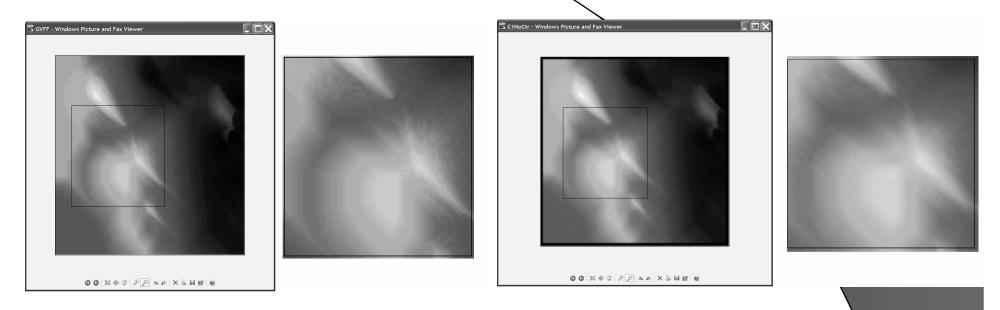
 $f(x,y) \approx f(x_0, y_0) + (x - x_0) f_x(x_0, y_0) + (y - y_0) f_y(x_0, y_0)$

2012-9-17

Gradual Variation and PDE

11

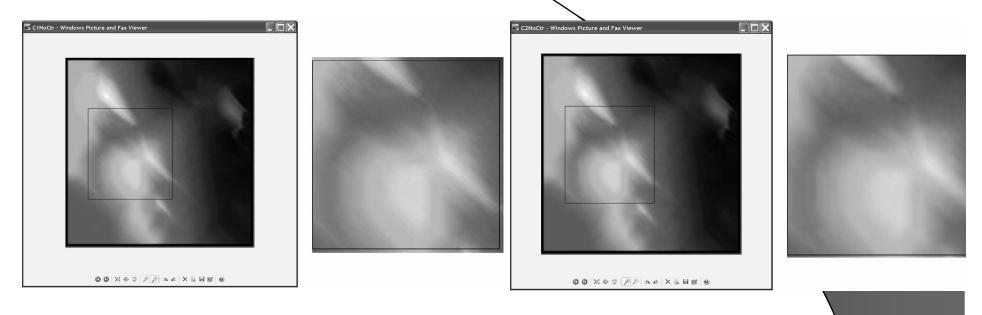
Taylor Extension Based on Gradually Varied Derivatives (Examples)



(a) The "continuous" function.

(b) The first order derivative function.

Taylor Extension Based on Gradually Varied Derivatives (Examples)



(b) The first order derivative function.

(c) The second order derivative function.

(c) Is smoother than (b) ; (c) still contains detailed information not just look like an average of surrounding points.

PDE Research

- 1Find connection between
gradually varied functionsflow equations and
- 1 Data Input format and database (T. Branham)
- 1 Algorithm Design gradually varied function alone combined with difference form of flow equations
- 1 Real data processing
- 1 Testing

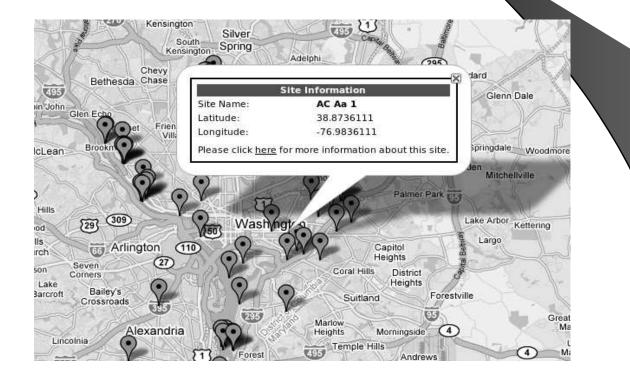
Groundwater flow equations 1 Darcy's Law $\frac{\Delta M_{stor}}{\Delta t} = \frac{M_{in}}{\Delta t} - \frac{M_{out}}{\Delta t} - \frac{M_{gen}}{\Delta t}$

1 Differential form $\frac{\partial h}{\partial t} = \alpha \left[\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} \right] - G$

2012-9-17

Data Preparation

Use PHP build a web application to access groundwater log data in VA and MD. Data is stored in MySQL databases.



Data Preparation

1 Travis L. Branham, Development of a Web-based Application to Geographically Plot Water Quality Data, UDC, 2008

Individual surface fitting

Use original algorithm

Problem: real data does not satisfy the condition of fitting

New algorithm based on the sample points contribution to the fitting point.

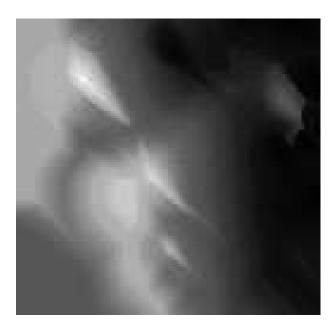
l	for (k=0;k <nguildpoints;k++){< th=""></nguildpoints;k++){<>		
l	ii=(latIndex[k]-latMin)/latDet;		
1	jj=(longtIndex[k]-longtMin)/longtDet;		
1	distance=sqrt((ii -i)*(ii-i)+(jj -j)*(jj-j));		
1	<pre>temp_j=abs((array[i][j] - dat[k][time]))/Ratio-distance; if(temp_j>0){ // not satisfy gvs condition</pre>		
1	if(array[i][j] > dat[k][time])		
1	temp=-temp_j *Ratio ;		
l	else		
l	temp= temp_j *Ratio;		
l	array[i][j]=array[i][j]+temp;		
l	}		
1			

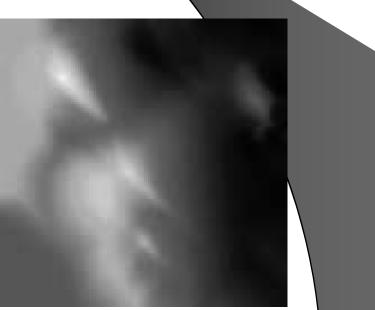
- Sequential surface fitting
 - Involve flow equation
 - Iteration
 - Error control

Sequential surface fitting Involve flow equation (implicit form) h2-h1 = alpha (h2(x-1,y)+h2(x+1,y)-2h2(x,y) + h2(x,y-1)+h2(x,y+1)-2h2(x,y)) -G

f4= (h2(x,y)-h1(x,y)+G)/alpha + 4*h2(x,y)- h2(x-1,y)+h2(x+1,y)+ h2(x,y-1)+h2(x,y+1)

- Sequential surface fitting
 - Iteration
 - use gradually varied function to get initial surface

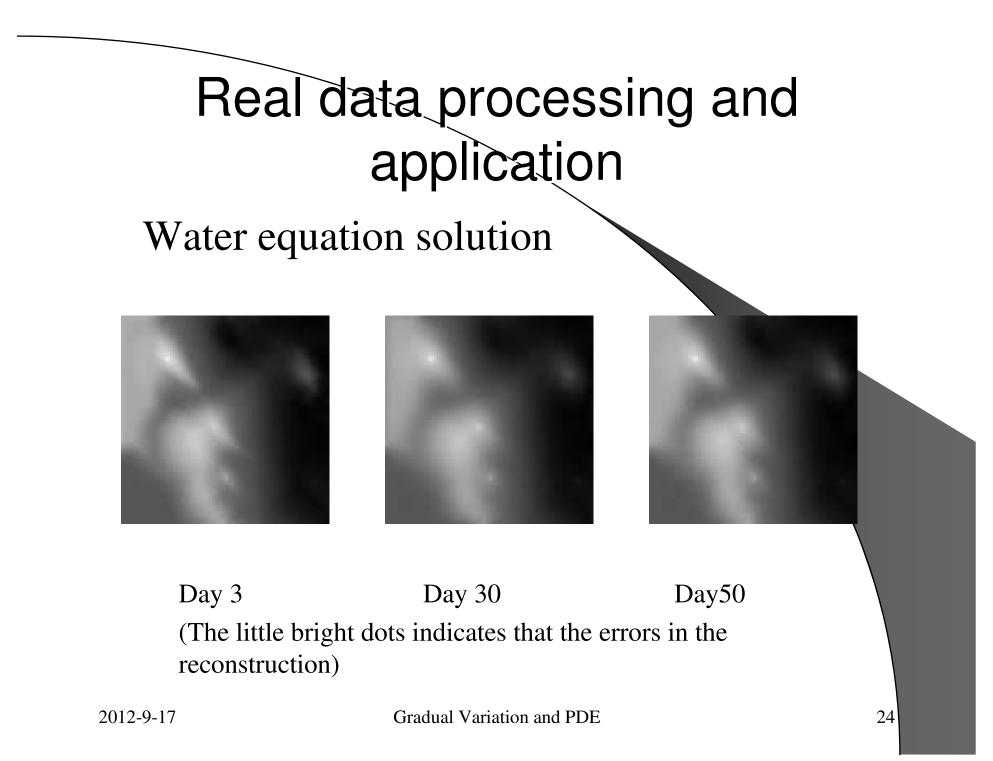


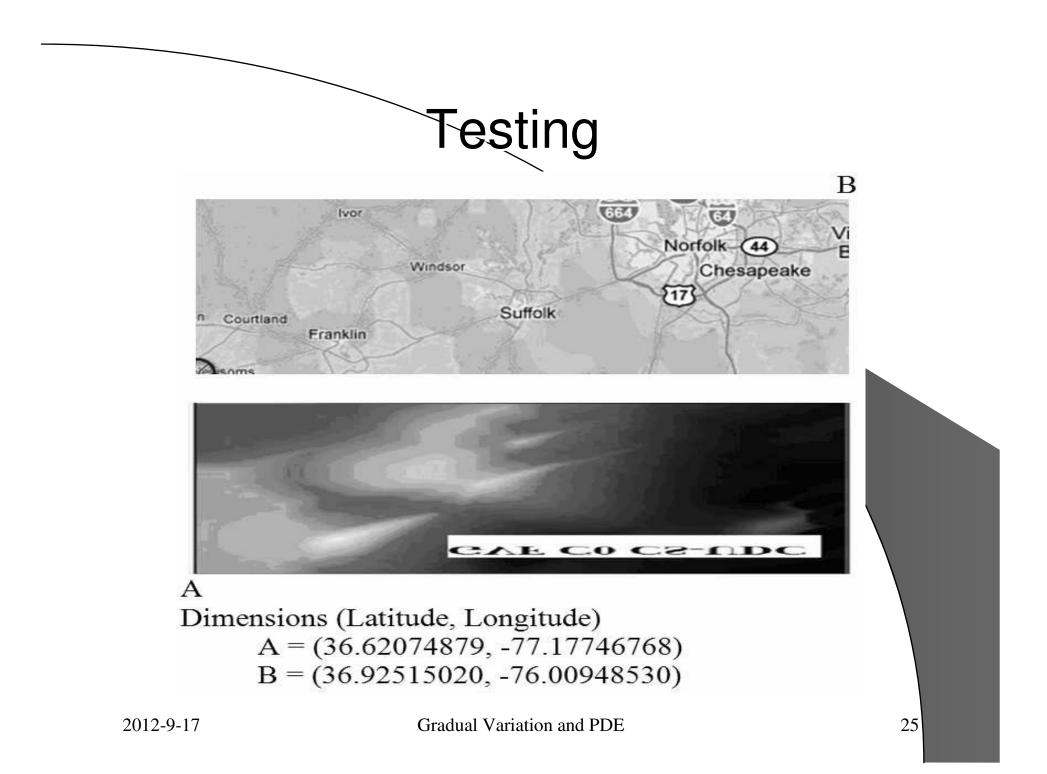


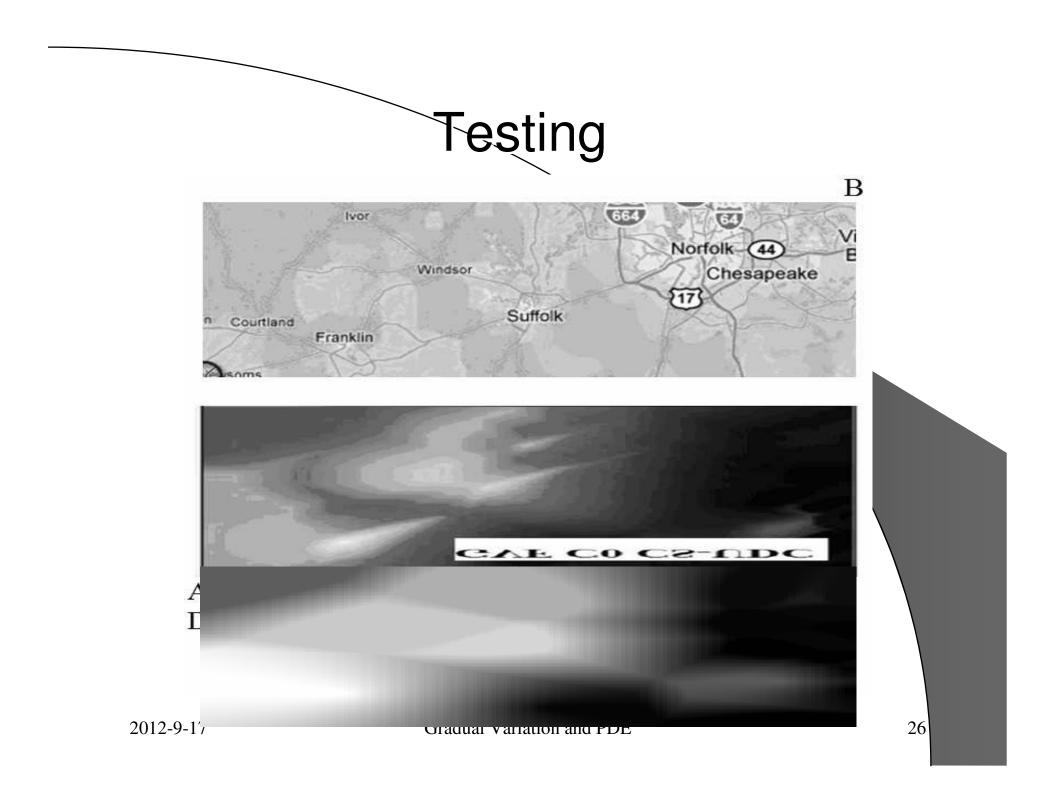
Real data processing and application

Individual surface fitting

Day 1Day 30Day50(Starting with fitted surface at each time the process will be faster to converge.
It will not affect to the final result if there are enough iterations)







Testing

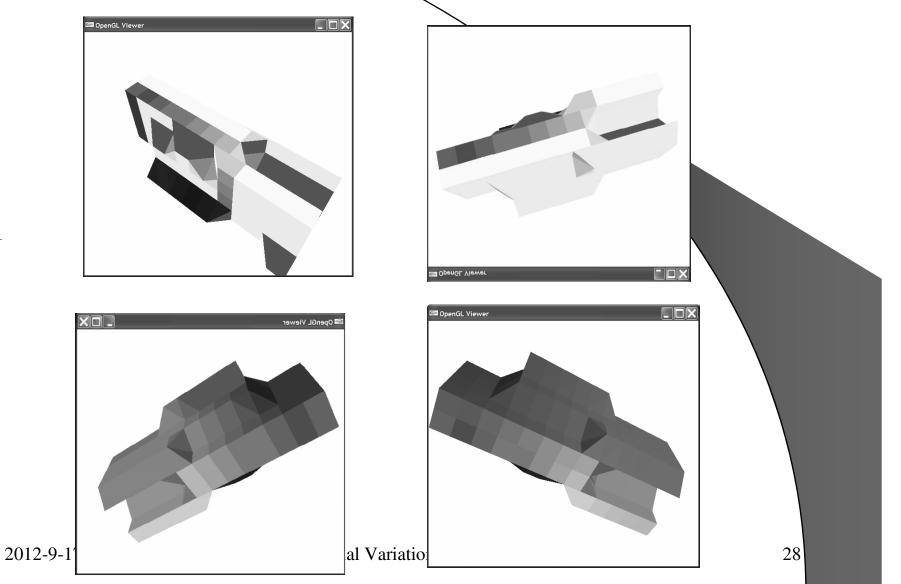
Selected Points used in reconstruction One can find the location at

http://findlatitudeandlongitude.com/

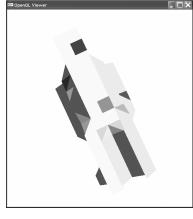
	· · · · · · · · · · · · · · · · · · ·	
4.65	36.62074879	-76.10938540
75.37	36.92515020	-77.17746768
6.00	36.69104276	-76.00948530
175.80	36.78431615	-76.64328700
168.33	36.80403855	-76.73495750
157.71	36.85931567	-76.58634110
208.26	36.68320624	-76.91329390
7.26	36.78737704	-76.05153760

Function extension on Manifolds

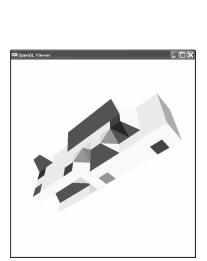
1

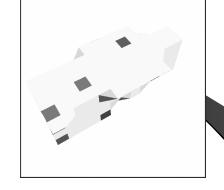


Piecewise Harmonic Function extension on Manifolds



1





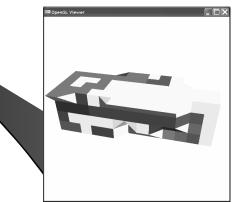
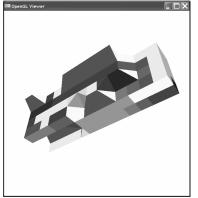
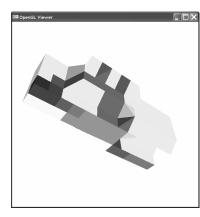


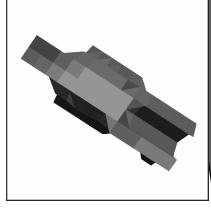
Fig. 4.5. Twelve guiding points from difference view angles



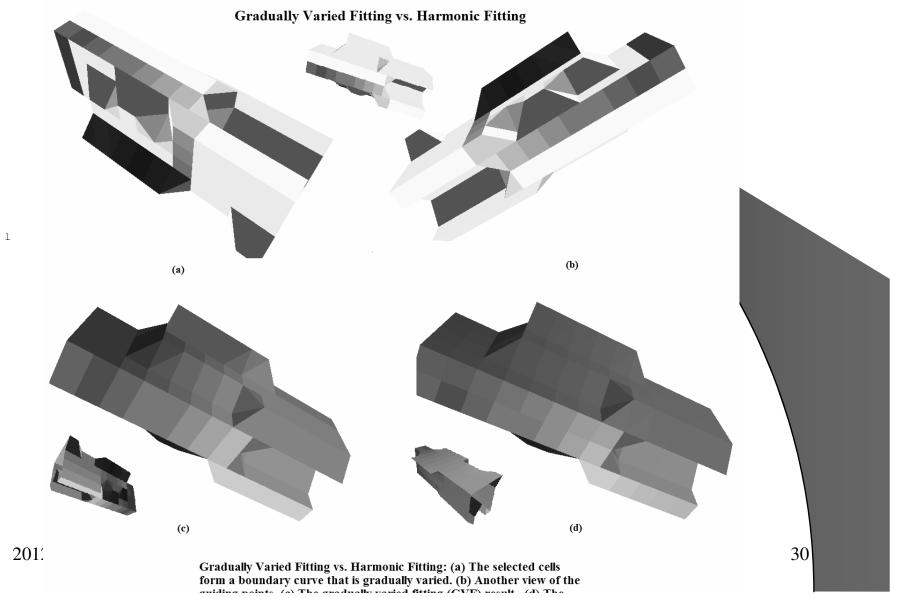
2012-9-17



Gradual Variation and PDE



Gradually Varied vs Harmonic on Manifolds



References

G. Agnarsson and L. Chen, On the extension of vertex maps to graph homomorphisms, Discrete Mathematics, Vol 306, No 17, pp. 2021-2030, 2006.

L. Chen, Applications of the digital-discrete method in smooth-continuous data reconstruction, http://arxiv.org/ftp/arxiv/papers/1002/1002.2367.pdf

L. Chen, Digital-Discrete Surface Reconstruction: A true universal and nonlinear method, http://arxiv.org/ftp/arxiv/papers/1003/1003.2242.pdf.

L. Chen, Gradual variation analysis for groundwater flow of DC (revised), DC Water Resources Research Institute Final Report, Dec 2009. http://arxiv.org/ftp/arxiv/papers/1001/1001.3190.pdf

L. Chen, Discrete surfaces and manifolds, Scientific and Practical Computing, Rockville, Maryland, 2004.

L. Chen, Gradually varied surfaces and gradually varied functions, in Chinese, 1990; in English 2005 CITR-TR 156, U of Auckland.

L. Chen, The necessary and sufficient condition and the efficient algorithms for gradually varied fill, Chinese Sci. Bull. 35 (10) (1990) 870-873.

L. Chen, Random gradually varied surface fitting, Chinese Sci. Bull. 37 (16) (1992) 1325-1329.

). L. Chen and O. Adjei, lambda-connected segmentation and fitting, Proceedings of IEEE international conference on systems man and cybernetics, VOL 4, pp 3500-3506, 2004.

References

- E. Catmull, and J. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design 10, 6, 350–355. 1978.
- C. Fefferman, Whitney's extension problems and interpolation of data, Bull. Amer. Math. Soc. 46 (2009), 207-220.
- P. Lancaster, and K. Salkauskas, Surfaces generated by moving least squares methods. Mathematics of Computation 87, 141–158, 1981.
- Jean-Laurent Mallet, Discrete smooth interpolation, ACM Transactions on Graphics, Vol 8, No 2, April 1989, 121 144.
- E. J. McShane, Extension of range of functions, Edward James McShane, Bull. Amer. Math. Soc., 40:837-842, 1934.
- F. A. Valentine, "A Lipschitz Condition Preserving Extension for a Vector Function," American Journal of Mathematics, Vol. 67, No. 1 (Jan., 1945), pp. 83-93.
- H. Whitney, Analytic extensions of functions defined in closed sets, Transactions

of the American Mathematical Society 36: 63–89, 1934.

2012-9-17

Acknowledgements

Many thanks to this opportunity given by the organizers of Whitney's focus and Fields Institute Many Thanks to USGS for data support, Professor Thomas Funkhouser provided helps on the 3D data sets and OpenGL display programs, and my collaborators Drs. G. Agnarsson, F. Luo, Y. Liu.

Please contact Li Chen at lchen @ udc.edu