A note on the simplicity and the universal covering of some Kac-Moody group

Jun Morita

Institute of Mathematics, University of Tsukuba, Japan

Fields Institute, March 25-29, 2013

Contents

Recent Topic - Simplicity -

- Notation
- Presentation
- Universal Covering
- Remark
- Schur Multiplier
- Conclusion

\S Recent Topic - Simplicity -

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

2009, P.E. Caprace - B. Rémy

Theorem

Let A be an $n \times n$ indecomposable GCM, and \mathbb{F}_q a finite field with $q = p^{\ell}$ elements. Let $G_u(A, \mathbb{F}_q)$ be the universal Kac-Moody group over \mathbb{F}_q of type A, and $G'_u(A, \mathbb{F}_q) = [G_u(A, \mathbb{F}_q), G_u(A, \mathbb{F}_q)]$ its derived subgroup. We suppose that A is not of affine type, and $q \ge n > 2$. Then $G'_u(A, \mathbb{F}_q)$ is simple modulo its center.

A note on the simplicity and the universal covering of some Kac-Moody group

Recent Topic

2012, P.E. Caprace - B. Rémy

Theorem

Let
$$A = \begin{pmatrix} 2 & -a \\ -1 & 2 \end{pmatrix}$$
 be a 2 × 2 hyperbolic GCM,
that is, a > 4, and \mathbb{F}_q a finite field with q > 3. Let
 $G_u(A, \mathbb{F}_q)$ be the universal Kac-Moody group over
 \mathbb{F}_q of type A. Then $G_u(A, \mathbb{F}_q)$ is simple modulo its
center.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Remaining Case (with B. Rémy)

Theorem

Let $A = \begin{pmatrix} 2 & -a \\ -b & 2 \end{pmatrix}$ be a 2 × 2 hyperbolic GCM satisfying ab > 4 with a > 1 and b > 1, and F the algebraic closure of a finite field \mathbb{F}_p . Let $G_u(A, F)$ be the universal Kac-Moody group over F of type A. Then $G_u(A, F)$ is simple modulo its center.

Uniformization

Theorem

Let A be an indecomposable GCM, and F the algebraic closure of a finite field \mathbb{F}_p . Let $G_u(A, F)$ be the universal Kac-Moody group over F of type A, and $G'_u(A, F)$ its derived subgroup. We suppose that A is not of affine type. Then $G'_u(A, F)$ is simple modulo its center.

Simple Group with Trivial Schur Multiplier

Theorem

Let A be an indecomposable GCM, and F the algebraic closure of a finite field \mathbb{F}_p . Then the following two conditions are equivalent.

(1)
$$det(A) = \pm p^c$$
 for some $c \ge 0$.

(2) $G_u(A, F)$ is a simple group with trivial Schur multiplier.

Rank 2 Case

Example

Let F be the algebraic closure of a finite field \mathbb{F}_p . Then the following groups are simple groups with trivial Schur multipliers.

(1)
$$G_u(\begin{pmatrix} 2 & -2 \\ -3 & 2 \end{pmatrix}, F), \ p = 2$$

(2) $G_u(\begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}, F), \ p = 5$
(3) $G_u(\begin{pmatrix} 2 & -5 \\ -17 & 2 \end{pmatrix}, F), \ p = 3$

A note on the simplicity and the universal covering of some Kac-Moody group

Recent Topic

Anther Infinite Field

Question

Let A be an indecomposable non-finite & non-affine GCM, and F another infinite field.

- (1) Is $G'_u(A, F)$ simple modulo its center ?
- (2) Especially how about $G'_u(A, \mathbb{C})$?

Notation

\S Notation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Notation

Set Up I

Let A be an $n \times n$ GCM, and put n' = corank(A). We let $G_u(A, -)$ denote the so-called Tits group functor associated with A. Let $G_u(A, F)$ be the universal Kac-Moody group over F of type A, and $G'_u(A, F)$ the derived subgroup of $G_u(A, F)$. There is an embedding : $T = Hom(\mathbb{Z}^{n+n'}, F^{\times}) \stackrel{\exists}{\hookrightarrow} G_u(A, F)$. - Notation

Set Up II

Let \mathfrak{g} be the Kac-Moody algebra over \mathbb{C} of type A, and Δ^{re} the set of real roots. For each $\alpha \in \Delta^{re}$, there is a group homomorphism $x_{\alpha}: F \hookrightarrow G_{\mu}(A, F)$. Put $U_{\alpha} = \operatorname{Im}(x_{\alpha}) = \{x_{\alpha}(t) \mid t \in F\}$. Then, $G_{\mu}(A,F) = \langle T, U_{\alpha} \mid \alpha \in \Delta^{\mathrm{re}} \rangle,$ $G'_{\mu}(A,F) = \langle U_{\alpha} \mid \alpha \in \Delta^{\mathrm{re}} \rangle,$ $G'_{2d}(A,F) = G'_{u}(A,F)/Z(G'_{u}(A,F)),$ $G_{\mu}(A,F) = G'_{\mu}(A,F)$ if $det(A) \neq 0$, $G_{ad}(A,F) = G'_{ad}(A,F)$ if $det(A) \neq 0$.

\S Presentation

1986, J. Tits

Theorem (G'_u -version)

The group $G'_u(A, F)$ is presented by the generators $x_\alpha(t)$ with $\alpha \in \Delta^{re}$ and $t \in F$, and the following defining relations:

$$\begin{array}{l} (A) \ x_{\alpha}(s)x_{\alpha}(t) = x_{\alpha}(s+t), \\ (B) \ [x_{\alpha}(s), x_{\beta}(t)] = \prod x_{i\alpha+j\beta}(N_{\alpha,\beta,i,j}s^{i}t^{j}), \\ (B') \ w_{\alpha}(u)x_{\beta}(t)w_{\alpha}(-u) = x_{\beta'}(t'), \\ (C) \ h_{\alpha}(u)h_{\alpha}(v) = h_{\alpha}(uv). \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Condition for (B)

Let $\mathfrak{g} = \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$ be the root space decomposition, where

$$\mathfrak{g}_{\alpha} = \{ x \in \mathfrak{g} \mid [h, x] = \alpha(h)x \; (\forall h \in \mathfrak{h}) \}, \\ \Delta = \{ \alpha \in \mathfrak{h}^* \mid \mathfrak{g}_{\alpha} \neq 0 \}, \quad \mathfrak{g}_0 = \mathfrak{h}. \\ \text{Put } Q_{\alpha,\beta} = \{ i\alpha + j\beta \mid i, j \in \mathbb{Z}_{>0} \} \cap \Delta. \\ \text{Then we have}$$

(B) $[x_{\alpha}(s), x_{\beta}(t)] = \prod_{Q_{\alpha,\beta}} x_{i\alpha+j\beta} (N_{\alpha,\beta,i,j}s^{i}t^{j})$ whenever $Q_{\alpha,\beta} \subset \Delta^{\mathrm{re}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Relation (B), 1987, J. M.

Theorem

There are essentially five type relations in (B).

$$\begin{bmatrix} x_{\alpha}(s), x_{\beta}(t) \end{bmatrix} = 1$$

$$\begin{bmatrix} x_{\alpha}(s), x_{\beta}(t) \end{bmatrix} = x_{\alpha+\beta}(\pm (r+1)st)$$

$$r = max\{i \in \mathbb{Z} \mid \beta - i\alpha \in \Delta^{re}\}$$

$$\begin{bmatrix} x_{\alpha}(s), x_{\beta}(t) \end{bmatrix} = x_{\alpha+\beta}(\pm st)x_{2\alpha+\beta}(\pm s^{2}t)$$

$$\begin{bmatrix} x_{\alpha}(s), x_{\beta}(t) \end{bmatrix} = x_{\alpha+\beta}(\pm 2st)x_{2\alpha+\beta}(\pm 3s^{2}t) \cdot$$

$$x_{\alpha+2\beta}(\pm 3st^{2})$$

$$\begin{bmatrix} x_{\alpha}(s), x_{\beta}(t) \end{bmatrix} = x_{\alpha+\beta}(\pm st)x_{2\alpha+\beta}(\pm s^{2}t) \cdot$$

$$x_{3\alpha+\beta}(\pm s^{3}t)x_{3\alpha+2\beta}(\pm 2s^{3}t^{2})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

About (B'), (C)

For
$$u, v \in F^{\times}$$
, we put
 $w_{\alpha}(u) = x_{\alpha}(u)x_{-\alpha}(-u^{-1})x_{\alpha}(u)$,
 $h_{\alpha}(u) = w_{\alpha}(u)w_{\alpha}(-1)$.
Then,
(B') $w_{\alpha}(u)x_{\beta}(t)w_{\alpha}(-u) = x_{\beta'}(t')$,
(C) $h_{\alpha}(u)h_{\alpha}(v) = h_{\alpha}(uv)$,
where h_{α} is the coroot of α and
 $\beta' = \beta - \beta(h_{\alpha})\alpha$, $t' = \pm u^{-\beta(h_{\alpha})}t$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$SL_2(F)$$

For each $\alpha \in \Delta^{re}$, there is a group isomorphism $\varphi_{\alpha}: \langle U_{\alpha}, U_{-\alpha} \rangle \xrightarrow{\simeq} SL_2(F)$ satisfying $x_lpha(t)\mapsto igg(egin{array}{ccc} 1 & t \ 0 & 1 \ \end{array}igg), \quad x_{-lpha}(t)\mapsto igg(egin{array}{ccc} 1 & 0 \ t & 1 \ \end{array}igg),$ $w_{\alpha}(u)\mapsto \left(egin{array}{cc} 0 & u \ -u^{-1} & 0 \end{array}
ight),$ $h_{\alpha}(u)\mapsto \left(egin{array}{cc} u & 0 \ 0 & u^{-1} \end{array}
ight).$

\S Universal Covering

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A group epimorphism $E \longrightarrow G$ is called an extension, and an extension $E \longrightarrow G$ is called a central extension if $Ker [E \longrightarrow G] \subset Z(E)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Universal Covering

A central extension $E \longrightarrow G$ is called a universal covering (or a universal central extension) if for any central extension $E' \longrightarrow G$, there uniquely exists a group homomorphism $E \longrightarrow E'$ such that the following diagram is commutative.

$$\begin{array}{ccc} E & \to & G \\ \downarrow & \nearrow \\ E' \end{array}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Steinberg Group

The Steinberg group St(A, F) over a field F of type A is defined to be the group generated by $\hat{x}_{\alpha}(t)$ for all $\alpha \in \Delta^{\text{re}}$ and $t \in F$ with the defining relations corresponding to (A), (B), (B').

A note on the simplicity and the universal covering of some Kac-Moody group

Universal Covering

1990, J. M. - U. Rehmann

Theorem

Let A be a GCM, and F an infinite field. Then, St(A, F) is a universal covering of $G'_u(A, F)$, which is induced by $\hat{x}_{\alpha}(t) \mapsto x_{\alpha}(t)$.

A note on the simplicity and the universal covering of some Kac-Moody group

Universal Covering

Theorem

Let A be an indecomposable GCM, and F the algebraic closure of a finite field \mathbb{F}_p . We suppose that A is not of affine type. Then, $G'_u(A, F)$ is a universal covering of a simple group $G'_{ad}(A, F)$.

\S Remark

Remark I

Let A be an $n \times n$ GCM, and $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ the set of simple roots. The principal divisors of A is denoted by $\pi(A) = (d_1, \cdots, d_n)$, and we put $\Gamma = \bigoplus_{i=1}^n \mathbb{Z}/d_i\mathbb{Z}$. Then, for a field F, we have $Z(G'_u(A, F))$ $= \{h_{\alpha_1}(u_1) \cdots h_{\alpha_n}(u_n) \mid u_1^{a_{1j}} \cdots u_n^{a_{nj}} = 1, \forall j\}$ $\simeq Hom(\Gamma, F^{\times}).$

Remark II

Let
$$A = \begin{pmatrix} 2 & -a \\ -b & 2 \end{pmatrix}$$
 be a 2 × 2 hyperbolic GCM,
and we suppose $ab > 4$, $a > 1$, $b > 1$. Then, in
many cases, we see that $G_{ad}(A, \mathbb{F}_q)$ is not simple.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-Simple Case

Example

Let
$$A = \begin{pmatrix} 2 & -a \\ -b & 2 \end{pmatrix}$$
 be a 2 × 2 hyperbolic GCM satisfying $ab > 4$ with $a > 1$ and $b > 1$. We suppose $a \equiv b \equiv 2 \pmod{q-1}$. Then, we have $G_{ad}(A, \mathbb{F}_q) \simeq PSL_2(\mathbb{F}_q[X, X^{-1}])$, which is not simple.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$a = 8, b = 14, q = 7$$

Example

We see

$$G_{ad}\begin{pmatrix} 2 & -8 \\ -14 & 2 \end{pmatrix}, \mathbb{F}_7) \simeq PSL_2(\mathbb{F}_7[X, X^{-1}]).$$

\S Schur Multiplier

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Schur Multiplier

If $E \longrightarrow G$ is a universal covering, then

$$M(G) = \operatorname{Ker}[E \longrightarrow G]$$

is called the Schur multiplier of G, in the sense that every projective representation of G can be lifted to an ordinary representation of E.

Let A be a GCM, and F the algebraic closure of a finite field \mathbb{F}_p . Let $\pi(A) = (d_1, \dots, d_n)$ be the principal divisors of A, where we write $d_i = p^{c_i} m_i$ with $p \not\mid m_i$ if $d_i \neq 0$. Then, we have $M(G'_{ad}(A, F)) \simeq \begin{cases} Z_{m_1} \times \dots \times Z_{m_n} & \text{if } d_n \neq 0, \\ Z_{m_1} \times \dots \times Z_{m_k} \times (F^{\times})^{n-k} \\ & \text{if } d_k \neq 0, d_{k+1} = 0. \end{cases}$

▲□▶ ▲圖▶ ★国▶ ★国▶ - ヨー のへで

Rank 2 Case

Example

Let
$$A = \begin{pmatrix} 2 & -a \\ -b & 2 \end{pmatrix}$$
 with $d = ab - 4 > 0$, and
 $\pi(A) = \begin{cases} (2, d') \text{ if } a \equiv b \equiv 0 \pmod{2}, d = 2d', \\ (1, d) \text{ otherwise.} \end{cases}$
Let F be the algebraic closure of a finite field \mathbb{F}_p .
Then, $\frac{M(G_{ad}(A, F)) \mid (1, d) \mid (2, d')}{p = 2} \qquad Z_m \mid Z_{2} \times Z_{m'}}$
if $d = p^c m, d' = p^{c'} m', p \nmid m, p \nmid m'.$

As Before

Example

Let $A = \begin{pmatrix} 2 & -a \\ -b & 2 \end{pmatrix}$ be a 2 × 2 hyperbolic GCM satisfying $ab = p^c + 4$ for some prime number p and some integer $c \ge 0$, and F the algebraic closure of a finite field \mathbb{F}_p . Then, $G_u(A, F)$ is a simple group with trivial Schur multiplier.

Conclusion

\S Conclusion

A note on the simplicity and the universal covering of some Kac-Moody group

- Conclusion

Summary

- (1) A : Indecomposable non-affine GCM $\mapsto \exists$ Simple Groups
- (2) A : Indecomposable GCM with $det(A) = \pm p^{c}$ $\mapsto \exists$ Simple Group with Trivial Schur Multiplier

- Appendix

\S Appendix

Remark III

We can construct some completion of a Kac-Moody group. Suppose that A is indecomposable and F is any field. Then, its derived subgroup is always simple modulo its center. In characteristic 0 case, this is done by R. Moody (as a unpublished paper) for a non-affine GCM, and this is known to many specialists for an affine GCM (as a folk result, cf. \exists an explicit description by J. M.). In general case, this is due to 1 Tits

Matsumoto-Type Presentation

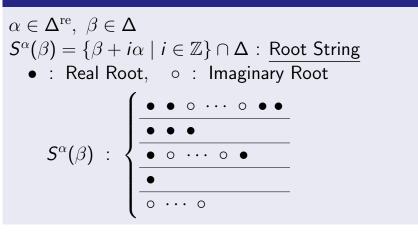
$K_2(A,F)$

Let A be a GCM, and F a field. We define $K_2(A, F)$ by

$$1 o K_2(A,F) o St(A,F) o G'_u(A,F) o 1$$
 .

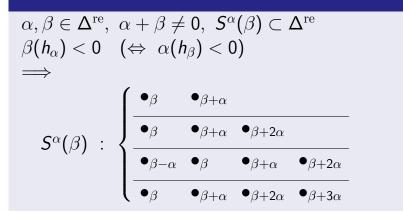
Then, $K_2(A, F)$ has a Matsumoto-type presentation (cf. J. M. - U. Rehmann). This gives a lot of information on $K_2(A, F)$. In this case, $K_2(A, F)$ is just the Schur multiplier of $G'_u(A, F)$ for an infinite field F.

Root String I



$$egin{aligned} &lpha,eta\in\Delta^{ ext{re}},\ lpha+eta
eq0\ η(h_{lpha})\geq0\ (\Leftrightarrow\ lpha(h_{eta})\geq0)\ &\Longrightarrow\ &Q_{lpha,eta}\subset\{lpha+eta\}\cap\Delta^{ ext{re}},\ & ext{where}\ Q_{lpha,eta}=(\mathbb{Z}_{>0}lpha+\mathbb{Z}_{>0}eta)\cap\Delta \end{aligned}$$

Root String II



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proposition II

$$\begin{array}{l} \alpha,\beta\in\Delta^{\mathrm{re}},\ \alpha+\beta\neq0,\ Q_{\alpha,\beta}\subset\Delta^{\mathrm{re}}\\ \Longrightarrow\\ \left\langle\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}\right\rangle=\begin{cases} \mathfrak{g}_{\alpha}\oplus\mathfrak{g}_{\beta}\\ \mathfrak{g}_{\alpha}\oplus\mathfrak{g}_{\beta}\oplus\mathfrak{g}_{\alpha+\beta}\\ \mathfrak{g}_{\alpha}\oplus\mathfrak{g}_{\beta}\oplus\mathfrak{g}_{\alpha+\beta}\oplus\mathfrak{g}_{2\alpha+\beta}\\ \mathfrak{g}_{\alpha}\oplus\mathfrak{g}_{\beta}\oplus\mathfrak{g}_{\alpha+\beta}\oplus\mathfrak{g}_{2\alpha+\beta}\oplus\mathfrak{g}_{\alpha+2\beta}\\ \mathfrak{g}_{\alpha}\oplus\mathfrak{g}_{\beta}\oplus\mathfrak{g}_{\alpha+\beta}\oplus\mathfrak{g}_{2\alpha+\beta}\oplus\mathfrak{g}_{3\alpha+\beta}\oplus\mathfrak{g}_{3\alpha+2\beta} \end{cases}\end{array}$$

< ロ ト < 団 ト < 三 ト < 三 ト 三 の < ○</p>

(modulo exchanging α and β)

Chevalley Pair

$$\begin{split} \mathfrak{g} &= \langle \mathfrak{h}, e_{1}, f_{1}, \dots, e_{n}, f_{n} \rangle \\ e_{i}, f_{i} : \underbrace{\text{Chevalley Generators}}_{\omega \in Aut(\mathfrak{g}) : \underbrace{\text{Chevalley Involution}}_{\omega(e_{i}) = -f_{i}, \ \overline{\omega(f_{i})} = -e_{i}, \ \overline{\omega(h)} = -h \ (\forall h \in \mathfrak{h}) \\ (e_{\alpha}, e_{-\alpha}) \in \mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} : \text{ a Chevalley Pair for } \alpha \in \Delta^{\text{re}} \\ [e_{\alpha}, e_{-\alpha}] = h_{\alpha}, \ \omega(e_{\alpha}) + e_{-\alpha} = 0 \\ x_{\alpha}(t) = exp(te_{\alpha}) \end{split}$$

Proposition III

$$\begin{array}{l} \alpha, \beta, \alpha + \beta \in \Delta^{\mathrm{re}} \\ [e_{\alpha}, e_{\beta}] = N_{\alpha,\beta} e_{\alpha+\beta} \\ S_{\alpha}(\beta) = \{\beta - r\alpha, \dots, \beta, \dots, \beta + r'\alpha\} \\ r = \max \left\{ i \in \mathbb{Z} \mid \beta - i\alpha \in \Delta^{\mathrm{re}} \right\} \\ r' = \max \left\{ i \in \mathbb{Z} \mid \beta + i\alpha \in \Delta^{\mathrm{re}} \right\} \\ \Longrightarrow \\ N_{\alpha,\beta} = \pm (r+1) \end{array}$$

Relation (B)

There are essentially five type relations in (B).

$$\begin{bmatrix} x_{\alpha}(s), x_{\beta}(t) \end{bmatrix} = 1$$

$$\begin{bmatrix} x_{\alpha}(s), x_{\beta}(t) \end{bmatrix} = x_{\alpha+\beta}(\pm (r+1)st)$$

$$r = \max\{i \in \mathbb{Z} \mid \beta - i\alpha \in \Delta^{re}\}$$

$$\begin{bmatrix} x_{\alpha}(s), x_{\beta}(t) \end{bmatrix} = x_{\alpha+\beta}(\pm st)x_{2\alpha+\beta}(\pm s^{2}t)$$

$$\begin{bmatrix} x_{\alpha}(s), x_{\beta}(t) \end{bmatrix} = x_{\alpha+\beta}(\pm 2st)x_{2\alpha+\beta}(\pm 3s^{2}t) \cdot$$

$$x_{\alpha+2\beta}(\pm 3st^{2})$$

$$\begin{bmatrix} x_{\alpha}(s), x_{\beta}(t) \end{bmatrix} = x_{\alpha+\beta}(\pm st)x_{2\alpha+\beta}(\pm s^{2}t) \cdot$$

$$x_{\alpha+\beta}(\pm s^{3}t)x_{3\alpha+2\beta}(\pm 2s^{3}t^{2})$$

End

- END -

Thank you !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ