Exceptional Jordan Algebras

Michel Racine
University of Ottawa

Examples

Example (Complexes)

- Consider the complexes \mathbb{C} as an algebra over the reals \mathbb{R}.
- The norm form $n, n(z):=z \bar{z}$, is a quadratic form on \mathbb{C} / \mathbb{R} which allows composition: $n(a b)=n(a) n(b) \forall a, b \in \mathbb{C}$.

Example (2 by 2 matrices)

- Let $M_{2}(F)$ be the 2 by 2 matrices with entries in a field F.
- The determinant det is a quadratic form on $M_{2}(F) / F$ which allows composition:
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \quad \forall A, B \in M_{2}(F)$.

Definitions

Definition (Algebra)

- A (linear) algebra A over a field F is an F-vector space with a product $a b$ which is left and right distributive over addition.

Definition (Composition Algebra)

- A composition algebra C / F is a unital algebra with a regular quadratic form $n: A \rightarrow F$ which allows composition:
$n(a b)=n(a) n(b) \forall a, b \in C$.
- The quadratic form n is (sometimes) called the norm of C.
- $\mathfrak{b}_{n}(a, b):=n(a+b)-n(a)-n(b) . n$ is regular if $n(z)=0$ and $\mathfrak{b}(z, C)=\{0\}$ imply $z=0$.

Consequences

- $\mathfrak{b}_{n}(c a, c b)=n(c) \mathfrak{b}_{n}(a, b)=\mathfrak{b}_{n}(a c, b c)$.
- $\mathfrak{b}_{n}(a c, b d)+\mathfrak{b}_{n}(a d, b c)=\mathfrak{b}_{n}(a, b) \mathfrak{b}_{n}(c, d)$.
- $n\left(1_{C}\right)=1_{F}$.
- Denoting $\mathfrak{b}_{n}\left(a, 1_{C}\right)$ by $t(a)$, the trace of a, we have $t\left(a^{2}\right)+\mathfrak{b}_{n}(a, a)=t(a)^{2}$, or $t\left(a^{2}\right)+2 n(a)=t(a)^{2}$.

Every $a \in C$ is of Degree 2

- Any $a \in C$ satisfies $a^{2}-t(a) a+n(a) 1_{C}=0_{C}$.
- Letting $z=a^{2}-t(a) a+n(a) 1_{C}$,

$$
\mathfrak{b}_{n}(z, c)=\mathfrak{b}_{n}\left(a^{2}, c\right)-t(a) \mathfrak{b}_{n}(a, c)+n(a) t(c)
$$

- But $t(a) \mathfrak{b}_{n}(a, c)=\mathfrak{b}_{n}(a, 1) \mathfrak{b}_{n}(a, c)=\mathfrak{b}_{n}\left(a^{2}, c\right)+\mathfrak{b}_{n}(a c, 1 a)$, and $\mathfrak{b}_{n}(z, c)=0 \quad \forall c \in C$.
- $n(z)=n\left(a^{2}\right)+t(a)^{2} n(a)+n(a)^{2}-t(a) \mathfrak{b}_{n}\left(a^{2}, a\right)+n(a) t\left(a^{2}\right)-n(a) t(a)^{2}$ $=2 n(a)^{2}+n(a) t\left(a^{2}\right)-n(a) t(a)^{2}=0$.
- So $z=0$.
- Linearize the first equation to get $a b+b a-t(b) a-t(a) b+\mathfrak{b}_{n}(a, b) 1_{c}=0_{c} \quad \forall a, b \in C$.

Standard Involution

Consider $a \mapsto \bar{a}:=t(a) 1_{c}-a$. One checks that ${ }^{-}$is an involution, i.e.

- $\overline{a b}=\bar{b} \bar{a} \quad$ and $\quad \overline{\bar{a}}=a$.
- $a \bar{a}=n(a) 1_{c}=\bar{a} a$. Linearizing, $a \bar{b}+b \bar{a}=\mathfrak{b}_{n}(a, b) 1_{C}=\bar{a} b+\bar{b} a$.
- If $n(a) \neq 0$ then a is invertible, $a^{-1}=n(a)^{-1} \bar{a}$.
- Of course $t(a) 1_{C}=a+\bar{a}$ and if $t(a)=0$ then $\bar{a}=-a$.
- Moreover $n(\bar{a})=n(a) \quad$ and $\quad \mathfrak{b}_{n}(a b, c)=\mathfrak{b}_{n}(b, \bar{a} c)=\mathfrak{b}_{n}(a, c \bar{b})$,
- $a(\bar{a} b)=n(a) b=(b \bar{a}) a$.

From the definition of \bar{a} and the last equations one gets

- $a(a b)=(a a) b$,
$(b a) a=b(a a)$.

Alternative Algebras

Definition (Alternative Algebra)

- An algebra A / F is alternative if $a(a b)=(a a) b$, and $(b a) a=b(a a)$.

Proposition

Any composition algebra is alternative.

Definition (Associator)

- The associator $[a, b, c]:=(a b) c-a(b c)$.

Proposition

An algebra A / F is alternative if and only if the associator is an alternating function.

Corollary

A is an alternative algebra if and only if any subalgebra of A generated by two elements is associative. In particular $(a b) a=a(b a)$.

The Radical of C

The radical of $C, R=\left\{r \mid \mathfrak{b}_{n}(r, c)=0 \forall c \in C\right\}$. If $R \neq\{0\}$ then char $F=2$. By the regularity of $n, n(r) \neq 0 \forall r \in R, r \neq 0$.

Since $\mathfrak{b}_{n}(a r, c)=\mathfrak{b}_{n}(r, \bar{a} c)=0$ and $\mathfrak{b}_{n}(r a, c)=\mathfrak{b}_{n}(r, c \bar{a})=0, R$ is an ideal of C. Since $n((a b) r)=n(a) n(b) n(r)=n(a(b r)),(a b) r=a(b r)$ $\forall a, b \in C, r \in r$. Any product of 3 elements of C, one of which is in R, is associative and any product of 2 elements, one of which is in R, is commutative. Therefore R is a purely inseparable field extension of F of degree 2 ; the norm is the square; C is an R-vector space. So $C=R$.

Until further notice we will assume that $R=\{0\}$, so \mathfrak{b}_{n} is non-degenerate.

Moufang Identities

$$
\begin{align*}
(a b)(c a) & =a((b c) a)=(a(b c)) a \tag{1}\\
(a b a) c & =a(b(a c)) \tag{2}\\
c(a b a) & =((c a) b) a \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \mathfrak{b}_{n}((a b)(c a), d)=\mathfrak{b}_{n}(c a,(\bar{b} \bar{a}) d)=\mathfrak{b}_{n}(c, \bar{b} \bar{a}) \mathfrak{b}_{n}(a, d)-\mathfrak{b}_{n}(c d,(\bar{b} \bar{a}) a) \\
& =\mathfrak{b}_{n}(b c, \bar{a}) \mathfrak{b}_{n}(a, d)-n(a) n(c d, \bar{b}), \\
& \mathfrak{b}_{n}(a((b c) a), d)=\mathfrak{b}_{n}((b c) a, \bar{a} d)=\mathfrak{b}_{n}(b c, \bar{a}) \mathfrak{b}_{n}(a, d)-\mathfrak{b}_{n}((b c) d, \bar{a} a) \\
& =\mathfrak{b}_{n}(b c, \bar{a}) \mathfrak{b}_{n}(a, d)-n(a) \mathfrak{b}_{n}(b c, \bar{d}) .
\end{aligned}
$$

The Structure of Composition Algebras

Let B be a finite dimensional subalgebra of C on which the bilinear form $\mathfrak{b}_{n}($,$) is non-degenerate. Then C=B \oplus B^{\perp}$ as vector spaces. If $B^{\perp} \neq\{0\}, \exists v \in B^{\perp}$ with $n(v)=-\lambda \neq 0$.

Lemma

$B \oplus B v$ is a subalgebra of C.

- $\mathfrak{b}_{n}(v, B)=\{0\}$. In particular $t(v)=0$ and $v^{2}=\lambda$.

$$
\begin{aligned}
(a+b v)(c+d v) & =a c+a(d v)+(b v) c+(b v)(d v) \\
& =a c+(d a) v+(b \bar{c}) v+\lambda \bar{d} b \\
& =(a c+\lambda \bar{d} b)+(d a+b \bar{c}) v .
\end{aligned}
$$

Is $B \oplus B v$ a Composition Algebra?

- $n(a+b v)=n(a)-\lambda n(b)$.
- $\overline{a+b v}=\bar{a}-b v$; thus $t(a+b v)=t(a)$.
- For $B \oplus B v$ to be a composition algebra we need:

$$
\begin{aligned}
& n((a+b v)(c+d v))=n(a+b v) n(c+d v), \text { i.e., } \\
& n(a c+\lambda \bar{d} b)-\lambda n(d a+b \bar{c})=(n(a)-\lambda n(b))(n(c)-\lambda n(d)) ?
\end{aligned}
$$

- In other words $\mathfrak{b}_{n}(a c, \bar{d} b)=\mathfrak{b}_{n}(d a, b \bar{c})$? Equivalently $\mathfrak{b}_{n}(d(a c)-(d a) c, b)=0, \forall b \in B$.
- If $(a b) v=a(b v)=(b a) v$ then $a b=b a$.

Lemma

For $B \oplus B v$ to be a composition algebra, B must be associative. For $B \oplus B v$ to be associative, B must be commutative.

The Cayley-Dickson Process

Recall $(a+b v)(c+d v)=(a c+\lambda \bar{d} b)+(d a+b \bar{c}) v$.
If F is of characteristic not 2 , start with $B_{1}=K 1$ to construct $B_{2}=B_{1} \oplus B_{1} v_{1}, \quad B_{4}=B_{2} \oplus B_{2} v_{2} \quad$ and $\quad B_{8}=B_{4} \oplus B_{4} v_{4}$. If F is of characteristic 2 , start with B_{2} a separable quadratic field extension or two copies of F with the exchange involution.
B_{1} and B_{2} are commutative so B_{4} is associative. In B_{4}, $\left[a, d v_{2}\right]=(d a-d \bar{a}) v_{2}=d(a-\bar{a}) v_{2} \neq 0$ if $\bar{a} \neq a$.
Since ${ }^{-}$is not the identity on B_{2}, B_{4} is not commutative and the process stops at B_{8}. The possible dimensions are therefore $1,2,4$, and 8 .
Composition algebras of dimension 4 are quaternion algebras, those of dimension 8, octonion algebras.

The Norm Form

Theorem

If A is a simple alternative algebra then A is an associative algebra or an octonion algebra.

Theorem

Two composition algebras C, n and C^{\prime}, n^{\prime} are isomorphic if and only if C, n and C^{\prime}, n^{\prime} are isometric.

- If $v_{i}^{2}=\lambda_{i}$ then the norm form is a Pfister form $\ll \lambda_{1}, \lambda_{2}, \lambda_{3} \gg$. See [EKM] for Pfister forms in characteristic 2.
- Arason Invariant.

The Norm Form

- If $n(a) \neq 0$ then $a^{-1}=n(a)^{-1} \bar{a}$. So C is a division algebra if and only if n is anisotropic.
- If n is isotropic then C contains a hyperbolic pair, say (u, v). Then $C=u C \oplus v C ; u C$ and $v C$ are totally isotropic subspaces and n has maximal Witt index.
- In fact, $1=x_{0}+y_{0},\left(x_{0}, y_{0}\right)$ a hyperbolic pair. $\overline{x_{0}}=y_{0}, \overline{y_{0}}=x_{0}$.
- Hence x_{0}, y_{0} are orthogonal idempotents and $C=F x_{0} \oplus x_{0} C y_{0} \oplus F y_{0} \oplus y_{0} C x_{0}$.
- If $\operatorname{dim} C=2$ then $C=F x_{0} \oplus F y_{0}$. If $\operatorname{dim} C=4$ then $C=M_{2}(F)$.

Split Octonions

- Can pick $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}\right\}$ bases of $x_{0} C y_{0}$ and $y_{0} C x_{0}$ respectively, such that $\left(x_{i}, y_{i}\right)$ are mutually orthogonal hyperbolic pairs.
- $\mathfrak{b}_{n}\left(x_{1} x_{2}, x_{0}\right)=-\mathfrak{b}_{n}\left(x_{1}, x_{0} x_{2}\right)=-\mathfrak{b}_{n}\left(x_{1}, x_{2}\right)=0$,
- $\mathfrak{b}_{n}\left(x_{1} x_{2}, y_{0}\right)=-\mathfrak{b}_{n}\left(x_{1}, y_{0} x_{2}\right)=0$,
- $\mathfrak{b}_{n}\left(x_{1} x_{2}, x_{1}\right)=0=\mathfrak{b}_{n}\left(x_{1} x_{2}, x_{2}\right)$,
- $x_{0}\left(x_{1} x_{2}\right)=\left(x_{0} x_{1}\right) x_{2}-x_{1}\left(x_{0} x_{2}\right)+\left(x_{1} x_{0}\right) x_{2}=x_{1} x_{2}-x_{1} x_{2}=0$.
- So $x_{1} x_{2}=\mu y_{3}$, where $\mu=\mathfrak{b}_{n}\left(x_{1} x_{2}, x_{3}\right)$.

Split Octonions

- $\mathfrak{b}_{n}\left(x_{1} x_{2}, x_{3}\right)=-\mathfrak{b}_{n}\left(x_{2}, x_{1} x_{3}\right)=-\mathfrak{b}_{n}\left(x_{1} x_{3}, x_{2}\right)$.
- $\mathfrak{b}_{n}\left(x_{1} x_{2}, x_{3}\right)=-\mathfrak{b}_{n}\left(x_{1}, x_{3} x_{2}\right)=-\mathfrak{b}_{n}\left(x_{3} x_{2}, x_{1}\right)=\mathfrak{b}_{n}\left(x_{3} x_{1}, x_{2}\right)$.
- So $\mathfrak{b}_{n}\left(x_{1} x_{2}, x_{3}\right)$ is alternating. $x_{i} x_{i+1}=\mu y_{i+2}$.
- Replacing $\left\{x_{3}, y_{3}\right\}$ by $\left\{\mu^{-1} x_{3}, \mu y_{3}\right\}$, we get $\quad x_{i} x_{i+1}=y_{i+2}$ and $y_{i} y_{i+1}=x_{i+2}$.
- $x_{i} y_{j}=-\delta_{i j} x_{0}, \quad y_{i} x_{j}=-\delta_{i j} y_{0}$.

Zorn Vector Matrices

Example (Zorn Vector Matrices)

- Consider $\left(\begin{array}{cc}\alpha & u \\ v & \beta\end{array}\right), \alpha, \beta \in F, u, v \in V$ a vector space of dimension 3 over F .
- Define $\left(\begin{array}{ll}\alpha & u \\ v & \beta\end{array}\right)\left(\begin{array}{ll}\gamma & w \\ z & \delta\end{array}\right):=\left(\begin{array}{cc}\alpha \gamma-u \cdot z & \alpha w+\delta u+v \times z \\ \gamma v+\beta z+u \times w & \beta \delta-v \cdot w\end{array}\right)$, where $u \cdot z$ and $u \times z$ are the usual dot and cross products in a 3 dimensional space.
- $n\left(\begin{array}{cc}\alpha & u \\ v & \beta\end{array}\right):=\alpha \beta+u \cdot v, \quad \overline{\left(\begin{array}{cc}\alpha & u \\ v & \beta\end{array}\right)}=\left(\begin{array}{cc}\beta & -u \\ -v & \alpha\end{array}\right)$.

Local Triality

- Let C be an octonion algebra and $C_{0}=\{a \in C \mid t(a)=0\}$.
- Denote by L_{a} and R_{a}, the left and right multiplication maps i.e., $\mathrm{L}_{a} x:=a x, \mathrm{R}_{a} x:=x a, a, x \in C$, and by $\mathrm{V}_{a}:=\mathrm{L}_{a}+\mathrm{R}_{a}$.
- Rewriting $[x, y, c]=[c, x, y],(x y) c+c(x y)=x(y c)+(c x) y$ we have $\mathrm{V}_{c}(x y)=\left(\mathrm{L}_{c} x\right) y+x \mathrm{R}_{c} y$.
- For $a \in C_{0}, \mathfrak{b}_{n}\left(\mathrm{~L}_{\mathrm{a}} x, y\right)=\mathfrak{b}_{n}(a x, y)=\mathfrak{b}_{n}(x, \bar{a} y)=-\mathfrak{b}_{n}\left(x, \mathrm{~L}_{\mathrm{a}} y\right)$. Similarly $\mathfrak{b}_{n}\left(\mathrm{R}_{a} x, y\right)=-\mathfrak{b}\left(x, \mathrm{R}_{a} y\right)$ and $\mathfrak{b}_{n}\left(\mathrm{~V}_{a} x, y\right)=-\mathfrak{b}\left(x, \mathrm{~V}_{a} y\right)$.

Local Triality

Theorem(Principle of Local Triality)

Let C be an octonion algebra over a field F of characteristic not 2 and L the Lie algebra of skew linear transformations with respect to \mathfrak{b}_{n} then for every $t_{1} \in L$ there exist unique $t_{2}, t_{3} \in L$ such that $t_{1}(x y)=t_{2}(x) y+x t_{3}(y) \quad \forall x, y \in C$.
The mappings $\phi_{2}: t_{1} \mapsto t_{2}$, and $\phi_{3}: t_{1} \mapsto t_{3}$ are Lie algebra automorphisms of L. They are inequivalent and generate the symmetric group S_{3}.

See [SV] for the result in characteristic 2 as well as the group version of triality.

Triality

Derivation Algebras

Definition (Derivation)

If A is an algebra over a field $F, D \in \operatorname{End}_{F} A$ is a derivation of A if $D(a b)=(D a) b+a(D b), \quad \forall a, b \in A$.

- $\operatorname{Der}(A)=\{D \mid D$ a derivation of $A\}$ is a Lie algebra. $D 1=0$.
- If A is alternative, for any $a, b \in A$,

$$
\begin{aligned}
\mathrm{D}_{a, b} & :=\left[\mathrm{L}_{a}, \mathrm{~L}_{b}\right]+\left[\mathrm{L}_{a}, \mathrm{R}_{b}\right]+\left[\mathrm{R}_{a}, \mathrm{R}_{b}\right] \\
& =\mathrm{L}_{[a, b]}-\mathrm{R}_{[a, b]}-3\left[\mathrm{~L}_{a}, \mathrm{R}_{b}\right] \in \operatorname{Der}(A)
\end{aligned}
$$

a so-called standard derivation.

Derivation Algebras

- Let C be a split octonion algebra, D a derivation. So $D x_{0}=-D y_{0}$.
- $D x_{0}=\left(D x_{0}\right) x_{0}+x_{0}\left(D x_{0}\right)=\left(D x_{0}\right) y_{0}+y_{0}\left(D x_{0}\right)$. So $D x_{0} \in x_{0} C y_{0} \oplus y_{0} C x_{0}$.
- For $1 \leq i \leq 3, \mathrm{D}_{x_{0}, x_{i}} x_{0}=-x_{i}$ and $\mathrm{D}_{y_{0}, y_{i} x_{0}}=-y_{i}$.
- Assume $D x_{0}=0$ then $D\left(x_{0} C y_{0}\right)=x_{0}(D C) y_{0}$. Let $\operatorname{Der}(C)_{0}=\left\{D \in \operatorname{Der}(C) \mid D x_{0}=0\right\}$.
- For $D \in \operatorname{Der}(C)_{0}, D: x_{0} C y_{0} \rightarrow x_{0} C y_{0}$ and $D: y_{0} C x_{0} \rightarrow y_{0} C x_{0}$.
- Denote these actions by D^{\prime} and $D^{\prime \prime}$ respectively. In the Zorn vector matrix context, letting D act on $u_{12} z_{21}=-(u \cdot z)_{11}$ yields $\left(D^{\prime} u_{12}\right) z_{21}+u_{12} D^{\prime \prime} z_{21}=0$.
- So $\mathfrak{b}_{n}\left(D^{\prime} u, z\right)+\mathfrak{b}_{n}\left(u, D^{\prime \prime} z\right)=0$ and $D^{\prime \prime}=-D^{*}$, where ${ }^{*}$ is the adjoint with respect to \mathfrak{b}_{n}.

One can check that we further need that the trace of D^{\prime} be 0 and that these two conditions are sufficient for $D=\left(D^{\prime}, D^{\prime \prime}\right) \in \operatorname{Der}(C)_{0}$. Therefore the dimension of $\operatorname{Der}(C)$ is $6+8=14$.

Theorem

If the characteristic of F is not 3 then $\operatorname{Der}(C)$ is a simple Lie algebra of type G_{2}. In characteristic 3, $\operatorname{Der}(C)$ has an ideal of dimension 7.

Associative Algebras with Involution

- An associative algebra with involution $(A, *)$ is simple (as an algebra with involution) if it contains no non-trivial ${ }^{*}$-stable ideal.
- In that case, either A is simple or $A=B \oplus B^{o p}, B$ simple, $B^{o p}$ the opposite algebra has the same additive structure as B and the product $a^{\mathrm{op}} b:=b a$, and ${ }^{*}$ is the exchange involution $(a, b)^{*}=(b, a)$.
- Denote by $\mathcal{C}(A)$ the centre of A. The centre of the associative algebra with involution $(A, *), \mathcal{C}(A, *)=\left\{c \in \mathcal{C}(A) \mid c^{*}=c\right\}$.
- The involution * is of the first kind if $\mathcal{C}(A, *)=\mathcal{C}(A)$, e.g. $\left(\mathcal{M}_{n}(F), t\right), t$ the transpose involution. Otherwise it is of the second kind, e.g if B is a central algebra over F then $\mathcal{C}\left(B \oplus B^{o p}\right)=F \oplus F$ while $\mathcal{C}\left(B \oplus B^{\circ p}, *\right)=\{(\alpha, \alpha) \mid \alpha \in F\} \cong F$.

Hermitian Elements

Example (Hermitian Elements)

- Let A / F be an asssociative an algebra over a field F and $*$ an involution of A which fixes F elementwise.
- Denote by $\mathcal{H}(A, *)=\left\{a \in A \mid a^{*}=a\right\}$ the hermitian elements of A and by $\mathcal{S}(A, *)=\left\{a \in A \mid a^{*}=-a\right\}$ the skew-symmetric elements.
- The Lie bracket $[a, b]:=a b-b a$ gives A a Lie algebra structure, denoted $A^{-} ; \mathcal{S}(A, *)$ is a Lie subalgebra of A^{-}.
- The subspace $\mathcal{H}(A, *)=\left\{a \in A \mid a^{*}=a\right\}$ is closed under $a \mapsto a^{2}$ and hence under $\mathrm{V}_{\mathrm{a}} b=a \circ b:=a b+b a$.

Linear Jordan Algebras

- Assume that $\frac{1}{2} \in F$. Denote $\frac{1}{2}(a \circ b)$ by $a \cdot b$. Note that $a^{2}=a \cdot a=a^{2}$.
- One checks that the above product in an associative algebra satisfies:

$$
\begin{align*}
a \cdot b & =b \cdot a \tag{4}\\
((a \cdot a) \cdot b) \cdot a & =(a \cdot a) \cdot(b \cdot a) \tag{5}
\end{align*}
$$

- An algebra over a field of characteristic not 2 whose product satisfies (4) and (5) is called a linear Jordan algebra.
- $\mathcal{H}(A, *)$ is a Jordan subalgebra of A^{+}the Jordan structure on an associative algebra given by $a \cdot b=\frac{1}{2} a \circ b$.

Quadratic Jordan Algebras

- In a linear Jordan algebra, consider $\mathrm{U}_{a} b:=2 a \cdot(a \cdot b)-a^{2} \cdot b$.
- $\operatorname{In} A^{+}, \mathrm{U}_{a} b=\frac{1}{2}(a a b+a b a+a b a+b a a)-\frac{1}{2}\left(a^{2} b+b a^{2}\right)=a b a$.
- Consider $\mathrm{U}_{\mathrm{a}, \mathrm{c}}:=\mathrm{U}_{a+c}-\mathrm{U}_{a}-\mathrm{U}_{c}$.
- $\operatorname{In} A^{+}, \mathrm{U}_{a, c} b=a b c+c b a$.
- $\mathrm{V}_{a, b} c:=\mathrm{U}_{a, c} b:=\{a b c\}$.

Quadratic Jordan Algebras

Definition (Quadratic Jordan Algebra)

- A unital quadratic Jordan algebra \mathcal{J} over a field F is an F-vector space \mathcal{J}, a unit element $1_{\mathcal{J}} \in \mathcal{J}$ and a quadratic map \cup of \mathcal{J} into End $_{F} \mathcal{J}$ satisfying

$$
\begin{align*}
\mathrm{U}_{1} & =\mathrm{I}_{\mathcal{J}}, \tag{6}\\
\mathrm{U}_{\mathrm{U}_{a} b} & =\mathrm{U}_{a} \mathrm{U}_{b} \mathrm{U}_{a}, \tag{7}\\
\mathrm{U}_{a} \mathrm{~V}_{b, a} & =\mathrm{V}_{a, b} \mathrm{U}_{a}, \tag{8}
\end{align*}
$$

and (6), (7) and (8) remain valid under field extensions,

- where $\mathrm{U}_{a, b}:=\mathrm{U}_{a+b}-\mathrm{U}_{a}-\mathrm{U}_{b}, \mathrm{~V}_{a, b} c:=\mathrm{U}_{a, c} b=\{a b c\}$.
- Equation (7) is sometimes refered to as the fundamental formula.

Powers

- Let $\mathrm{V}_{a}:=\mathrm{U}_{\mathrm{a}, 1}$. $\ln A^{+}, \mathrm{U}_{a, 1} b=a b 1+b a 1=a \circ b$.
- If $\frac{1}{2} \in F$, one checks the $a \cdot b:=\frac{1}{2} \mathrm{~V}_{a} b$ defines a linear Jordan algebra structure on \mathcal{J}.
- Powers are defined inductively: $a^{0}=1_{\mathcal{J}}, a^{1}=a, a^{n+2}=U_{a} a^{n}$. Writing $b^{2}=\mathrm{U}_{b} 1$, we have $\mathrm{U}_{b^{2}}=\mathrm{U}_{\mathrm{U}_{b} 1}=\mathrm{U}_{b} \mathrm{U}_{1} \mathrm{U}_{b}=\mathrm{U}_{b}^{2}$.

Special Jordan Algebras

Example (A^{+})

- Let A / F be a unital asssociative an algebra over a field F and $\mathrm{U}_{a} x:=a x a . \mathrm{U}_{1_{A}}=\mathrm{I}_{\mathcal{J}}$.
- $\mathrm{U}_{\mathrm{U}_{a} b} x=a b a x a b a=\mathrm{U}_{a} \mathrm{U}_{b} \mathrm{U}_{a} x$.
- $\mathrm{U}_{a} \mathrm{~V}_{b, a} x=a b a x a+a x a b a=\mathrm{V}_{a, b} \mathrm{U}_{a} x$.
- Denote also by A^{+}the quadratic Jordan algebra structure on A.

Hermitian Algebras

Definition (Special Jordan Algebras)

- A quadratic Jordan algebra is special if it can be embedded in an A^{+}, otherwise we say it is exceptional.
- If $(A, *)$ is an associative algebra with involution then the Hermitian Jordan algebra $\mathcal{H}(A, *)$ is a subalgebra of A^{+}and hence special.
- Let $B=A \oplus A^{\mathrm{op}}$, * the exchange involution $(a, b)^{*}=(b, a)$. Then $\mathcal{H}(B, *) \cong A^{+}$, which is therefore a Hermitian Jordan algebra.
- Let \mathcal{D} be an associative division algebra with involution ${ }^{-}, V$ a left \mathcal{D} vector space and $h: V \rightarrow \mathcal{D}$ a non-degenerate hermitian form on V, i.e., for $d \in \mathcal{D}, u, v \in V, h(d u, v)=d h(u, v), h(u, d v)=h(u, v) \bar{d}$, $h(v, u)=\overline{h(u, v)}$. The form h induces an involution $*$ on $\operatorname{End}_{\mathcal{D}}(V)$: $h(u M, v)=h\left(u, v M^{*}\right), \forall u, v \in V, M \in \operatorname{End}_{\mathcal{D}}(V)$. The involutions ${ }^{-}$ and $*$ allow us to define a right vector space structure on V and a left action of $\operatorname{End}_{\mathcal{D}}(V)$ on V.

In Matrix Form

- Assume \mathcal{D} is a quaternion algebra and ${ }^{-}$the standard involution.
- If V is of dimension n we may assume that with respect to a suitable basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ the matrix of h is diagonal say $\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right), \gamma_{i} \in F^{\times}$. Then with respect to this basis, $\mathcal{H}\left(\operatorname{End}_{\mathcal{D}}(V), *\right)$ are matrices
$\sum_{i=1}^{n} \alpha_{i}[i i]+\sum_{1=i<j}^{n} \gamma_{i} \gamma_{j}^{-1} a_{i j}[i j]+\gamma_{j} \gamma_{i}^{-1} \overline{a_{i j}}[j i], \alpha_{i} \in F, a_{i j} \in \mathcal{D}$. (this is not quite right in characteristic 2).
- For example, if $n=3$ we have $\left[\begin{array}{ccc}\alpha_{1} & a_{12} & a_{13} \\ \gamma_{2} \gamma_{1}^{-1} \overline{a_{12}} & \alpha_{2} & a_{23} \\ \gamma_{3} \gamma_{1}^{-1} \overline{a_{13}} & \gamma_{3} \gamma_{2}^{-1} \overline{a_{23}} & \alpha_{3}\end{array}\right]$.

Jordan Algebras of a Quadratic Form

Let V / F be a vector space, Q a quadratic form on V with base point $c \in V$, i.e., $Q(c)=1_{F}$. Let

$$
\begin{aligned}
T(v) & :=\mathfrak{b}_{Q}(x, c), \\
\bar{v} & :=T(v) c-v, \\
U_{a} b & :=\mathfrak{b}_{Q}(a, \bar{b}) a-Q(a) \bar{b} .
\end{aligned}
$$

- This yields a quadratic Jordan algebra $J(V, Q, c)$ with $1_{J}=c$, the quadratic Jordan algebra of the quadratic form Q with base point c.
- $a^{2}=\mathrm{U}_{a} 1_{J}=\mathfrak{b}_{Q}\left(a, 1_{J}\right) a-Q(a) 1_{J}$ or
- $a^{2}-T(a) a+Q(a) 1_{J}=0$, where the trace $T(a)=\mathfrak{b}_{Q}\left(a, 1_{J}\right)$.
- $a \circ b-T(a) b-T(b) a+\mathfrak{b}_{Q}(a, b) 1_{J}=0$.

The Clifford Algebra of (V, Q, c)

Definition (Clifford Algebra of (V, Q, c))

Let $\mathcal{T}(V)$ be the tensor algebra of V and \mathcal{I} the ideal of $\mathcal{T}(V)$ generated by $c-1_{\mathcal{T}}, v \otimes v-T(v) v+Q(v) c$. The Clifford algebra of (V, Q, c), $\mathcal{C}(V, Q, c)=\mathcal{T}(V) / \mathcal{I} . V$ embeds as a vector space in $\mathcal{C}(V, Q, c)$.

- $\ln \mathcal{C}(V, Q, c)$, for $a, b \in V$,

$$
\begin{aligned}
a b a & =-b a a+T(a) b a+T(b) a^{2}-\mathfrak{b}_{Q}(a, b) a \\
& =-b\left(a^{2}-T(a) a\right)+T(b)(T(a) a-Q(a) 1)-\mathfrak{b}_{Q}(a, b) a \\
& =Q(a) b+T(a) T(b) a-Q(a) T(b) 1-\mathfrak{b}_{Q}(a, b) a \\
& =\mathfrak{b}_{Q}(a, T(b) 1-b) a-Q(a)(T(b) 1-b) \\
& =\mathfrak{b}_{Q}(a, \bar{b}) a-Q(a) \bar{b} .
\end{aligned}
$$

$J(V, Q, c)$

Proposition

The quadratic Jordan algebra $J(V, Q, c)$ is special.

- $T\left(1_{J}\right)=2, \overline{\bar{a}}=a$.
- For $a \in V \subset \mathcal{C}(V, Q, c), a \bar{a}=a(T(a) c-a)=T(a) a-a^{2}=Q(a) 1_{\mathcal{C}}$.
- If $Q(a)=0$ then $a \bar{a}=0$.
- If $Q(a) \neq 0$ then $Q(a)^{-1} \bar{a}=a^{-1}$ and a is invertible in \mathcal{C} iff $Q(a) \neq 0$.

Jordan Division Algebras

- An element $a \in \mathcal{J}$ is invertible with inverse b if $\mathrm{U}_{\mathrm{a}} b=a$ and $\mathrm{U}_{\mathrm{a}} b^{2}=1_{\mathcal{J}}$.
- If $\mathcal{J}=A^{+}$then $a b^{2} a=1$ implies a is invertible in A and $b=a^{-1} a b a a^{-1}=a^{-1} a a^{-1}=a^{-1}$.

Lemma

The element $a \in \mathcal{J}$ is invertible if and only if U_{a} is invertible in End ${ }_{F} \mathcal{J}$. In that case $\left(\mathrm{U}_{\mathrm{a}}\right)^{-1}=\mathrm{U}_{\mathrm{a}^{-1}}$.

- If $\mathrm{U}_{a} b=a$ and $\mathrm{U}_{a} b^{2}=1_{\mathcal{J}}$ then $\mathrm{U}_{\mathrm{U}_{a} b}=\mathrm{U}_{a}$ or $\mathrm{U}_{a} \mathrm{U}_{b} \mathrm{U}_{a}=\mathrm{U}_{a}$.
- Similarly $\mathrm{U}_{a} \mathrm{U}_{b}^{2} \mathrm{U}_{a}=\mathrm{I}_{\mathcal{J}}$. So U_{a} is invertible in $\operatorname{End}_{F} \mathcal{J}$.

Definition (Jordan Division Algebra)

A Jordan algebra \mathcal{J} is a division algebra if every $0 \neq a \in \mathcal{J}$ is invertible.

Examples of Jordan Division Algebras

Example $(J(V, Q, c))$
$J(V, Q, c)$ is a Jordan division algebra if and only if Q is anisotropic.

Example (A^{+})

A^{+}is a Jordan division algebra if and only if A is division algebra.

Example $(\mathcal{H}(A, *))$

If A is a simple associative algebra and $*$ an involution of A then $\mathcal{H}(A, *)$ is a Jordan division algebra if and only if A is division algebra.

Matrix Units

- The associative algebra $A=\mathcal{M}_{n}(\mathcal{D}), \mathcal{D}$ a division algebra, contains matrix units $\left\{e_{i j}, 1 \leq i, j \leq n\right\}$.
- Conversely if an associative algebra A contains a set of matrix units $\left\{e_{i j}, 1 \leq i, j \leq n\right\}$ such that $\sum e_{i i}=1$ and $e_{i j} e_{k \ell}=\delta_{j k} e_{i \ell}$ then $A \cong \mathcal{M}_{n}(\mathcal{D})$, where \mathcal{D} is the centralizer in A of the $e_{i j}$. If A is simple then \mathcal{D} is a division algebra.

Idempotents in Jordan Algebras

- $e \neq 0 \in \mathcal{J}$ is an idempotent if $e^{2}=e\left(\right.$ recall $\left.e^{2}=\mathrm{U}_{e} 1_{\mathcal{J}}\right)$.
- Two idempotents e, f are orthogonal if $e \circ f=0$. One can show this implies $\mathrm{U}_{e} f=\mathrm{U}_{f} e=0$.
- If $e \in \mathcal{J}$ then $f=1_{\mathcal{J}}-e$ is an idempotent orthogonal to e and $\mathcal{J}=\mathrm{U}_{e} \mathcal{J} \oplus \mathrm{U}_{e, f} \mathcal{J} \oplus \mathrm{U}_{f} \mathcal{J}$. We write this $\mathcal{J}_{2}(e) \oplus \mathcal{J}_{1}(e) \oplus \mathcal{J}_{0}(e)$. This is the Peirce decomposition of \mathcal{J} with respect to e. If the characteristic is not $2, \mathcal{J}_{i}(e)=\left\{a \in \mathcal{J} \mid \mathrm{V}_{e} a=i a\right\}$.
- If $\left(\mathrm{U}_{e} \mathcal{J}, \mathrm{U}, e\right)$ is a Jordan division algebra we say that e is a division idempotent.
- Two orthogonal idempotents $e_{1}, e_{2} \in \mathcal{J}$ are connected if there exists an element $u_{12} \in \mathrm{U}_{e_{1}, e_{2}} \mathcal{J}$ which is invertible in the Jordan algebra $\mathrm{U}_{e} \mathcal{J}$, where $e=e_{1}+e_{2}$.
- A set of pairwise orthogonal idempotents $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is supplementary if their sum $e_{1}+e_{2}+\cdots+e_{n}=1_{\mathcal{J}}$.

Jordan Matrix Algebras

- Let \mathcal{D} be a unital algebra with involution ${ }^{-}$and Γ a subspace of $\mathcal{H}\left(\mathcal{D},{ }^{-}\right)$, containing all norms $a \bar{a}, a \in \mathcal{D}$. In particular $1_{\mathcal{D}} \in \Gamma$.
- Since traces $a+\bar{a} \in \Gamma$, if $\frac{1}{2} \in F$ then $\mathcal{H}\left(\mathcal{D}^{-}\right)=\Gamma$. In characteristic 2 , we can have $\mathcal{H}\left(\mathcal{D} .^{-}\right) \neq \Gamma$.
- Let $*: \mathcal{M}_{n}(\mathcal{D}) \rightarrow \mathcal{M}_{n}(\mathcal{D})$ given by $M^{*}=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \bar{M}^{t} \operatorname{diag}\left(\gamma_{1}^{-1}, \ldots, \gamma_{n}^{-1}\right)$ and $\mathcal{H}\left(\mathcal{M}_{n}(\mathcal{D}), \Gamma, *\right)$ the matrices of $\mathcal{H}\left(\mathcal{M}_{n}(\mathcal{D}), *\right)$ having elements of Γ along the diagonal.

Coordinatization Theorem

The nucleus of an algebra A is the set $\{z \in a \mid[z, a, b]=[a, z, b]=[a, b, z]=0 \forall a, b \in A\}$.

Coordinatization Theorem

Any unital Jordan algebra \mathcal{J} / F containing a set of $n \geq 3$ supplementary orthogonal connected idempotents is isomorphic to an algebra $\mathcal{H}\left(\mathcal{M}_{n}(\mathcal{D}), \Gamma, *\right)$, where \mathcal{D} is an alternative algebra with involution ${ }^{-}$ satisfying $\mathcal{H}\left(\mathcal{D},{ }^{-}\right)$is contained in the nucleus of \mathcal{D}. If $n \geq 4$ then \mathcal{D} must be associative.

Nondegenerate Jordan Algebras

Definition (Nondegenerate Jordan Algebra)

An element $z \neq 0 \in \mathcal{J}$ is an absolute zero divisor if $\mathrm{U}_{z}=0$. A Jordan algebra \mathcal{J} is nondegenerate if it has no absolute zero divisor.

Definition (Capacity)

A Jordan algebra \mathcal{J} has capacity n if $1_{\mathcal{J}}=e_{1}+\cdots+e_{n}, e_{i}$ mutually orthogonal division idempotents.

Structure Theorem

Structure Theorem

Any simple nondegenerate unital Jordan algebra \mathcal{J} / F with a capacity is isomorphic to

1) a Jordan division algebra,
2) $J(V, Q, c)$ the Jordan algebra of a regular quadratic form,
3) $\mathcal{H}\left(\mathcal{M}_{n}(\mathcal{D}), \Gamma, *\right), \mathcal{D}$ an associative division algebra with involution, or the sum of two copies of an associative division algebra with the exchange involution,
4) $\mathcal{H}\left(\mathcal{M}_{3}(C), *\right), C$ an octonion algebra.

Algebras in 2), 3) are special; 4) are exceptional and (up to now) 1) is a ?. Stated this way the classes are not exclusive e.g. $J(V, Q, c)$ is a division algebra if Q is anisotropic.

Algebras of Degree 3

Example

Let $A=\mathcal{M}_{3}(F)$. Any $a \in A$ satisfies the characteristic polynomial

$$
x^{3}-T(x) x^{2}+S(x) x-N(x) 1_{A}
$$

where the trace T is a linear form, S a quadratic form, sometimes called the quadratic trace, and the determinant N is a cubic form. If $a^{\#}$ is the classical adjoint then $a a^{\#}=N(a) 1_{A}=a^{\#} a$ and $\left(a^{\#}\right)^{\#}=N(a) a$.
$T\left(1_{A}\right)=3, \quad a^{\#}=a^{2}-T(a) a+S(a) 1_{A}, \quad S(a)=T\left(a^{\#}\right)$.

Cubic Forms

- A cubic form is a map $f: V \rightarrow F$ such that $f(\alpha v)=\alpha^{3} f(v)$ $\forall \alpha \in F, v \in V$ and for which this remains true for all field extensions.
- Over $F\left(\omega_{1}, \omega_{2}, \ldots\right)$ the rational field extension over the indeterminates $\omega_{i}, f\left(\sum \omega_{i} v_{i}\right)=$ $\sum \omega_{i}^{3} f\left(v_{i}\right)+\sum_{i \neq j} \omega_{i}^{2} \omega_{j} f\left(v_{i} ; v_{j}\right)+\sum_{i \neq j \neq k} \omega_{i} \omega_{j} \omega_{k} f\left(v_{i} ; v_{j} ; v_{k}\right)$, where $f(x ; y)$ is quadratic in x and linear in y and $f(x, y, z)$ is symmetric and trilinear.

Cubic Norm Structure

Definition (Cubic Norm Structure)

A cubic norm structure consists of a vector space V / F containing a base point $1=1_{V} \in V$ together with a quadratic map $\#: V \rightarrow V, v \mapsto v^{\#}$ the adjoint and a cubic form $N: V \rightarrow F$, the norm, satisfying for all a, $b \in V$ and all field extensions

$$
\begin{align*}
N(1) & =1, \quad 1^{\#}=1 \tag{9}\\
\left(a^{\#}\right)^{\#} & =N(a) a \tag{10}\\
N(a ; b) & =T\left(a^{\#}, b\right) \tag{11}\\
1 \times a & =T(a) 1-a \tag{12}
\end{align*}
$$

Cubic Norm Structure

where

$$
\begin{align*}
T(a) & :=N(1 ; a), \tag{13}\\
T(a, b) & :=T(a) T(b)-N(1, a, b), \tag{14}\\
a \times b & :=(a+b)^{\#}-a^{\#}-b^{\#} . \tag{15}
\end{align*}
$$

The Jordan Algebra of a Cubic Norm Structure

Theorem

Given a cubic norm structure ($V, N, \#, 1$), the following U operator $\mathrm{U}_{\mathrm{a}} b:=T(a, b) a-a^{\#} \times b$ defines a unital quadratic Jordan algebra structure on $V, J(V, N, \#, 1)$ the Jordan algebra of the cubic norm structure.
For all $a \in J(V, N, \#, 1)$,

$$
a^{3}-T(a) a^{2}+S(a) a+N(a) 1=0,
$$

where the quadratic form $S(a):=T\left(a^{\#}\right), x^{\#}=x^{2}-T(x) x+S(x) 1$.
N allows Jordan composition $N\left(\mathrm{U}_{x} y\right)=N(x)^{2} N(y)$. $x \in J$ is invertible if and only if $N(x) \neq 0$ in which case $x^{-1}=N(x)^{-1} x^{\#}$.

Examples

Example $\left(\mathcal{M}_{3}(F)\right)$

$N(a)=\operatorname{det}(a), \#$ is the classical adjoint and $1=\mathrm{I}$. One can check that the above definition yields $\mathcal{M}_{3}(F)^{+}$. But $\mathcal{M}_{3}(F)^{+} \cong \mathcal{H}\left(\mathcal{M}_{3}(F \oplus F), *\right)$,

Example $(F \oplus J(V, Q, c))$

Let $X=F \oplus J(V, Q, c), J(V, Q, c)$, the Jordan algebra of a quadratic form with base point. Let the base point $1_{X}=1_{F} \oplus c$, the adjoint $(\alpha \oplus v)^{\#}:=Q(v) \oplus \alpha \bar{v}$ and the norm $N_{x}(\alpha \oplus v):=\alpha Q(v)$.

Examples

Example $\left(\mathcal{H}_{3}\left(C, J_{\gamma}\right)\right)$

Consider $\left[\begin{array}{ccc}\alpha_{1} & \gamma_{2} a_{3} & \gamma_{3} \overline{a_{2}} \\ \gamma_{1} \overline{a_{3}} & \alpha_{2} & \gamma_{3} a_{1} \\ \gamma_{1} a_{2} & \gamma_{2} \overline{a_{1}} & \alpha_{3}\end{array}\right], \alpha_{i} \in F, a_{i} \in C$ and $\gamma_{i} \in F^{\times}$. Denoting
$\gamma_{k} a_{i} e_{j k}+\gamma_{j} \bar{a}_{i} e_{k j}$ by $a_{i}[j k]$, we can write the above matrix
$\sum_{(123)}\left(\alpha_{i} e_{i i}+a_{i}[j k]\right)$, where the sum $\sum_{(123)}$ is over cyclic permutations of $\{1,2,3\}$.

$\mathcal{H}_{3}\left(C, J_{\gamma}\right)$

Theorem

Let C be a composition algebra. Denote by $\mathcal{H}\left(C_{3}, J_{\gamma}\right)$ the matrices of the form $\sum \alpha_{i} e_{i i}+\sum_{(123)} a_{i}[j k], \alpha_{i} \in F, a_{i} \in C$. Then the unit element, cubic form and adjoint

$$
\begin{aligned}
1 & =e_{11}+e_{22}+e_{33}, \\
N(x) & :=\alpha_{1} \alpha_{2} \alpha_{3}-\sum_{(123)} \alpha_{i} \gamma_{j} \gamma_{k} n\left(a_{i}\right)-\gamma_{1} \gamma_{2} \gamma_{3} t\left(a_{1} a_{2} a_{3}\right) \\
x^{\#} & :=\sum_{(123)}\left(\left(\alpha_{j} \alpha_{k}-\gamma_{j} \gamma_{k} n\left(a_{i}\right)\right) e_{i i}+\left(\gamma_{i} \overline{a_{j} a_{k}}-\alpha_{i} a_{i}\right)[j k]\right)
\end{aligned}
$$

define a cubic norm structure on $\mathcal{H}_{3}\left(C, J_{\gamma}\right)$. The Jordan algebras obtained from this cubic norm structure are simple.

$\mathcal{H}_{3}\left(C, J_{\gamma}\right)$

- The quadratic trace $S(x)=T\left(x^{\#}\right)=\sum_{(123)}\left(\left(\alpha_{j} \alpha_{k}-\gamma_{j} \gamma_{k} n\left(a_{i}\right)\right)\right.$.
- The trace bilinear form $T(x, y)=\sum_{(123)}\left(\alpha_{i} \beta_{i}+\gamma_{j} \gamma_{k} \mathfrak{b}_{n}\left(a_{i}, b_{i}\right)\right)$, where $y=\sum_{(123)}\left(\beta_{i} e_{i i}+b_{i}[j k]\right)$.
- If C is associative, the above Jordan algebra structure coincides with that induced by C_{3}^{+}.
- The involution J_{γ} is induced by the hermitian form $\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$. Multiplying this form by a non-zero scalar yields a form which induces the same involution. In fact, replacing each γ_{i} by $\mu_{i}^{2} \gamma_{i}, \mu_{i} \in F^{\times}$, yields an isomorphic algebra. The same holds when C is an octonion algebra!

Albert Algebras

Theorem

If C is an octonion algebra then $\mathcal{H}\left(C_{3}, J_{\gamma}\right)$ is exceptional. In fact it is not even a homomorphic image of a special algebra.

Definition (Albert Algebra)

An Albert algebra is an algebra $J(V, N, \#, 1)$ of dimension 27. A Jordan algebra is reduced if it contains a proper idempotent.

Theorem

A reduced Albert algebra is isomorphic to $\mathcal{H}\left(C_{3}, J_{\gamma}\right), C$ an octonion algebra.

Isomorphism of Reduced Albert Algebras

Theorem
 Two reduced Albert algebras $\mathcal{H}\left(C_{3}, J_{\gamma}\right) \cong \mathcal{H}\left(C_{3}^{\prime}, J_{\gamma}^{\prime}\right), C$ and C^{\prime} octonion algebras, if and only if $C \cong C^{\prime}$ and their quadratic traces are equivalent.

Example $\left(\mathcal{H}_{3}\left(\mathbb{O}, J_{\gamma}\right)\right)$

Let \mathbb{O} be Cayley-Graves numbers (unique division octonion algebra over the reals $\mathbb{R}) . \mathcal{H}\left(\mathbb{O}_{3}, J_{\{1,1,1\}}\right) \neq \mathcal{H}\left(\mathbb{O}_{3}, J_{\{1,1,-1\}}\right)$. Moreover if C is the split octonion algebra, $\mathcal{H}\left(C_{3}, J_{\{1,1,1\}}\right)$ is not isomorphic to the previous 2 . One can show that these are exactly the three non isomorphic Albert algebras over the reals \mathbb{R}.

An Albert algebra is said to be split if it is reduced and its coefficient octonion algebra is split.

First Tits Construction

- Let A / F be a central simple associative algebra of degree 3. Every $a \in A$ satisfies the reduced characteristic polynomial $a^{3}-T_{A}(a) a^{2}+S_{A}(a) a-N_{A}(a) 1_{A} . N_{A}$ the reduced norm, T_{A} the reduced trace. For $a \in A$, define $a^{\#}:=a^{2}-T_{A}(a) a+S_{A}(a) 1_{A}$.
- Let $\mu \in F^{\times}, V=A \oplus A \oplus A$ and $x=\left(a_{0}, a_{1}, a_{2}\right) \in V$. Then the unit element, cubic form and adjoint

$$
\begin{aligned}
1 & :=(1,0,0), \\
N(x) & :=N_{A}\left(a_{0}\right)+\mu N_{A}\left(a_{1}\right)+\mu^{-1} N_{A}\left(a_{2}\right)-T_{A}\left(a_{0} a_{1} a_{2}\right), \\
x^{\#} & :=\left(a_{0} \#-\mu a_{1} a_{2}, \mu a_{2}^{\#}-a_{0} a_{1}, \mu^{-1} a_{1}^{\#}-a_{2} a_{0}\right)
\end{aligned}
$$

define a cubic norm structure on V. We denote the corresponding Jordan algebra by $J(A, \mu)$. This is the First Tits Construction.

First Tits Construction

Theorem

The Jordan algebra $J(A, \mu)$ is an Albert algebra. It is a division algebra if and only if $\mu \notin N_{A}\left(A^{\times}\right)$. A^{+}is isomorphic to the subalgebra $(A, 0)$ of $J(A, \mu)$. Conversely if an Albert algebra \mathcal{A} contains a subalgebra isomorphic to A^{+}then \mathcal{A} is isomorphic to $J(A, \mu)$ for a suitably chosen μ.

Second Tits Construction

- Let B / E be a central simple associative algebra of degree 3 . Assume B has an involution of the second kind such that $\mathcal{C}(B, *)=F, E / F$ a separable field extension.
- Let $u \in \mathcal{H}(B, *)$ and $\beta \in E^{\times}$such that $N_{B}(u)=\beta \beta^{*}$, $V=\mathcal{H}(B, *) \oplus B$ and $x=(a, b) \in V$. Then the unit element, cubic form and adjoint

$$
\begin{aligned}
1 & :=(1,0), \\
N(x) & :=N_{B}(a)+\beta N_{B}(b)+\beta^{*} N_{B}(b)^{*}-T_{B}\left(a, b u b^{*}\right), \\
x^{\#} & :=\left(a_{0}^{\#}-b u b^{*}, \beta^{*}\left(b^{*}\right)^{\#} u^{-1}-a b\right)
\end{aligned}
$$

define a cubic norm structure on V. We denote the corresponding Jordan algebra by $J(B, *, u, \beta)$. This is the Second Tits Construction.

Second Tits Construction

Theorem

The Jordan algebra $J(B, *, u, \beta)$ is an Albert algebra. It is a division algebra if and only if $\beta \notin N_{B}\left(B^{\times}\right)$. $\mathcal{H}(B, *)$ is isomorphic to the subalgebra $(\mathcal{H}(B, *), 0)$ of $J(B, *, u, \beta)$. Conversely if an Albert algebra \mathcal{A} contains a subalgebra isomorphic to $\mathcal{H}(B, *)$ then \mathcal{A} is isomorphic to $J(B, *, u, \beta)$ for suitably chosen u and β.

Albert Algebras

Theorem

Albert algebras coincide with simple exceptional Jordan algebras. The two Tits Constructions yield all Albert algebras.

Using $A^{+} \cong \mathcal{H}\left(A \oplus A^{o p}, *\right)$, * the exchange involution, it is easy to subsume the First Tits construction into a generalized Second Tits construction.

The Automorphism Group

Definition (Automorphism)

A map $\eta \in \mathrm{GL}(\mathcal{J})$ is an automorphism of \mathcal{J} if $\eta(1)=1$ and $\eta \mathrm{U}_{\mathrm{a}}=\mathrm{U}_{\eta(\mathrm{a})} \eta$.

The second condition says $\eta\left(\mathrm{U}_{a} b\right)=\mathrm{U}_{\eta(a)} \eta(b)$.

Definition (Derivation)

A map $D \in \operatorname{End}_{F}(\mathcal{J})$ is a derivation of \mathcal{J} if $D(1)=0$ and $\left[D, \mathrm{U}_{a}\right]=\mathrm{U}_{\mathrm{a}, \mathrm{Da}}$.

The second condition says $D \mathrm{U}_{a} b=\mathrm{U}_{a, D a} b+\mathrm{U}_{a} D b$. If D is a derivation of an associative algebra A, $D\left(\mathrm{U}_{\mathrm{a}} b\right)=D(a b a)=(D a) b a+a(D b) a+a b(D a)=\left(\mathrm{U}_{a, D a}+\mathrm{U}_{a} D\right) b$.

The Derivation Algebra of the Split Albert Algebra

- Recall $\mathrm{V}_{a, b} c=\mathrm{U}_{a, c} b$. One checks that for any Jordan algebra \mathcal{J}, $\mathrm{D}_{a, b}:=\mathrm{V}_{a, b}-\mathrm{V}_{b, a}, a, b \in \mathcal{J}$, is a derivation, a standard derivation.
- In $A^{+}, \mathrm{D}_{a, b} c=[[a, b], c]$.
- If $D \in \operatorname{Der}(\mathcal{J})$ then $\left[D, \mathrm{D}_{a, b}\right]=\mathrm{D}_{D a, b}+\mathrm{D}_{a, D b}$. Thus the standard derivations span an ideal of $\operatorname{Der}(\mathcal{J})$.
- Let $\mathcal{J}=\mathcal{H}_{3}(C)=\mathcal{H}_{3}\left(C, J_{\{1,1,1\}}\right)$ the split Albert algebra (i.e., C the split octonions), $\operatorname{Der}(\mathcal{J})$ its derivation algebra and $\operatorname{Der}(J)_{0}$ the derivations which send e_{i} to $0, i=1,2,3$. $\operatorname{Der}(J)_{0}$ is a subalgebra of $\operatorname{Der}(J)$ which fixes the Peirce spaces $\mathrm{U}_{e_{j}, e_{k}} J=\left\{a_{i}[j k] \mid a_{i} \in C\right\}$.

The Derivation Algebra of the Split Albert Algebra

- For $D \in \operatorname{Der}(J)_{0}$, denote D_{i} the restriction of D to $U_{e_{j}, e_{k}} J$.
- Each D_{i} is skew with respect to \mathfrak{b}_{n} (i.e., $\in \mathrm{D}_{4}$) and satisfies $D_{i}(a b)=\left(D_{j} a\right) b+a\left(D_{k} b\right)$ (local triality). Recall D_{1} determines D_{2} and D_{3} uniquely.
- Applying the automorphisms of D_{4}, ϕ_{2} and ϕ_{3}, to $D_{1}(a b)=\left(D_{2} a\right) b+a\left(D_{3} b\right)$ yield the other two equations obtained by permuting (123) cyclically.
- The converse holds, namely, given E in the split Lie algebra of type D_{4}, triality provides an action of E on the spaces $\mathrm{U}_{e_{j}, e_{k}} J$ and one checks that this yields an element of $\operatorname{Der}(J)_{0}$.

The Derivation Algebra of the Split Albert Algebra

- For $D \in \operatorname{Der}(J), D e_{1}=a[12]+b[31], D e_{2}=-a[12]+c[23]$ and $D e_{3}=-b[31]-c[23]$ for some $a, b, c \in C$, since $D 1=0$.
- One checks that $D+\mathrm{D}_{e_{1}, a[12]+b[31]}+\mathrm{D}_{e_{2}, c[23]} \in \operatorname{Der}(J)_{0}$.
- The dimension of $\operatorname{Der}(J)$ is $28+8+8+8=52$.

Theorem

If the characteristic of F is not 2, the Lie algebra of derivations of a split Albert algebra is simple. It is a split Lie algebra of type F_{4}. Since the span of the standard derivations is an ideal, they span the Lie algebra of derivations of a split Albert algebra. In characteristic 2, the derivation algebra contains an ideal of dimension 26.

Isotopes

- Let u be an invertible element of an associative algebra A and $A^{(u)}$ be the associative algebra having the same vector space structure as A and product $a_{u} b:=a u b$. The u-isotope $A^{(u)}$ is a unital associative algebra with unit u^{-1}.
- Consider the map $\mathrm{L}_{u}: A \rightarrow A, \mathrm{~L}_{u} a:=u a . \mathrm{L}_{u} u^{-1}=1_{A}$, $\mathrm{L}_{u}\left(a_{u} b\right)=u a u b=\mathrm{L}_{u} a \mathrm{~L}_{u} b$. So $A^{(u)} \cong A$.
- Let $(A, *)$ be an associative algebra with involution. If $u \in \mathcal{H}(a, *)$ is invertible, it determines another involution of $A, a^{* u}:=u a^{*} u^{-1}$. One checks that $\mathcal{H}\left(A, *_{u}\right)=u \mathcal{H}(A, *)=\mathrm{L}_{u} \mathcal{H}(A, *)$.
- In $A^{(u)}$ the U operator $\mathrm{U}_{a}^{(u)} b=$ aubua which corresponds to $\mathrm{U}_{a} \mathrm{U}_{u} b$.

Isotopes of Jordan Algebras

- Let u be an invertible element of a Jordan algebra \mathcal{J} and $\mathcal{J}^{(u)}$ be the Jordan algebra having the same vector space structure as \mathcal{J} and U operator $\mathrm{U}_{a}^{(u)}:=\mathrm{U}_{a} \mathrm{U}_{u}$. The u-isotope $\mathcal{J}^{(u)}$ is a unital Jordan algebra with unit u^{-1}.
- If $\mathcal{J}_{i}, i=1,2$ are Jordan algebras such that $\mathcal{J}_{2} \cong \mathcal{J}_{1}^{(u)}$ we say that they are isotopic.

Example

If $\mathcal{J}=\mathcal{H}(A, *)$ then $\mathcal{J}^{(u)} \cong \mathcal{H}\left(A, *_{u}\right), x^{*_{u}}=u^{-1} x^{*} u$. They are not in general isomorphic.

Isotopes of Jordan Algebras

Example

If $u \in J(V, N, \#, 1)^{\times}$let

$$
\begin{aligned}
1^{(u)} & =u^{-1}, \\
x^{\#^{(u)}} & :=N(u)^{-1} \mathrm{U}_{u^{-1} x^{\#}}, \\
N^{(u)}(x) & :=N(u) N(x) .
\end{aligned}
$$

The above defines a Norm Structure and $J\left(V, N^{(u)}, \#^{(u)}, 1^{(u)}\right)=J(V, N, \#, 1)^{(u)}$.

The Structure Group

Definition (Structure Group)

Let \mathcal{J} / F be a Jordan algebra. The following are equivalent for all $\eta \in \operatorname{GL}(\mathcal{J})$:
i) η is an isomorphism of \mathcal{J} onto $\mathcal{J}^{(u)}$, for some $u \in \mathcal{J}^{\times}$,
ii) There exists an $\eta^{\#} \in \mathrm{GL}(\mathcal{J})$ such that $\mathrm{U}_{\eta(x)}=\eta \mathrm{U}_{x} \eta^{\#}$ for all $x \in \mathcal{J}$.

The elements of $\mathrm{GL}(\mathcal{J})$ which satisfy one and hence both of these conditions form a group the structure group denoted $\operatorname{Str}(\mathcal{J})$. By the fundamental formula $\mathrm{U}_{x}, x \in \mathcal{J}^{\times}$belong to $\operatorname{Str}(\mathcal{J})$. They generate a subgroup, the inner structure group $\operatorname{Instr}(\mathcal{J})$.

The Structure Group

One can show that $\eta^{\#}=\eta^{-1} \mathrm{U}_{\eta(1)}$. The inner structure group is a normal subgroup of the structure group $\operatorname{In} \operatorname{str}(\mathcal{J}) \triangleleft \operatorname{Str}(\mathcal{J})$. The automorphism group $\operatorname{Aut}(\mathcal{J})$ is a subgroup of $\operatorname{Str}(\mathcal{J})$,
Aut $(\mathcal{J})=\{\eta \in \operatorname{Str}(\mathcal{J}) \mid \eta(1)=1\}$. The inner automorphism group $\operatorname{Inaut}(\mathcal{J})=\operatorname{Instr}(\mathcal{J}) \cap \operatorname{Aut}(\mathcal{J})$
$=\left\{\mathrm{U}_{\mathrm{a}_{1}} \mathrm{U}_{\mathrm{a}_{2}} \cdots \mathrm{U}_{\mathrm{a}_{\ell}} \mid a_{i} \in \mathcal{J}^{\times}, \mathrm{U}_{\mathrm{a}_{1}} \mathrm{U}_{\mathrm{a}_{2}} \cdots \mathrm{U}_{\mathrm{a}_{\ell}} 1=1\right\}$.

Theorem

If \mathcal{J} is an Albert algebra, $\operatorname{Str}(\mathcal{J})=\operatorname{Instr}(\mathcal{J})$ is the norm preserving group and is of type E_{6}.

Structure Lie Algebras

Definition (Structure Lie algebra)

Let \mathcal{J} be a Jordan algebra. The structure Lie algebra $\operatorname{str}(\mathcal{J})=\left\{\mathrm{H} \in \operatorname{End}_{F}(\mathcal{J}) \mid \mathrm{U}_{\mathrm{a}, \mathrm{Ha}}=\mathrm{HU}_{a}-\mathrm{U}_{\mathrm{a}} \overline{\mathrm{H}}\right\}$, where $\overline{\mathrm{H}}=\mathrm{H}-\mathrm{V}_{\mathrm{H} 1}$.

- The structure Lie algebra is the Lie algebra of the structure group.
- The inner structure Lie algebra instr $(\mathcal{J})=\left\{\sum \mathrm{V}_{a_{i}, b_{i}} \mid a_{i}, b_{i} \in \mathcal{J}\right\}$ and the inner derivation algebra inder $(\mathcal{J})=\left\{\sum \mathrm{V}_{\mathrm{a}_{i}, b_{i}} \mid a_{i}, b_{i} \in \mathcal{J}, \sum a_{i} \circ b_{i}=0\right\}$. In particular, $\mathrm{V}_{a, b}-\mathrm{V}_{b, a}$ is an inner derivation.

The Structure Algebra of the Split Albert Algebra

- Let \mathcal{J} be an Albert algebra and \mathcal{J}_{0} the elements of trace 0 . The inner structure Lie algebra $\operatorname{instr}(\mathcal{J})=\mathrm{V}_{\mathcal{J}} \oplus \operatorname{Der} \mathcal{J}$. Its dimension of is $27+52=79$.

Theorem

The derived algebra of the structure Lie algebra of a split Albert algebra is simple. It is a split Lie algebra of type E_{6}. Since the span of the standard derivations is an ideal, they span the Lie algebra of derivations of a split Albert algebra.

The Tits Kantor Koecher Lie Algebra

Definition (TKK (\mathcal{J}))

The Tits Kantor Koecher Lie Algebra of a Jordan algebra \mathcal{J},
$\operatorname{TKK}(\mathcal{J})=\mathcal{J} \oplus \operatorname{str}(\mathcal{J}) \oplus \overline{\mathcal{J}}, \overline{\mathcal{J}}$ another copy of $\overline{\mathcal{J}}$, with product $\left[a_{1}+\mathrm{H}_{1}+\overline{b_{1}}, \quad a_{2}+\mathrm{H}_{2}+\overline{b_{2}}\right]:=$
$\left(\mathrm{H}_{1} a_{2}-\mathrm{H}_{2} a_{1}\right)+\left(\mathrm{V}_{\mathrm{a}_{1}, b_{2}}-\mathrm{V}_{\mathrm{a}_{2}, b_{1}}+\left[\mathrm{H}_{1}, \mathrm{H}_{2}\right]\right)+\left(\overline{\overline{\mathrm{H}_{1}} b_{2}-\overline{\mathrm{H}_{2}} b_{1}}\right)$.
If \mathcal{J} is a split Albert algebra then the dimension of
$\operatorname{TKK}(\mathcal{J})=27+27+52+27=133$.
Theorem
If \mathcal{J} is a split Albert algebra then $\operatorname{TKK}(\mathcal{J})$ is a simple Lie algebra of type E_{7}.

A Construction of Freudenthal and Tits

- Let C be a composition algebra and \mathcal{J} a Jordan algebra of a cubic norm over a field F of characteristic not 2 or $3, C_{0}, \mathcal{J}_{0}$ their elements of trace 0 . For $a, b \in C$, and $x, y \in \mathcal{J}, a * b:=a b-\frac{1}{2} t(a b) 1_{C}$ and $x * y:=x \cdot y-\frac{1}{3} T(x \cdot y) 1_{\mathcal{J}}$ define products on C_{0} and \mathcal{J}_{0} respectively.
- Take $\mathfrak{L}(C, \mathcal{J})=\operatorname{Der} C \oplus C_{0} \otimes \mathcal{J}_{0} \oplus \operatorname{Der} \mathcal{J}$. $\operatorname{Der} C$ and $\operatorname{Der} \mathcal{J}$ are Lie algebras.
- We wish to define a product on $\mathfrak{L}(C, \mathcal{J})$ to make it into a Lie algebra: For $a, b \in C$, and $x, y \in \mathcal{J}, D \in \operatorname{Der} C, D^{\prime} \in \operatorname{Der} \mathcal{J}$,

$$
\begin{aligned}
{[D, a \otimes x] } & :=D a \otimes x, \\
{\left[D^{\prime}, a \otimes x\right] } & :=a \otimes D^{\prime} x, \\
{[a \otimes x, b \otimes y] } & :=\frac{1}{12} T(x \cdot y) D_{a, b}+(a * b) \otimes(x * y)+\frac{1}{2} t(a b) D_{x, y}, \\
{\left[D, D^{\prime}\right] } & :=0
\end{aligned}
$$

Freudenthal Tits Magic Square

This product defines a Lie algebra structure on $\mathfrak{L}(C, \mathcal{J})$.

	F	$F \times F \times F$	$\mathcal{H}_{3}\left(F, \mathrm{~J}_{\gamma}\right)$	$\mathcal{H}_{3}\left(E, \mathrm{~J}_{\gamma}\right)$	$\mathcal{H}_{3}\left(\mathcal{Q}, \mathrm{~J}_{\gamma}\right)$	$\mathcal{H}_{3}\left(\mathcal{O}, \mathrm{~J}_{\gamma}\right)$
F	0	0	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	C_{3}	$\mathrm{~F}_{4}$
E	0	\mathfrak{A}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{2} \oplus \mathrm{~A}_{2}$	$\mathrm{~A}_{5}$	E_{6}
\mathcal{Q}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1} \oplus \mathrm{~A}_{1} \oplus \mathrm{~A}_{1}$	C_{3}	$\mathrm{~A}_{5}$	D_{6}	E_{7}
\mathcal{O}	G_{2}	D_{4}	$\mathrm{~F}_{4}$	E_{6}	E_{7}	E_{8}

\mathfrak{A} is an abelian Lie algebra of dimension 2. For a discussion of the real forms of exceptional Lie algebras, see [J1].

Cohomological Invariants

- Recall:
- Two composition algebras are isomorphic if and only if their norm forms are isometric.
- If F is of characteristic not 2 , the norm form of an octonion algebra C is a Pfister form $\ll \lambda_{1}, \lambda_{2}, \lambda_{3} \gg$.

Theorem

Two reduced Albert algebras $\mathcal{J}=\mathcal{H}_{3}\left(C, J_{\gamma}\right)$ and $\mathcal{J}^{\prime}=\mathcal{H}_{3}\left(C^{\prime}, J_{\gamma^{\prime}}\right)$ are isomorphic if and only if their coefficient algebras $C \cong C^{\prime}$ and their quadratic traces are isometric.

Associated Quadratic Forms

- In other words, two reduced Albert algebras \mathcal{J} and \mathcal{J}^{\prime} are isomorphic if and only if two associated quadratic forms $n_{C}, S_{\mathcal{J}}$ and $n_{C^{\prime}}, S_{\mathcal{J}^{\prime}}$ are isometric.
- For $\sum_{(123)}\left(\alpha_{i} e_{i i}+a_{i}[j k]\right)=\left[\begin{array}{ccc}\alpha_{1} & \gamma_{2} a_{3} & \gamma_{3} \overline{a_{2}} \\ \gamma_{1} \overline{a_{3}} & \alpha_{2} & \gamma_{3} a_{1} \\ \gamma_{1} \bar{a}_{2} & \gamma_{2} \overline{\bar{a}_{1}} & \alpha_{3}\end{array}\right]$, the quadratic trace $S(x)=T\left(x^{\#}\right)=\sum_{(123)}\left(\left(\alpha_{j} \alpha_{k}-\gamma_{j} \gamma_{k} n\left(a_{i}\right)\right)\right.$.
- This is the form $[-1] \oplus \mathbf{h} \oplus\langle-1\rangle .\left\langle\gamma_{2} \gamma_{3}, \gamma_{3} \gamma_{1}, \gamma_{1} \gamma_{2}\right\rangle \otimes n_{C}$, where $[-1]$ is the one dimensional form $-\alpha^{2}$ and \mathbf{h} the hyperbolic plane. Writing $Q_{\mathcal{J}}$ for $\left\langle\gamma_{2} \gamma_{3}, \gamma_{3} \gamma_{1}, \gamma_{1} \gamma_{2}\right\rangle \otimes n_{C}$, we have $Q_{\mathcal{J}}$ determines $S_{\mathcal{J}}$ and vice versa.

The mod 2 Invariants

- Multiplying J_{γ} by γ_{1}^{-1}, we may assume $\gamma_{1}=1$ and $\left\langle\gamma_{2} \gamma_{3}, \gamma_{3} \gamma_{1}, \gamma_{1} \gamma_{2}\right\rangle=\left\langle\gamma_{2} \gamma_{3}, \gamma_{3}, \gamma_{2}\right\rangle$. In that case $n_{C} \oplus Q_{\mathcal{J}}=\ll-\gamma_{2},-\gamma_{3} \gg \otimes n_{C}$.
- To include characteristic 2, (following [EKM]) we would need to consider Pfister forms $\ll \alpha_{1}, \ldots, \alpha_{n} \gg \otimes n_{E}, E$ a quadratic étale algebra
- The forms $\ll \alpha_{1}, \ldots, \alpha_{n} \gg$ have cup product $\left(\alpha_{1}\right) \cup \cdots \cup\left(\alpha_{n}\right) \in H^{n}(F, \mathbb{Z} / 2 \mathbb{Z})$, the $n^{\text {th }}$ cohomology group.
- We therefore have two so-called invariants mod 2:

$$
\begin{aligned}
& f_{3}(\mathcal{J})=\left(\lambda_{1}\right) \cup\left(\lambda_{2}\right) \cup\left(\lambda_{3}\right) \in H^{3}(F, \mathbb{Z} / 2 \mathbb{Z}) \text { and } \\
& f_{5}(\mathcal{J})=f_{3}(\mathcal{J}) \cup\left(-\gamma_{2}\right) \cup\left(-\gamma_{3}\right) \in H^{5}(F, \mathbb{Z} / 2 \mathbb{Z}) .
\end{aligned}
$$

Reduced Albert Algebras

Theorem

The invariants $f_{3}(\mathcal{J})$ and $f_{5}(\mathcal{J})$ classify reduced Albert algebras.

- If \mathcal{J} is an Albert division algebra then $\mathcal{J}_{E}=\mathcal{J} \otimes_{F} E$ is a reduced Albert algebra for a suitable odd-degree reducing extension E / F. Since the two Pfister forms over E afforded by \mathcal{J}_{E} are obtained by tensoring Pfister forms over F, the invariants $f_{3}(\mathcal{J})$ and $f_{5}(\mathcal{J})$ are also defined for division Albert algebras.
- Note that $f_{3}(\mathcal{J})=0$ implies $f_{5}(\mathcal{J})=0$.

A mod 3 Invariant?

- If A / F is a central simple associative algebra, denote by $[A]$ the class of A in the Brauer group; so $[A] \in \operatorname{Br}(F)=H^{2}\left(F, F_{s}\right), F_{s}$ the separable closure of F.
- If A / F is of degree 3 then $[A] \in{ }_{3} B r(F) \cong H^{2}\left(F, \mu_{3}\right), \mu_{3}$ the cube roots of unity. For $\alpha \in F^{\times}$, denote by (α) the image of α in $F^{\times} / F^{\times 3} \cong H^{1}\left(F, \mu_{3}\right)$. Since $\mu_{3} \otimes \mu_{3}$ is canonically isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$, the cup product
$[A] \cup(\alpha) \in H^{2}\left(F, \mu_{3}\right) \cup H^{1}\left(F, \mu_{3}\right) \cong H^{3}(F, \mathbb{Z} / 3 \mathbb{Z})$.

The mod 3 Invariant

Theorem

There is an invariant of the isomorphism class of an Albert algebra \mathcal{J} / F, $g_{3}(\mathcal{J}) \in H^{3}(F, \mathbb{Z} / 3 \mathbb{Z})$ which
$1)$ is compatible with base change, i.e., $g_{3}\left(\mathcal{J} \otimes_{F} E\right)=\operatorname{res}_{E / F}\left(g_{3}(\mathcal{J})\right)$, for any field extension E / F, for the restriction map
$\operatorname{res}_{E / F}: H^{i}(F, \mathbb{Z} / 3 \mathbb{Z}) \rightarrow H^{i}(E, \mathbb{Z} / 3 \mathbb{Z})$,
2) characterizes division algebras, i.e., \mathcal{J} is reduced if and only if
$g_{3}(\mathcal{J})=0$,
3) satisfies $g_{3}(J(A, \alpha))=[A] \cup(\alpha)$.

First Tits Algebras Containing a Copy of A^{+}

Theorem

The first Tits construction algebras $J\left(A, \alpha_{1}\right), J\left(A, \alpha_{2}\right)$ are isomorphic if and only if $\alpha_{1}=\alpha_{2} N_{A}(u)$ for some $u \in A^{\times}$.

- If $\alpha_{1}=\alpha_{2} N_{A}(u)$ for $u \in A^{\times}$, it is not hard to show that $J\left(A, \alpha_{1}\right) \cong J\left(A, \alpha_{2}\right)$. If $J\left(A, \alpha_{1}\right) \cong J\left(A, \alpha_{2}\right)$ then $g_{3}\left(J\left(A, \alpha_{1}\right)\right)=g_{3}\left(J\left(A, \alpha_{2}\right)\right)$ and $[A] \cup\left(\alpha_{1}\right)=[A] \cup\left(\alpha_{2}\right)$. Therefore $[A] \cup\left(\alpha_{1}\right)-[A] \cup\left(\alpha_{2}\right)=[A] \cup\left(\alpha_{1} \alpha_{2}^{-1}\right)=0$. So $J\left(A, \alpha_{1} \alpha_{2}^{-1}\right)$ is reduced and by the criterion for a first Tits construction to be a division algebra $\alpha_{1} \alpha_{2}^{-1} \in N_{A}\left(A^{\times}\right)$.

Second Tits Algebras Containing a Copy of $\mathcal{H}(B, *)$

Theorem

The second Tits construction algebras $J\left(B, *, u_{1}, \beta_{1}\right), J\left(B, *, u_{2}, \beta_{2}\right)$ are isomorphic if and only if $u_{2}=v u_{1} v^{*}$ and $\beta_{2}=\beta_{1} N_{B}(v)$ for some $v \in B^{\times}$.

Let E / F be a separable field extension whose degree is not divisible by 3 . By considering the restriction and corestriction maps, one sees that a non zero mod 3 invariant remains non trivial under that base change.

Theorem
If \mathcal{J} / F is a division Albert algebra and E / F is a separable field extension whose degree is not divisible by 3 , then $\mathcal{J} \otimes_{F} E$ is a division algebra.

Reduced Models

Realizing an Albert algebra \mathcal{J} as a generalized Second Tits construction and considering the corresponding quadratic forms $S_{\mathcal{J}}$ and $Q_{\mathcal{J}}$, one obtains the following

Theorem

If \mathcal{J} / F is a division Albert algebra then there exists a reduced Albert algebra $\mathcal{H}_{3}\left(C, J_{\gamma}\right)$ over F such that for any extension E / F that reduces $\mathcal{J}, \mathcal{J} \otimes_{F} E \cong \mathcal{H}_{3}\left(C, J_{\gamma}\right) \otimes_{F} E . \mathcal{H}_{3}\left(C, J_{\gamma}\right)$ is unique up to isomorphism and is called the reduced model of \mathcal{J}.

$f_{3}(\mathcal{J})=0$

A careful look at cubic subfields of first Tits algebras allows one to obtain
Theorem
If \mathcal{J} / F is an Albert algebra, TFAE

1) \mathcal{J} is a first Tits construction algebra,
2) The reduced model of \mathcal{J} is split,
3) $f_{3}(\mathcal{J})=0$.

Theorem
If \mathcal{J} / F is a first Tits construction algebra and \mathcal{J}^{\prime} is isotopic to \mathcal{J} then \mathcal{J}^{\prime} is isomorphic to \mathcal{J}.

Isotopy Invariants

Let \mathcal{J} be an Albert algebra. The definition of $f_{5}(\mathcal{J})$ shows that passing to an isotope may change f_{5}. If \mathcal{J} is reduced then isotopes have isomorphic coefficient algebras. So f_{3} will be the same for isotopes. If \mathcal{J} is a division algebra and E / F a cubic subfield of \mathcal{J} then $\mathcal{J} \otimes_{F} E$ is reduced and again f_{3} is an isotopy invariant. By the previous Theorem, if \mathcal{J} is a first Tits algebra then all isotopes are isomorphic so g_{3} is an isotopy invariant. If \mathcal{J} is not a first Tits algebra then tensoring with an appropriate quadratic extension yields a first Tits algebra.

Theorem

The invariants $f_{3}(\mathcal{J})$ and $g_{3}(\mathcal{J})$ are isotopy invariants.

Do the Invariants Determine an Albert Algebra?

- Do $f_{3}(\mathcal{J})$ and $g_{3}(\mathcal{J})$ determine \mathcal{J} up to isotopy?
- Do the invariants mod 2 and mod 3 classify Albert algebras up to isomorphism?

Theorem

Let \mathcal{J} / F and \mathcal{J}^{\prime} / F be Albert algebras having the same $\bmod 2$ and $\bmod 3$ invariants. If F is of characteristic not 2 or 3 then there exists a finite extension E / F whose degree is not divisible by 3 and a finite extension K / F whose degree divides 3 such that $\mathcal{J} \otimes E \cong \mathcal{J}^{\prime} \otimes E$ and $\mathcal{J} \otimes K \cong \mathcal{J}^{\prime} \otimes K$.

REFERENCES

- [EKM] The Algebraic and Geometric Theory of Quadratic Forms, AMS, 2008, R. Elman, N. Karpenko, A. Merkurjev
- [J1] Exceptional Lie Algebras, Marcel Dekker, 1971, N. Jacobson
- [J2] Structure Theory of Jordan Algebras, University of Arkansas, 1981, N. Jacobson
- [KMR] The Book of Involutions, AMS, 1998, M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol
- [M] A Taste of Jordan Algebras, Springer Verlag, 2003, K. McCrimmon
- [P] Albert Algebra, Fields Institute, 2012, H. P. Petersson
- [SV] Octonions, Jordan Algebras and Exceptional Groups, Springer Verlag, 2000, T.A. Springer, F. D. Veldkamp.

