Exceptional Jordan Algebras

Michel Racine University of Ottawa

Examples

Example (Complexes)

- \bullet Consider the complexes $\mathbb C$ as an algebra over the reals $\mathbb R.$
- The norm form n, $n(z) := z\overline{z}$, is a quadratic form on \mathbb{C}/\mathbb{R} which allows composition: $n(ab) = n(a)n(b) \ \forall a, b \in \mathbb{C}$.

Example (2 by 2 matrices)

- Let $M_2(F)$ be the 2 by 2 matrices with entries in a field F.
- The determinant det is a quadratic form on $M_2(F)/F$ which allows *composition*:
- $det(AB) = det(A)det(B) \quad \forall A, B \in M_2(F).$

Definitions

Definition (Algebra)

• A (*linear*) algebra A over a field F is an F-vector space with a product *ab* which is left and right distributive over addition.

Definition (Composition Algebra)

- A composition algebra C/F is a unital algebra with a regular quadratic form n : A → F which allows composition: n(ab) = n(a)n(b) ∀a, b ∈ C.
- The quadratic form *n* is (sometimes) called the *norm* of *C*.
- $\mathfrak{b}_n(a,b) := n(a+b) n(a) n(b)$. *n* is regular if n(z) = 0 and $\mathfrak{b}(z,C) = \{0\}$ imply z = 0.

Consequences

- $\mathfrak{b}_n(ca,cb) = n(c)\mathfrak{b}_n(a,b) = \mathfrak{b}_n(ac,bc).$
- $\mathfrak{b}_n(ac, bd) + \mathfrak{b}_n(ad, bc) = \mathfrak{b}_n(a, b)\mathfrak{b}_n(c, d).$
- $n(1_C) = 1_F$.
- Denoting $\mathfrak{b}_n(a, 1_C)$ by t(a), the *trace* of a, we have $t(a^2) + \mathfrak{b}_n(a, a) = t(a)^2$, or $t(a^2) + 2n(a) = t(a)^2$.

Every $a \in C$ is of Degree 2

• Any
$$a \in C$$
 satisfies $a^2 - t(a)a + n(a)1_C = 0_C$.
• Letting $z = a^2 - t(a)a + n(a)1_C$,
 $\mathfrak{b}_n(z,c) = \mathfrak{b}_n(a^2,c) - t(a)\mathfrak{b}_n(a,c) + n(a)t(c)$.
• But $t(a)\mathfrak{b}_n(a,c) = \mathfrak{b}_n(a,1)\mathfrak{b}_n(a,c) = \mathfrak{b}_n(a^2,c) + \mathfrak{b}_n(ac,1a)$, and
 $\mathfrak{b}_n(z,c) = 0 \quad \forall c \in C$.
• $n(z) = n(a^2) + t(a)^2n(a) + n(a)^2 - t(a)\mathfrak{b}_n(a^2,a) + n(a)t(a^2) - n(a)t(a)^2$
 $= 2n(a)^2 + n(a)t(a^2) - n(a)t(a)^2 = 0$.

- So z = 0.
- Linearize the first equation to get
 ab + ba − t(b)a − t(a)b + b_n(a, b)1_C = 0_C ∀a, b ∈ C.

Standard Involution

Consider $a \mapsto \bar{a} := t(a)1_C - a$. One checks that \bar{a} is an involution, i.e.

•
$$\overline{ab} = \overline{b}\overline{a}$$
 and $\overline{\overline{a}} = a$.

• $a\overline{a} = n(a)1_c = \overline{a}a$. Linearizing, $a\overline{b} + b\overline{a} = \mathfrak{b}_n(a, b)1_C = \overline{a}b + \overline{b}a$.

• If
$$n(a) \neq 0$$
 then a is invertible, $a^{-1} = n(a)^{-1}\bar{a}$.

- Of course $t(a)1_C = a + \overline{a}$ and if t(a) = 0 then $\overline{a} = -a$.
- Moreover $n(\bar{a}) = n(a)$ and $\mathfrak{b}_n(ab, c) = \mathfrak{b}_n(b, \bar{a}c) = \mathfrak{b}_n(a, c\bar{b})$,

•
$$a(\bar{a}b) = n(a)b = (b\bar{a})a.$$

From the definition of \bar{a} and the last equations one gets

•
$$a(ab) = (aa)b$$
, $(ba)a = b(aa)$.

Alternative Algebras

Definition (Alternative Algebra)

• An algebra A/F is alternative if a(ab) = (aa)b, and (ba)a = b(aa).

Proposition

Any composition algebra is alternative.

Definition (Associator)

• The associator
$$[a, b, c] := (ab)c - a(bc)$$
.

Proposition

An algebra A/F is alternative if and only if the associator is an alternating function.

Corollary

A is an alternative algebra if and only if any subalgebra of A generated by two elements is associative. In particular (ab)a = a(ba).

Michel Racine (Ottawa)

The Radical of C

The radical of C, $R = \{r \mid \mathfrak{b}_n(r, c) = 0 \ \forall c \in C\}$. If $R \neq \{0\}$ then char F = 2. By the regularity of n, $n(r) \neq 0 \ \forall r \in R, r \neq 0$.

Since $\mathfrak{b}_n(ar, c) = \mathfrak{b}_n(r, \bar{a}c) = 0$ and $\mathfrak{b}_n(ra, c) = \mathfrak{b}_n(r, c\bar{a}) = 0$, R is an ideal of C. Since n((ab)r) = n(a)n(b)n(r) = n(a(br)), (ab)r = a(br) $\forall a, b \in C, r \in r$. Any product of 3 elements of C, one of which is in R, is associative and any product of 2 elements, one of which is in R, is commutative. Therefore R is a purely inseparable field extension of F of degree 2; the norm is the square; C is an R-vector space. So C = R.

Until further notice we will assume that $R = \{0\}$, so \mathfrak{b}_n is non-degenerate.

Moufang Identities

$$(ab)(ca) = a((bc)a) = (a(bc))a,$$
 (1)
 $(aba)c = a(b(ac)),$ (2)
 $c(aba) = ((ca)b)a.$ (3)

$$\begin{split} \mathfrak{b}_n((ab)(ca),d) &= \mathfrak{b}_n(ca,(\bar{b}\bar{a})d) = \mathfrak{b}_n(c,\bar{b}\bar{a})\mathfrak{b}_n(a,d) - \mathfrak{b}_n(cd,(\bar{b}\bar{a})a) \\ &= \mathfrak{b}_n(bc,\bar{a})\mathfrak{b}_n(a,d) - n(a)n(cd,\bar{b}), \\ \mathfrak{b}_n(a((bc)a),d) &= \mathfrak{b}_n((bc)a,\bar{a}d) = \mathfrak{b}_n(bc,\bar{a})\mathfrak{b}_n(a,d) - \mathfrak{b}_n((bc)d,\bar{a}a) \\ &= \mathfrak{b}_n(bc,\bar{a})\mathfrak{b}_n(a,d) - n(a)\mathfrak{b}_n(bc,\bar{d}). \end{split}$$

The Structure of Composition Algebras

Let *B* be a finite dimensional subalgebra of *C* on which the bilinear form $\mathfrak{b}_n(,)$ is non-degenerate. Then $C = B \oplus B^{\perp}$ as vector spaces.

If $B^{\perp} \neq \{0\}$, $\exists v \in B^{\perp}$ with $n(v) = -\lambda \neq 0$.

Lemma

 $B \oplus Bv$ is a subalgebra of C.

• $\mathfrak{b}_n(v,B) = \{0\}$. In particular t(v) = 0 and $v^2 = \lambda$.

$$(a+bv)(c+dv) = ac + a(dv) + (bv)c + (bv)(dv)$$
$$= ac + (da)v + (b\bar{c})v + \lambda\bar{d}b$$
$$= (ac + \lambda\bar{d}b) + (da + b\bar{c})v.$$

Is $B \oplus Bv$ a Composition Algebra?

• If
$$(ab)v = a(bv) = (ba)v$$
 then $ab = ba$.

Lemma

For $B \oplus Bv$ to be a composition algebra, B must be associative. For $B \oplus Bv$ to be associative, B must be commutative.

The Cayley-Dickson Process

Recall $(a + bv)(c + dv) = (ac + \lambda \overline{d}b) + (da + b\overline{c})v$.

If *F* is of characteristic not 2, start with $B_1 = K1$ to construct $B_2 = B_1 \oplus B_1 v_1$, $B_4 = B_2 \oplus B_2 v_2$ and $B_8 = B_4 \oplus B_4 v_4$. If *F* is of characteristic 2, start with B_2 a separable quadratic field extension or two copies of *F* with the exchange involution.

 B_1 and B_2 are commutative so B_4 is associative. In B_4 , $[a, dv_2] = (da - d\bar{a})v_2 = d(a - \bar{a})v_2 \neq 0$ if $\bar{a} \neq a$. Since $\bar{}$ is not the identity on B_2 , B_4 is not commutative and the process stops at B_8 . The possible dimensions are therefore 1, 2, 4, and 8. Composition algebras of dimension 4 are *quaternion algebras*, those of dimension 8, octonion algebras.

The Norm Form

Theorem

If A is a simple alternative algebra then A is an associative algebra or an octonion algebra.

Theorem

Two composition algebras C, n and C', n' are isomorphic if and only if C, n and C', n' are isometric.

- If $v_i^2 = \lambda_i$ then the norm form is a Pfister form $\langle \lambda_1, \lambda_2, \lambda_3 \rangle \rangle$. See [EKM] for Pfister forms in characteristic 2.
- Arason Invariant.

The Norm Form

- If n(a) ≠ 0 then a⁻¹ = n(a)⁻¹ā. So C is a division algebra if and only if n is anisotropic.
- If n is isotropic then C contains a hyperbolic pair, say (u, v). Then C = uC ⊕ vC; uC and vC are totally isotropic subspaces and n has maximal Witt index.
- In fact, $1 = x_0 + y_0$, (x_0, y_0) a hyperbolic pair. $\overline{x_0} = y_0$, $\overline{y_0} = x_0$.
- Hence x_0 , y_0 are orthogonal idempotents and $C = Fx_0 \oplus x_0 Cy_0 \oplus Fy_0 \oplus y_0 Cx_0$.
- If dim C = 2 then $C = Fx_0 \oplus Fy_0$. If dim C = 4 then $C = M_2(F)$.

Split Octonions

• Can pick $\{x_1, x_2, x_3\}$ and $\{y_1, y_2, y_3\}$ bases of $x_0 Cy_0$ and $y_0 Cx_0$ respectively, such that (x_i, y_i) are mutually orthogonal hyperbolic pairs.

•
$$\mathfrak{b}_n(x_1x_2, x_0) = -\mathfrak{b}_n(x_1, x_0x_2) = -\mathfrak{b}_n(x_1, x_2) = 0$$
,

•
$$\mathfrak{b}_n(x_1x_2, y_0) = -\mathfrak{b}_n(x_1, y_0x_2) = 0$$
,

•
$$\mathfrak{b}_n(x_1x_2, x_1) = 0 = \mathfrak{b}_n(x_1x_2, x_2),$$

•
$$x_0(x_1x_2) = (x_0x_1)x_2 - x_1(x_0x_2) + (x_1x_0)x_2 = x_1x_2 - x_1x_2 = 0.$$

• So
$$x_1x_2 = \mu y_3$$
, where $\mu = \mathfrak{b}_n(x_1x_2, x_3)$.

Split Octonions

- $\mathfrak{b}_n(x_1x_2, x_3) = -\mathfrak{b}_n(x_2, x_1x_3) = -\mathfrak{b}_n(x_1x_3, x_2).$
- $\mathfrak{b}_n(x_1x_2, x_3) = -\mathfrak{b}_n(x_1, x_3x_2) = -\mathfrak{b}_n(x_3x_2, x_1) = \mathfrak{b}_n(x_3x_1, x_2).$
- So $\mathfrak{b}_n(x_1x_2, x_3)$ is alternating. $x_ix_{i+1} = \mu y_{i+2}$.
- Replacing $\{x_3, y_3\}$ by $\{\mu^{-1}x_3, \mu y_3\}$, we get $x_i x_{i+1} = y_{i+2}$ and $y_i y_{i+1} = x_{i+2}$.

• $x_i y_j = -\delta_{ij} x_0$, $y_i x_j = -\delta_{ij} y_0$.

Zorn Vector Matrices

Example (Zorn Vector Matrices)

- Consider (^α_{ν β}), α, β ∈ F, u, v ∈ V a vector space of dimension 3 over F.
- Define $\begin{pmatrix} \alpha & u \\ v & \beta \end{pmatrix} \begin{pmatrix} \gamma & w \\ z & \delta \end{pmatrix} := \begin{pmatrix} \alpha \gamma u \cdot z & \alpha w + \delta u + v \times z \\ \gamma v + \beta z + u \times w & \beta \delta v \cdot w \end{pmatrix}$, where $u \cdot z$ and $u \times z$ are the usual dot and cross products in a 3 dimensional space.

•
$$n\begin{pmatrix} \alpha & u\\ v & \beta \end{pmatrix} := \alpha\beta + u \cdot v, \quad \overline{\begin{pmatrix} \alpha & u\\ v & \beta \end{pmatrix}} = \begin{pmatrix} \beta & -u\\ -v & \alpha \end{pmatrix}.$$

Local Triality

- Let C be an octonion algebra and $C_0 = \{a \in C | t(a) = 0\}.$
- Denote by L_a and R_a , the left and right multiplication maps i.e., $L_a x := ax$, $R_a x := xa$, $a, x \in C$, and by $V_a := L_a + R_a$.
- Rewriting [x, y, c] = [c, x, y], (xy)c + c(xy) = x(yc) + (cx)y we have $V_c(xy) = (L_c x)y + xR_c y$.
- For $a \in C_0$, $\mathfrak{b}_n(\mathcal{L}_a x, y) = \mathfrak{b}_n(ax, y) = \mathfrak{b}_n(x, \bar{a}y) = -\mathfrak{b}_n(x, \mathcal{L}_a y)$. Similarly $\mathfrak{b}_n(\mathcal{R}_a x, y) = -\mathfrak{b}(x, \mathcal{R}_a y)$ and $\mathfrak{b}_n(\mathcal{V}_a x, y) = -\mathfrak{b}(x, \mathcal{V}_a y)$.

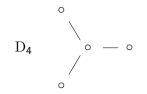
Local Triality

Theorem(Principle of Local Triality)

Let *C* be an octonion algebra over a field *F* of characteristic not 2 and *L* the Lie algebra of skew linear transformations with respect to \mathfrak{b}_n then for every $t_1 \in L$ there exist unique $t_2, t_3 \in L$ such that $t_1(xy) = t_2(x)y + xt_3(y) \quad \forall x, y \in C$. The mappings $\phi_2 : t_1 \mapsto t_2$, and $\phi_3 : t_1 \mapsto t_3$ are Lie algebra automorphisms of *L*. They are inequivalent and generate the symmetric group S_3 .

See [SV] for the result in characteristic 2 as well as the group version of triality.

Triality



Derivation Algebras

Definition (Derivation)

If A is an algebra over a field F, $D \in \operatorname{End}_F A$ is a *derivation* of A if D(ab) = (Da)b + a(Db), $\forall a, b \in A$.

- $Der(A) = \{D \mid D \text{ a derivation of } A\}$ is a Lie algebra. D1 = 0.
- If A is alternative, for any $a, b \in A$,

$$\begin{split} \mathbf{D}_{a,b} &:= [\mathbf{L}_a, \mathbf{L}_b] + [\mathbf{L}_a, \mathbf{R}_b] + [\mathbf{R}_a, \mathbf{R}_b] \\ &= \mathbf{L}_{[a,b]} - \mathbf{R}_{[a,b]} - \mathbf{3}[\mathbf{L}_a, \mathbf{R}_b] \in \mathrm{Der}(\mathcal{A}), \end{split}$$

a so-called standard derivation.

Derivation Algebras

- Let C be a split octonion algebra, D a derivation. So $Dx_0 = -Dy_0$.
- $Dx_0 = (Dx_0)x_0 + x_0(Dx_0) = (Dx_0)y_0 + y_0(Dx_0)$. So $Dx_0 \in x_0Cy_0 \oplus y_0Cx_0$.
- For $1 \le i \le 3$, $D_{x_0, x_i} x_0 = -x_i$ and $D_{y_0, y_i} x_0 = -y_i$.
- Assume $Dx_0 = 0$ then $D(x_0Cy_0) = x_0(DC)y_0$. Let $Der(C)_0 = \{D \in Der(C) \mid Dx_0 = 0\}.$
- For $D \in Der(C)_0$, $D: x_0 Cy_0 \rightarrow x_0 Cy_0$ and $D: y_0 Cx_0 \rightarrow y_0 Cx_0$.
- Denote these actions by D' and D'' respectively. In the Zorn vector matrix context, letting D act on $u_{12}z_{21} = -(u \cdot z)_{11}$ yields $(D'u_{12})z_{21} + u_{12}D''z_{21} = 0.$
- So $\mathfrak{b}_n(D'u, z) + \mathfrak{b}_n(u, D''z) = 0$ and $D'' = -D^*$, where * is the adjoint with respect to \mathfrak{b}_n .

One can check that we further need that the trace of D' be 0 and that these two conditions are sufficient for $D = (D', D'') \in \text{Der}(C)_0$. Therefore the dimension of Der(C) is 6 + 8 = 14.

Theorem

If the characteristic of F is not 3 then Der(C) is a simple Lie algebra of type G_2 . In characteristic 3, Der(C) has an ideal of dimension 7.

Associative Algebras with Involution

- An associative algebra with involution (A, *) is simple (as an algebra with involution) if it contains no non-trivial *-stable ideal.
- In that case, either A is simple or A = B ⊕ B^{op}, B simple, B^{op} the opposite algebra has the same additive structure as B and the product a^{op}b := ba, and * is the exchange involution (a, b)* = (b, a).
- Denote by C(A) the centre of A. The centre of the associative algebra with involution (A, *), C(A, *) = {c ∈ C(A) | c* = c}.
- The involution * is of the first kind if C(A, *) = C(A), e.g. (M_n(F), t), t the transpose involution. Otherwise it is of the second kind, e.g if B is a central algebra over F then C(B ⊕ B^{op}) = F ⊕ F while C(B ⊕ B^{op}, *) = {(α, α) | α ∈ F} ≅ F.

Hermitian Elements

Example (Hermitian Elements)

- Let A/F be an associative an algebra over a field F and * an involution of A which fixes F elementwise.
- Denote by H(A, *) = {a ∈ A | a* = a} the hermitian elements of A and by S(A, *) = {a ∈ A | a* = −a} the skew-symmetric elements.
- The Lie bracket [a, b] := ab − ba gives A a Lie algebra structure, denoted A[−]; S(A, *) is a Lie subalgebra of A[−].
- The subspace H(A, *) = {a ∈ A | a* = a} is closed under a → a² and hence under V_ab = a ∘ b := ab + ba.

Linear Jordan Algebras

- Assume that $\frac{1}{2} \in F$. Denote $\frac{1}{2}(a \circ b)$ by $a \cdot b$. Note that $a^{\cdot 2} = a \cdot a = a^2$.
- One checks that the above product in an associative algebra satisfies:

$$a \cdot b = b \cdot a,$$
 (4)

$$((a \cdot a) \cdot b) \cdot a = (a \cdot a) \cdot (b \cdot a).$$
(5)

- An algebra over a field of characteristic not 2 whose product satisfies
 (4) and (5) is called a *linear Jordan algebra*.
- $\mathcal{H}(A, *)$ is a Jordan subalgebra of A^+ the Jordan structure on an associative algebra given by $a \cdot b = \frac{1}{2}a \circ b$.

Quadratic Jordan Algebras

- In a linear Jordan algebra, consider $U_a b := 2a \cdot (a \cdot b) a^{\cdot 2} \cdot b$.
- In A^+ , $U_ab = \frac{1}{2}(aab + aba + aba + baa) \frac{1}{2}(a^2b + ba^2) = aba$.
- Consider $U_{a,c} := U_{a+c} U_a U_c$.
- In A^+ , $U_{a,c}b = abc + cba$.
- $V_{a,b}c := U_{a,c}b := \{abc\}.$

Quadratic Jordan Algebras

Definition (Quadratic Jordan Algebra)

A unital quadratic Jordan algebra *J* over a field *F* is an *F*-vector space *J*, a unit element 1_{*J*} ∈ *J* and a quadratic map U of *J* into End_{*F*}*J* satisfying

$$U_1 = I_{\mathcal{T}},\tag{6}$$

$$U_{U_ab} = U_a U_b U_a, \tag{7}$$

$$U_{a}V_{b,a} = V_{a,b}U_{a}, \tag{8}$$

and (6), (7) and (8) remain valid under field extensions,

- where $U_{a,b} := U_{a+b} U_a U_b$, $V_{a,b}c := U_{a,c}b = \{abc\}$.
- Equation (7) is sometimes refered to as the fundamental formula.

Powers

- Let $V_a := U_{a,1}$. In A^+ , $U_{a,1}b = ab1 + ba1 = a \circ b$.
- If $\frac{1}{2} \in F$, one checks the $a \cdot b := \frac{1}{2} V_a b$ defines a linear Jordan algebra structure on \mathcal{J} .
- Powers are defined inductively: $a^0 = 1_{\mathcal{J}}$, $a^1 = a$, $a^{n+2} = U_a a^n$. Writing $b^2 = U_b 1$, we have $U_{b^2} = U_{U_b 1} = U_b U_1 U_b = U_b^2$.

Special Jordan Algebras

Example (A^+)

• Let A/F be a unital associative an algebra over a field F and $U_a x := axa$. $U_{1_A} = I_{\mathcal{J}}$.

•
$$U_{U_ab}x = abaxaba = U_a U_b U_a x$$
.

- $U_a V_{b,a} x = abaxa + axaba = V_{a,b} U_a x$.
- Denote also by A^+ the quadratic Jordan algebra structure on A.

Hermitian Algebras

Definition (Special Jordan Algebras)

- A quadratic Jordan algebra is *special* if it can be embedded in an A^+ , otherwise we say it is *exceptional*.
- If (A, *) is an associative algebra with involution then the *Hermitian* Jordan algebra $\mathcal{H}(A, *)$ is a subalgebra of A^+ and hence special.
- Let $B = A \oplus A^{\text{op}}$, * the exchange involution $(a, b)^* = (b, a)$. Then $\mathcal{H}(B, *) \cong A^+$, which is therefore a Hermitian Jordan algebra.
- Let D be an associative division algebra with involution ¬, V a left D vector space and h: V → D a non-degenerate hermitian form on V, i.e., for d ∈ D, u, v ∈ V, h(du, v) = dh(u, v), h(u, dv) = h(u, v)d, h(v, u) = h(u, v). The form h induces an involution * on End_D(V): h(uM, v) = h(u, vM*), ∀u, v ∈ V, M ∈ End_D(V). The involutions ¬ and * allow us to define a right vector space structure on V and a left action of End_D(V) on V.

In Matrix Form

- Assume \mathcal{D} is a quaternion algebra and $\bar{}$ the standard involution.
- If V is of dimension n we may assume that with respect to a suitable basis {v₁, v₂,..., v_n} the matrix of h is diagonal say diag(γ₁, γ₂,..., γ_n), γ_i ∈ F[×]. Then with respect to this basis, H(End_D(V),*) are matrices ∑ⁿ_{i=1} α_i[ii] + ∑ⁿ_{1=i<j} γ_iγ_j⁻¹a_{ij}[ij] + γ_jγ_i⁻¹ā_{ij}[ji], α_i ∈ F, a_{ij} ∈ D. (this is not quite right in characteristic 2).
- For example, if n = 3 we have $\begin{bmatrix} \alpha_1 & a_{12} & a_{13} \\ \gamma_2 \gamma_1^{-1} \overline{a_{12}} & \alpha_2 & a_{23} \\ \gamma_3 \gamma_1^{-1} \overline{a_{13}} & \gamma_3 \gamma_2^{-1} \overline{a_{23}} & \alpha_3 \end{bmatrix}$.

Jordan Algebras of a Quadratic Form

Let V/F be a vector space, Q a quadratic form on V with *base point* $c \in V$, i.e., $Q(c) = 1_F$. Let

$$egin{aligned} \mathcal{T}(v) &:= \mathfrak{b}_Q(x,c), \ ar{v} &:= \mathcal{T}(v)c - v, \ U_ab &:= \mathfrak{b}_Q(a,ar{b})a - Q(a)ar{b} \end{aligned}$$

• This yields a quadratic Jordan algebra J(V, Q, c) with $1_J = c$, the quadratic Jordan algebra of the quadratic form Q with base point c.

•
$$a^2 = \mathrm{U}_a \mathbb{1}_J = \mathfrak{b}_Q(a, \mathbb{1}_J)a - Q(a)\mathbb{1}_J$$
 or

•
$$a^2 - T(a)a + Q(a)1_J = 0$$
, where the trace $T(a) = \mathfrak{b}_Q(a, 1_J)$.

• $a \circ b - T(a)b - T(b)a + \mathfrak{b}_Q(a,b)\mathbf{1}_J = 0.$

The Clifford Algebra of (V, Q, c)

Definition (Clifford Algebra of (V, Q, c))

Let $\mathcal{T}(V)$ be the tensor algebra of V and \mathcal{I} the ideal of $\mathcal{T}(V)$ generated by $c - 1_{\mathcal{T}}$, $v \otimes v - \mathcal{T}(v)v + Q(v)c$. The *Clifford algebra* of (V, Q, c), $\mathcal{C}(V, Q, c) = \mathcal{T}(V)/\mathcal{I}$. V embeds as a vector space in $\mathcal{C}(V, Q, c)$.

• In
$$\mathcal{C}(V, Q, c)$$
, for $a, b \in V$,

$$\begin{aligned} aba &= -baa + T(a)ba + T(b)a^2 - \mathfrak{b}_Q(a, b)a \\ &= -b(a^2 - T(a)a) + T(b)(T(a)a - Q(a)1) - \mathfrak{b}_Q(a, b)a \\ &= Q(a)b + T(a)T(b)a - Q(a)T(b)1 - \mathfrak{b}_Q(a, b)a \\ &= \mathfrak{b}_Q(a, T(b)1 - b)a - Q(a)(T(b)1 - b) \\ &= \mathfrak{b}_Q(a, \bar{b})a - Q(a)\bar{b}. \end{aligned}$$

J(V,Q,c)

Proposition

The quadratic Jordan algebra J(V, Q, c) is special.

•
$$T(1_J) = 2$$
, $\overline{\overline{a}} = a$.

• For
$$a \in V \subset \mathcal{C}(V, Q, c)$$
, $a\overline{a} = a(T(a)c - a) = T(a)a - a^2 = Q(a)1_{\mathcal{C}}$.

• If
$$Q(a) = 0$$
 then $a\overline{a} = 0$.

• If $Q(a) \neq 0$ then $Q(a)^{-1}\overline{a} = a^{-1}$ and a is invertible in C iff $Q(a) \neq 0$.

Jordan Division Algebras

- An element $a \in \mathcal{J}$ is *invertible* with inverse b if $U_a b = a$ and $U_a b^2 = 1_{\mathcal{J}}$.
- If $\mathcal{J} = A^+$ then $ab^2a = 1$ implies a is invertible in A and $b = a^{-1}abaa^{-1} = a^{-1}aa^{-1} = a^{-1}$.

Lemma

The element $a \in \mathcal{J}$ is invertible if and only if U_a is invertible in $\operatorname{End}_F \mathcal{J}$. In that case $(U_a)^{-1} = U_{a^{-1}}$.

- If $U_a b = a$ and $U_a b^2 = 1_{\mathcal{J}}$ then $U_{U_a b} = U_a$ or $U_a U_b U_a = U_a$.
- Similarly $U_a U_b^2 U_a = I_J$. So U_a is invertible in $End_F J$.

Definition (Jordan Division Algebra)

A Jordan algebra $\mathcal J$ is a *division algebra* if every $0 \neq a \in \mathcal J$ is invertible.

Examples of Jordan Division Algebras

Example (J(V, Q, c))

J(V, Q, c) is a Jordan division algebra if and only if Q is anisotropic.

Example (A^+)

 A^+ is a Jordan division algebra if and only if A is division algebra.

Example $(\mathcal{H}(A, *))$

If A is a simple associative algebra and * an involution of A then $\mathcal{H}(A, *)$ is a Jordan division algebra if and only if A is division algebra.

Matrix Units

- The associative algebra A = M_n(D), D a division algebra, contains matrix units {e_{ij}, 1 ≤ i, j ≤ n}.
- Conversely if an associative algebra A contains a set of matrix units $\{e_{ij}, 1 \leq i, j \leq n\}$ such that $\sum e_{ii} = 1$ and $e_{ij}e_{k\ell} = \delta_{jk}e_{i\ell}$ then $A \cong \mathcal{M}_n(\mathcal{D})$, where \mathcal{D} is the centralizer in A of the e_{ij} . If A is simple then \mathcal{D} is a division algebra.

Idempotents in Jordan Algebras

- $e \neq 0 \in \mathcal{J}$ is an *idempotent* if $e^2 = e$ (recall $e^2 = U_e 1_\mathcal{J}$).
- Two idempotents e, f are orthogonal if e ∘ f = 0. One can show this implies U_ef = U_fe = 0.
- If e ∈ J then f = 1_J e is an idempotent orthogonal to e and J = U_eJ ⊕ U_{e,f}J ⊕ U_fJ. We write this J₂(e) ⊕ J₁(e) ⊕ J₀(e). This is the Peirce decomposition of J with respect to e. If the characteristic is not 2, J_i(e) = {a ∈ J | V_ea = ia}.
- If $(U_e \mathcal{J}, U, e)$ is a Jordan division algebra we say that *e* is a *division idempotent*.
- Two orthogonal idempotents e_1 , $e_2 \in \mathcal{J}$ are *connected* if there exists an element $u_{12} \in U_{e_1,e_2}\mathcal{J}$ which is invertible in the Jordan algebra $U_e\mathcal{J}$, where $e = e_1 + e_2$.
- A set of pairwise orthogonal idempotents $\{e_1, e_2, \dots, e_n\}$ is supplementary if their sum $e_1 + e_2 + \dots + e_n = 1_J$.

Jordan Matrix Algebras

- Let D be a unital algebra with involution ⁻ and Γ a subspace of H(D, ⁻), containing all norms aā, a ∈ D. In particular 1_D ∈ Γ.
- Since traces a + ā ∈ Γ, if ½ ∈ F then H(D.¬) = Γ. In characteristic 2, we can have H(D.¬) ≠ Γ.
- Let $*: \mathcal{M}_n(\mathcal{D}) \to \mathcal{M}_n(\mathcal{D})$ given by $\mathcal{M}^* = \operatorname{diag}(\gamma_1, \ldots, \gamma_n) \overline{\mathcal{M}}^t \operatorname{diag}(\gamma_1^{-1}, \ldots, \gamma_n^{-1})$ and $\mathcal{H}(\mathcal{M}_n(\mathcal{D}), \Gamma, *)$ the matrices of $\mathcal{H}(\mathcal{M}_n(\mathcal{D}), *)$ having elements of Γ along the diagonal.

Coordinatization Theorem

The *nucleus* of an algebra A is the set $\{z \in a \mid [z, a, b] = [a, z, b] = [a, b, z] = 0 \ \forall a, b \in A\}.$

Coordinatization Theorem

Any unital Jordan algebra \mathcal{J}/F containing a set of $n \geq 3$ supplementary orthogonal connected idempotents is isomorphic to an algebra $\mathcal{H}(\mathcal{M}_n(\mathcal{D}), \Gamma, *)$, where \mathcal{D} is an alternative algebra with involution ⁻ satisfying $\mathcal{H}(\mathcal{D}, \bar{})$ is contained in the nucleus of \mathcal{D} . If $n \geq 4$ then \mathcal{D} must be associative.

Nondegenerate Jordan Algebras

Definition (Nondegenerate Jordan Algebra)

An element $z \neq 0 \in \mathcal{J}$ is an *absolute zero divisor* if $U_z = 0$. A Jordan algebra \mathcal{J} is *nondegenerate* if it has no absolute zero divisor.

Definition (Capacity)

A Jordan algebra \mathcal{J} has capacity *n* if $1_{\mathcal{J}} = e_1 + \cdots + e_n$, e_i mutually orthogonal division idempotents.

Structure Theorem

Structure Theorem

Any simple nondegenerate unital Jordan algebra \mathcal{J}/F with a capacity is isomorphic to

1) a Jordan division algebra,

2) J(V, Q, c) the Jordan algebra of a regular quadratic form,

3) $\mathcal{H}(\mathcal{M}_n(\mathcal{D}), \Gamma, *)$, \mathcal{D} an associative division algebra with involution, or the sum of two copies of an associative division algebra with the exchange involution,

4) $\mathcal{H}(\mathcal{M}_3(C), *)$, C an octonion algebra.

Algebras in 2), 3) are special; 4) are exceptional and (up to now) 1) is a ?. Stated this way the classes are not exclusive e.g. J(V, Q, c) is a division algebra if Q is anisotropic.

Algebras of Degree 3

Example

Let $A = \mathcal{M}_3(F)$. Any $a \in A$ satisfies the characteristic polynomial

$$x^{3} - T(x)x^{2} + S(x)x - N(x)1_{A}$$

where the trace *T* is a linear form, *S* a quadratic form, sometimes called the quadratic trace, and the determinant *N* is a cubic form. If $a^{\#}$ is the classical adjoint then $aa^{\#} = N(a)1_A = a^{\#}a$ and $(a^{\#})^{\#} = N(a)a$. $T(1_A) = 3$, $a^{\#} = a^2 - T(a)a + S(a)1_A$, $S(a) = T(a^{\#})$.

Cubic Forms

- A cubic form is a map f : V → F such that f(αv) = α³f(v)
 ∀α ∈ F, v ∈ V and for which this remains true for all field extensions.
- Over $F(\omega_1, \omega_2, ...)$ the rational field extension over the indeterminates ω_i , $f(\sum \omega_i v_i) = \sum \omega_i^3 f(v_i) + \sum_{i \neq j} \omega_i^2 \omega_j f(v_i; v_j) + \sum_{i \neq j \neq k} \omega_i \omega_j \omega_k f(v_i; v_j; v_k)$, where f(x; y) is quadratic in x and linear in y and f(x, y, z) is symmetric and trilinear.

Cubic Norm Structure

Definition (Cubic Norm Structure)

A cubic norm structure consists of a vector space V/F containing a base point $1 = 1_V \in V$ together with a quadratic map $\# : V \to V$, $v \mapsto v^{\#}$ the *adjoint* and a cubic form $N : V \to F$, the *norm*, satisfying for all a, $b \in V$ and all field extensions

$$N(1) = 1, 1^{\#} = 1, (9) (a^{\#})^{\#} = N(a)a, (10) N(a; b) = T(a^{\#}, b), (11) 1 \times a = T(a)1 = a (12)$$

Cubic Norm Structure

where

$$T(a) := N(1; a),$$
 (13)

$$T(a,b) := T(a)T(b) - N(1,a,b),$$
(14)
$$a \times b := (a+b)^{\#} - a^{\#} - b^{\#}.$$
(15)

The Jordan Algebra of a Cubic Norm Structure

Theorem

Given a cubic norm structure (V, N, #, 1), the following U operator $U_ab := T(a, b)a - a^{\#} \times b$ defines a unital quadratic Jordan algebra structure on V, J(V, N, #, 1)the Jordan algebra of the cubic norm structure. For all $a \in J(V, N, \#, 1)$,

$$a^{3} - T(a)a^{2} + S(a)a + N(a)1 = 0,$$

where the quadratic form $S(a) := T(a^{\#})$, $x^{\#} = x^2 - T(x)x + S(x)1$. N allows Jordan composition $N(U_x y) = N(x)^2 N(y)$. $x \in J$ is invertible if and only if $N(x) \neq 0$ in which case $x^{-1} = N(x)^{-1}x^{\#}$.

Examples

Example $(\mathcal{M}_3(F))$

 $N(a) = \det(a), \#$ is the classical adjoint and 1 = I. One can check that the above definition yields $\mathcal{M}_3(F)^+$. But $\mathcal{M}_3(F)^+ \cong \mathcal{H}(\mathcal{M}_3(F \oplus F), *)$, where $b^* := \bar{b}^t$, \bar{b} the exchange involution of $F \oplus F$ and t the transpose.

Example $(F \oplus J(V, Q, c))$

Let $X = F \oplus J(V, Q, c)$, J(V, Q, c), the Jordan algebra of a quadratic form with base point. Let the base point $1_X = 1_F \oplus c$, the adjoint $(\alpha \oplus v)^{\#} := Q(v) \oplus \alpha \bar{v}$ and the norm $N_x(\alpha \oplus v) := \alpha Q(v)$.

Examples

Example $(\mathcal{H}_3(C, J_\gamma))$

Consider
$$\begin{bmatrix} \alpha_1 & \gamma_2 a_3 & \gamma_3 \overline{a_2} \\ \gamma_1 \overline{a_3} & \alpha_2 & \gamma_3 a_1 \\ \gamma_1 a_2 & \gamma_2 \overline{a_1} & \alpha_3 \end{bmatrix}$$
, $\alpha_i \in F$, $a_i \in C$ and $\gamma_i \in F^{\times}$. Denoting

 $\gamma_k a_i e_{jk} + \gamma_j \overline{a_i} e_{kj}$ by $a_i[jk]$, we can write the above matrix $\sum_{(123)} (\alpha_i e_{ii} + a_i[jk])$, where the sum $\sum_{(123)}$ is over cyclic permutations of $\{1, 2, 3\}$.

$$\mathcal{H}_3(C, J_\gamma)$$

Theorem

Let C be a composition algebra. Denote by $\mathcal{H}(C_3, J_{\gamma})$ the matrices of the form $\sum \alpha_i e_{ii} + \sum_{(123)} a_i[jk]$, $\alpha_i \in F$, $a_i \in C$. Then the unit element, cubic form and adjoint

$$1 = e_{11} + e_{22} + e_{33},$$

$$N(x) := \alpha_1 \alpha_2 \alpha_3 - \sum_{(123)} \alpha_i \gamma_j \gamma_k n(a_i) - \gamma_1 \gamma_2 \gamma_3 t(a_1 a_2 a_3)$$

$$x^{\#} := \sum_{(123)} ((\alpha_j \alpha_k - \gamma_j \gamma_k n(a_i))e_{ii} + (\gamma_i \overline{a_j a_k} - \alpha_i a_i)[jk])$$

define a cubic norm structure on $\mathcal{H}_3(C, J_\gamma)$. The Jordan algebras obtained from this cubic norm structure are simple.

$\mathcal{H}_3(C, J_\gamma)$

- The quadratic trace $S(x) = T(x^{\#}) = \sum_{(123)} ((\alpha_j \alpha_k \gamma_j \gamma_k n(a_i)))$.
- The trace bilinear form $T(x, y) = \sum_{(123)} (\alpha_i \beta_i + \gamma_j \gamma_k \mathfrak{b}_n(a_i, b_i))$, where $y = \sum_{(123)} (\beta_i e_{ii} + b_i [jk])$.
- If C is associative, the above Jordan algebra structure coincides with that induced by C_3^+ .
- The involution J_γ is induced by the hermitian form diag(γ₁, γ₂, γ₃). Multiplying this form by a non-zero scalar yields a form which induces the same involution. In fact, replacing each γ_i by μ_i²γ_i, μ_i ∈ F[×], yields an isomorphic algebra. The same holds when C is an octonion algebra!

Albert Algebras

Theorem

If C is an octonion algebra then $\mathcal{H}(C_3, J_\gamma)$ is exceptional. In fact it is not even a homomorphic image of a special algebra.

Definition (Albert Algebra)

An Albert algebra is an algebra J(V, N, #, 1) of dimension 27. A Jordan algebra is *reduced* if it contains a proper idempotent.

Theorem

A reduced Albert algebra is isomorphic to $\mathcal{H}(C_3, J_{\gamma})$, C an octonion algebra.

Isomorphism of Reduced Albert Algebras

Theorem

Two reduced Albert algebras $\mathcal{H}(C_3, J_\gamma) \cong \mathcal{H}(C'_3, J'_\gamma)$, C and C' octonion algebras, if and only if $C \cong C'$ and their quadratic traces are equivalent.

Example $(\mathcal{H}_3(\mathbb{O}, J_\gamma))$

Let \mathbb{O} be Cayley-Graves numbers (unique division octonion algebra over the reals \mathbb{R}). $\mathcal{H}(\mathbb{O}_3, J_{\{1,1,1\}}) \ncong \mathcal{H}(\mathbb{O}_3, J_{\{1,1,-1\}})$. Moreover if *C* is the split octonion algebra, $\mathcal{H}(C_3, J_{\{1,1,1\}})$ is not isomorphic to the previous 2. One can show that these are exactly the three non isomorphic Albert algebras over the reals \mathbb{R} .

An Albert algebra is said to be *split* if it is reduced and its coefficient octonion algebra is split.

First Tits Construction

- Let A/F be a central simple associative algebra of degree 3. Every $a \in A$ satisfies the reduced characteristic polynomial $a^3 T_A(a)a^2 + S_A(a)a N_A(a)1_A$. N_A the reduced norm, T_A the reduced trace. For $a \in A$, define $a^{\#} := a^2 T_A(a)a + S_A(a)1_A$.
- Let µ ∈ F[×], V = A ⊕ A ⊕ A and x = (a₀, a₁, a₂) ∈ V. Then the unit element, cubic form and adjoint

$$egin{aligned} &1:=(1,0,0),\ &\mathcal{N}(x):=\mathcal{N}_{A}(a_{0})+\mu\mathcal{N}_{A}(a_{1})+\mu^{-1}\mathcal{N}_{A}(a_{2})-\mathcal{T}_{A}(a_{0}a_{1}a_{2}),\ &x^{\#}:=(a_{0}\#-\mu a_{1}a_{2},\ \mu a_{2}^{\#}-a_{0}a_{1},\ \mu^{-1}a_{1}^{\#}-a_{2}a_{0}) \end{aligned}$$

define a cubic norm structure on V. We denote the corresponding Jordan algebra by $J(A, \mu)$. This is the *First Tits Construction*.

First Tits Construction

Theorem

The Jordan algebra $J(A, \mu)$ is an Albert algebra. It is a division algebra if and only if $\mu \notin N_A(A^{\times})$. A^+ is isomorphic to the subalgebra (A, 0) of $J(A, \mu)$. Conversely if an Albert algebra \mathcal{A} contains a subalgebra isomorphic to A^+ then \mathcal{A} is isomorphic to $J(A, \mu)$ for a suitably chosen μ .

Second Tits Construction

- Let B/E be a central simple associative algebra of degree 3. Assume B has an involution of the second kind such that C(B, *) = F, E/F a separable field extension.
- Let u ∈ H(B,*) and β ∈ E[×] such that N_B(u) = ββ^{*},
 V = H(B,*) ⊕ B and x = (a, b) ∈ V. Then the unit element, cubic form and adjoint

$$\begin{split} &1:=(1,0),\\ &N(x):=N_B(a)+\beta N_B(b)+\beta^*N_B(b)^*-T_B(a,bub^*),\\ &x^\#:=(a_0^\#-bub^*,\ \beta^*(b^*)^\#u^{-1}-ab) \end{split}$$

define a cubic norm structure on V. We denote the corresponding Jordan algebra by $J(B, *, u, \beta)$. This is the Second Tits Construction.

Second Tits Construction

Theorem

The Jordan algebra $J(B, *, u, \beta)$ is an Albert algebra. It is a division algebra if and only if $\beta \notin N_B(B^{\times})$. $\mathcal{H}(B, *)$ is isomorphic to the subalgebra $(\mathcal{H}(B, *), 0)$ of $J(B, *, u, \beta)$. Conversely if an Albert algebra \mathcal{A} contains a subalgebra isomorphic to $\mathcal{H}(B, *)$ then \mathcal{A} is isomorphic to $J(B, *, u, \beta)$ for suitably chosen u and β .

Albert Algebras

Theorem

Albert algebras coincide with simple exceptional Jordan algebras. The two Tits Constructions yield all Albert algebras.

Using $A^+ \cong \mathcal{H}(A \oplus A^{op}, *)$, * the exchange involution, it is easy to subsume the First Tits construction into a generalized Second Tits construction.

The Automorphism Group

Definition (Automorphism)

A map $\eta \in \operatorname{GL}(\mathcal{J})$ is an *automorphism* of \mathcal{J} if $\eta(1) = 1$ and $\eta U_a = U_{\eta(a)}\eta$.

The second condition says $\eta(U_a b) = U_{\eta(a)}\eta(b)$.

Definition (Derivation)

A map $D \in \operatorname{End}_{F}(\mathcal{J})$ is a *derivation* of \mathcal{J} if D(1) = 0 and $[D, U_{a}] = U_{a,Da}$.

The second condition says $DU_ab = U_{a,Da}b + U_aDb$. If D is a derivation of an associative algebra A, $D(U_ab) = D(aba) = (Da)ba + a(Db)a + ab(Da) = (U_{a,Da} + U_aD)b$.

The Derivation Algebra of the Split Albert Algebra

- Recall $V_{a,b}c = U_{a,c}b$. One checks that for any Jordan algebra \mathcal{J} , $D_{a,b} := V_{a,b} V_{b,a}$, $a, b \in \mathcal{J}$, is a derivation, a standard derivation.
- In A^+ , $D_{a,b}c = [[a, b], c]$.
- If D ∈ Der(J) then [D, D_{a,b}] = D_{Da,b} + D_{a,Db}. Thus the standard derivations span an ideal of Der(J).
- Let J = H₃(C) = H₃(C, J_{1,1,1}) the split Albert algebra (i.e., C the split octonions), Der(J) its derivation algebra and Der(J)₀ the derivations which send e_i to 0, i = 1, 2, 3. Der(J)₀ is a subalgebra of Der(J) which fixes the Peirce spaces U_{e_i,e_k}J = {a_i[jk] | a_i ∈ C}.

The Derivation Algebra of the Split Albert Algebra

- For $D \in Der(J)_0$, denote D_i the restriction of D to $U_{e_i,e_k}J$.
- Each D_i is skew with respect to \mathfrak{b}_n (i.e., $\in D_4$) and satisfies $D_i(ab) = (D_j a)b + a(D_k b)$ (local triality). Recall D_1 determines D_2 and D_3 uniquely.
- Applying the automorphisms of D_4 , ϕ_2 and ϕ_3 , to $D_1(ab) = (D_2a)b + a(D_3b)$ yield the other two equations obtained by permuting (123) cyclically.
- The converse holds, namely, given E in the split Lie algebra of type D_4 , triality provides an action of E on the spaces $U_{e_j,e_k}J$ and one checks that this yields an element of $Der(J)_0$.

The Derivation Algebra of the Split Albert Algebra

- For $D \in Der(J)$, $De_1 = a[12] + b[31]$, $De_2 = -a[12] + c[23]$ and $De_3 = -b[31] c[23]$ for some $a, b, c \in C$, since D1 = 0.
- One checks that $D + D_{e_1,a[12]+b[31]} + D_{e_2,c[23]} \in \operatorname{Der}(J)_0.$
- The dimension of Der(J) is 28 + 8 + 8 + 8 = 52.

Theorem

If the characteristic of F is not 2, the Lie algebra of derivations of a split Albert algebra is simple. It is a split Lie algebra of type F_4 . Since the span of the standard derivations is an ideal, they span the Lie algebra of derivations of a split Albert algebra. In characteristic 2, the derivation algebra contains an ideal of dimension 26.

Isotopes

- Let u be an invertible element of an associative algebra A and A^(u) be the associative algebra having the same vector space structure as A and product a_ub := aub. The u-isotope A^(u) is a unital associative algebra with unit u⁻¹.
- Consider the map $L_u : A \to A$, $L_u a := ua$. $L_u u^{-1} = 1_A$, $L_u(a_u b) = uaub = L_u a L_u b$. So $A^{(u)} \cong A$.
- Let (A, *) be an associative algebra with involution. If $u \in \mathcal{H}(a, *)$ is invertible, it determines another involution of A, $a^{*u} := ua^*u^{-1}$. One checks that $\mathcal{H}(A, *_u) = u\mathcal{H}(A, *) = L_u\mathcal{H}(A, *)$.
- In $A^{(u)}$ the U operator $U_a^{(u)}b = aubua$ which corresponds to U_aU_ub .

Isotopes of Jordan Algebras

- Let u be an invertible element of a Jordan algebra J and J^(u) be the Jordan algebra having the same vector space structure as J and U operator U^(u)_a := U_aU_u. The u-isotope J^(u) is a unital Jordan algebra with unit u⁻¹.
- If \mathcal{J}_i , i = 1, 2 are Jordan algebras such that $\mathcal{J}_2 \cong \mathcal{J}_1^{(u)}$ we say that they are *isotopic*.

Example

If $\mathcal{J} = \mathcal{H}(A, *)$ then $\mathcal{J}^{(u)} \cong \mathcal{H}(A, *_u)$, $x^{*_u} = u^{-1}x^*u$. They are not in general isomorphic.

Isotopes of Jordan Algebras

Example

If $u \in J(V, N, \#, 1)^{\times}$ let

$$1^{(u)} = u^{-1},$$

$$x^{\#^{(u)}} := N(u)^{-1} U_{u^{-1}} x^{\#},$$

$$N^{(u)}(x) := N(u) N(x).$$

The above defines a Norm Structure and $J(V, N^{(u)}, \#^{(u)}, 1^{(u)}) = J(V, N, \#, 1)^{(u)}$.

The Structure Group

Definition (Structure Group)

Let \mathcal{J}/F be a Jordan algebra. The following are equivalent for all $\eta \in \operatorname{GL}(\mathcal{J})$:

- i) η is an isomorphism of $\mathcal J$ onto $\mathcal J^{(u)}$, for some $u \in \mathcal J^{\times}$,
- ii) There exists an $\eta^{\#} \in \operatorname{GL}(\mathcal{J})$ such that $\operatorname{U}_{\eta(x)} = \eta \operatorname{U}_{x} \eta^{\#}$ for all $x \in \mathcal{J}$.

The elements of $GL(\mathcal{J})$ which satisfy one and hence both of these conditions form a group the *structure group* denoted $Str(\mathcal{J})$. By the fundamental formula U_x , $x \in \mathcal{J}^{\times}$ belong to $Str(\mathcal{J})$. They generate a subgroup, the *inner structure group* $Instr(\mathcal{J})$.

The Structure Group

One can show that $\eta^{\#} = \eta^{-1} U_{\eta(1)}$. The inner structure group is a normal subgroup of the structure group $\text{Instr}(\mathcal{J}) \triangleleft \text{Str}(\mathcal{J})$. The automorphism group $\text{Aut}(\mathcal{J})$ is a subgroup of $\text{Str}(\mathcal{J})$, $\text{Aut}(\mathcal{J}) = \{\eta \in \text{Str}(\mathcal{J}) \mid \eta(1) = 1\}$. The inner automorphism group $\text{Inaut}(\mathcal{J}) = \text{Instr}(\mathcal{J}) \cap \text{Aut}(\mathcal{J}) = \{U_{a_1} U_{a_2} \cdots U_{a_\ell} \mid a_i \in \mathcal{J}^{\times}, U_{a_1} U_{a_2} \cdots U_{a_\ell} 1 = 1\}.$

Theorem

If \mathcal{J} is an Albert algebra, $Str(\mathcal{J}) = Instr(\mathcal{J})$ is the norm preserving group and is of type E_6 .

Structure Lie Algebras

Definition (Structure Lie algebra)

Let \mathcal{J} be a Jordan algebra. The *structure Lie algebra* $str(\mathcal{J}) = \{H \in End_{\mathcal{F}}(\mathcal{J}) \mid U_{a,Ha} = HU_{a} - U_{a}\overline{H}\}, \text{ where } \overline{H} = H - V_{H1}.$

- The structure Lie algebra is the Lie algebra of the structure group.
- The inner structure Lie algebra $instr(\mathcal{J}) = \{\sum V_{a_i,b_i} \mid a_i, b_i \in \mathcal{J}\}$ and the inner derivation algebra $inder(\mathcal{J}) = \{\sum V_{a_i,b_i} \mid a_i, b_i \in \mathcal{J}, \sum a_i \circ b_i = 0\}$. In particular, $V_{a,b} - V_{b,a}$ is an inner derivation.

The Structure Algebra of the Split Albert Algebra

Let J be an Albert algebra and J₀ the elements of trace 0. The inner structure Lie algebra instr(J) = V_J ⊕ DerJ. Its dimension of is 27 + 52 = 79.

Theorem

The derived algebra of the structure Lie algebra of a split Albert algebra is simple. It is a split Lie algebra of type E_6 . Since the span of the standard derivations is an ideal, they span the Lie algebra of derivations of a split Albert algebra.

The Tits Kantor Koecher Lie Algebra

Definition $(TKK(\mathcal{J}))$

The Tits Kantor Koecher Lie Algebra of a Jordan algebra \mathcal{J} , $TKK(\mathcal{J}) = \mathcal{J} \oplus \operatorname{str}(\mathcal{J}) \oplus \overline{\mathcal{J}}$, $\overline{\mathcal{J}}$ another copy of $\overline{\mathcal{J}}$, with product $[a_1 + H_1 + \overline{b_1}, a_2 + H_2 + \overline{b_2}] :=$ $(H_1a_2 - H_2a_1) + (V_{a_1,b_2} - V_{a_2,b_1} + [H_1, H_2]) + (\overline{\overline{H_1}b_2 - \overline{H_2}b_1}).$

If \mathcal{J} is a split Albert algebra then the dimension of $TKK(\mathcal{J}) = 27 + 27 + 52 + 27 = 133.$

Theorem

If \mathcal{J} is a split Albert algebra then $TKK(\mathcal{J})$ is a simple Lie algebra of type E₇.

A Construction of Freudenthal and Tits

- Let C be a composition algebra and J a Jordan algebra of a cubic norm over a field F of characteristic not 2 or 3, C₀, J₀ their elements of trace 0. For a, b ∈ C, and x, y ∈ J, a * b := ab ½t(ab)1_C and x * y := x ⋅ y ⅓T(x ⋅ y)1_J define products on C₀ and J₀ respectively.
- Take $\mathfrak{L}(\mathcal{C}, \mathcal{J}) = \operatorname{Der} \mathcal{C} \oplus \mathcal{C}_0 \otimes \mathcal{J}_0 \oplus \operatorname{Der} \mathcal{J}$. Der \mathcal{C} and Der \mathcal{J} are Lie algebras.
- We wish to define a product on £(C, J) to make it into a Lie algebra: For a, b ∈ C, and x, y ∈ J, D ∈ DerC, D' ∈ DerJ,

$$\begin{split} & [D, a \otimes x] := Da \otimes x, \\ & [D', a \otimes x] := a \otimes D'x, \\ & [a \otimes x, b \otimes y] := \frac{1}{12} T(x \cdot y) D_{a,b} + (a * b) \otimes (x * y) + \frac{1}{2} t(ab) D_{x,y}, \\ & [D, D'] := 0. \end{split}$$

Freudenthal Tits Magic Square

This product defines a Lie algebra structure on $\mathfrak{L}(C, \mathcal{J})$.

	F	$F \times F \times F$	$\mathcal{H}_3(F, \mathrm{J}_\gamma)$	$\mathcal{H}_3(E, \mathbf{J}_\gamma)$	$\mathcal{H}_3(\mathcal{Q},\mathrm{J}_\gamma)$	$\mathcal{H}_3(\mathcal{O}, J_\gamma)$
F		0	A ₁	A ₂	C ₃	F_4
Ε	0	A	A_2	$\mathrm{A}_2\oplus\mathrm{A}_2$	A_5	E_6
\mathcal{Q}	A ₁	$\mathrm{A}_1 \oplus \mathrm{A}_1 \oplus \mathrm{A}_1$	C_3	A_5	D_6	E_7
\mathcal{O}	G_2	D_4	F_4	E_6	E_7	E8

 \mathfrak{A} is an abelian Lie algebra of dimension 2. For a discussion of the real forms of exceptional Lie algebras, see [J1].

Cohomological Invariants

- Recall:
- Two composition algebras are isomorphic if and only if their norm forms are isometric.
- If F is of characteristic not 2, the norm form of an octonion algebra C is a Pfister form << λ₁, λ₂, λ₃ >>.

Theorem

Two reduced Albert algebras $\mathcal{J} = \mathcal{H}_3(C, J_\gamma)$ and $\mathcal{J}' = \mathcal{H}_3(C', J_{\gamma'})$ are isomorphic if and only if their coefficient algebras $C \cong C'$ and their quadratic traces are isometric.

Associated Quadratic Forms

• In other words, two reduced Albert algebras \mathcal{J} and \mathcal{J}' are isomorphic if and only if two associated quadratic forms n_C , $S_{\mathcal{J}}$ and $n_{C'}$, $S_{\mathcal{J}'}$ are isometric.

• For
$$\sum_{(123)} (\alpha_i e_{ii} + a_i[jk]) = \begin{bmatrix} \alpha_1 & \gamma_2 a_3 & \gamma_3 \overline{a_2} \\ \gamma_1 \overline{a_3} & \alpha_2 & \gamma_3 a_1 \\ \gamma_1 a_2 & \gamma_2 \overline{a_1} & \alpha_3 \end{bmatrix}$$
, the quadratic trace $S(x) = T(x^{\#}) = \sum_{(123)} ((\alpha_j \alpha_k - \gamma_j \gamma_k n(a_i)).$

• This is the form $[-1] \oplus \mathbf{h} \oplus \langle -1 \rangle . \langle \gamma_2 \gamma_3, \gamma_3 \gamma_1, \gamma_1 \gamma_2 \rangle \otimes n_C$, where [-1] is the one dimensional form $-\alpha^2$ and \mathbf{h} the hyperbolic plane. Writing $Q_{\mathcal{J}}$ for $\langle \gamma_2 \gamma_3, \gamma_3 \gamma_1, \gamma_1 \gamma_2 \rangle \otimes n_C$, we have $Q_{\mathcal{J}}$ determines $S_{\mathcal{J}}$ and vice versa.

The mod 2 Invariants

- Multiplying J_{γ} by γ_1^{-1} , we may assume $\gamma_1 = 1$ and $\langle \gamma_2 \gamma_3, \gamma_3 \gamma_1, \gamma_1 \gamma_2 \rangle = \langle \gamma_2 \gamma_3, \gamma_3, \gamma_2 \rangle$. In that case $n_C \oplus Q_{\mathcal{J}} = \langle -\gamma_2, -\gamma_3 \rangle > \otimes n_C$.
- To include characteristic 2, (following [EKM]) we would need to consider Pfister forms << α₁,..., α_n >> ⊗n_E, E a quadratic étale algebra
- The forms $\langle \alpha_1, \ldots, \alpha_n \rangle$ have cup product $(\alpha_1) \cup \cdots \cup (\alpha_n) \in H^n(F, \mathbb{Z}/2\mathbb{Z})$, the n^{th} cohomology group.
- We therefore have two so-called invariants mod 2:

$$f_3(\mathcal{J}) = (\lambda_1) \cup (\lambda_2) \cup (\lambda_3) \in H^3(F, \mathbb{Z}/2\mathbb{Z}) \text{ and } \\ f_5(\mathcal{J}) = f_3(\mathcal{J}) \cup (-\gamma_2) \cup (-\gamma_3) \in H^5(F, \mathbb{Z}/2\mathbb{Z}).$$

Reduced Albert Algebras

Theorem

The invariants $f_3(\mathcal{J})$ and $f_5(\mathcal{J})$ classify reduced Albert algebras.

- If \mathcal{J} is an Albert division algebra then $\mathcal{J}_E = \mathcal{J} \otimes_F E$ is a reduced Albert algebra for a suitable odd-degree reducing extension E/F. Since the two Pfister forms over E afforded by \mathcal{J}_E are obtained by tensoring Pfister forms over F, the invariants $f_3(\mathcal{J})$ and $f_5(\mathcal{J})$ are also defined for division Albert algebras.
- Note that $f_3(\mathcal{J}) = 0$ implies $f_5(\mathcal{J}) = 0$.

A mod 3 Invariant?

- If A/F is a central simple associative algebra, denote by [A] the class of A in the Brauer group; so [A] ∈ Br(F) = H²(F, F_s), F_s the separable closure of F.
- If A/F is of degree 3 then [A] ∈ ₃Br(F) ≅ H²(F, μ₃), μ₃ the cube roots of unity. For α ∈ F[×], denote by (α) the image of α in F[×]/F^{×3} ≅ H¹(F, μ₃). Since μ₃ ⊗ μ₃ is canonically isomorphic to Z/3Z, the cup product
 [A] ∪ (α) ∈ H²(F, μ₃) ∪ H¹(F, μ₃) ≅ H³(F, Z/3Z).

The mod 3 Invariant

Theorem

There is an invariant of the isomorphism class of an Albert algebra \mathcal{J}/F , $g_3(\mathcal{J}) \in H^3(F, \mathbb{Z}/3\mathbb{Z})$ which 1) is compatible with base change, i.e., $g_3(\mathcal{J} \otimes_F E) = res_{E/F}(g_3(\mathcal{J}))$, for any field extension E/F, for the restriction map $res_{E/F} : H^i(F, \mathbb{Z}/3\mathbb{Z}) \to H^i(E, \mathbb{Z}/3\mathbb{Z})$, 2) characterizes division algebras, i.e., \mathcal{J} is reduced if and only if $g_3(\mathcal{J}) = 0$, 3) satisfies $g_3(J(A, \alpha)) = [A] \cup (\alpha)$.

First Tits Algebras Containing a Copy of A^+

Theorem

The first Tits construction algebras $J(A, \alpha_1)$, $J(A, \alpha_2)$ are isomorphic if and only if $\alpha_1 = \alpha_2 N_A(u)$ for some $u \in A^{\times}$.

• If $\alpha_1 = \alpha_2 N_A(u)$ for $u \in A^{\times}$, it is not hard to show that $J(A, \alpha_1) \cong J(A, \alpha_2)$. If $J(A, \alpha_1) \cong J(A, \alpha_2)$ then $g_3(J(A, \alpha_1)) = g_3(J(A, \alpha_2))$ and $[A] \cup (\alpha_1) = [A] \cup (\alpha_2)$. Therefore $[A] \cup (\alpha_1) - [A] \cup (\alpha_2) = [A] \cup (\alpha_1 \alpha_2^{-1}) = 0$. So $J(A, \alpha_1 \alpha_2^{-1})$ is reduced and by the criterion for a first Tits construction to be a division algebra $\alpha_1 \alpha_2^{-1} \in N_A(A^{\times})$.

Second Tits Algebras Containing a Copy of $\mathcal{H}(B,*)$

Theorem

The second Tits construction algebras $J(B, *, u_1, \beta_1)$, $J(B, *, u_2, \beta_2)$ are isomorphic if and only if $u_2 = vu_1v^*$ and $\beta_2 = \beta_1N_B(v)$ for some $v \in B^{\times}$.

Let E/F be a separable field extension whose degree is not divisible by 3. By considering the restriction and corestriction maps, one sees that a non zero mod 3 invariant remains non trivial under that base change.

Theorem

If \mathcal{J}/F is a division Albert algebra and E/F is a separable field extension whose degree is not divisible by 3, then $\mathcal{J} \otimes_F E$ is a division algebra.

Realizing an Albert algebra \mathcal{J} as a generalized Second Tits construction and considering the corresponding quadratic forms $S_{\mathcal{J}}$ and $Q_{\mathcal{J}}$, one obtains the following

Theorem

If \mathcal{J}/F is a division Albert algebra then there exists a reduced Albert algebra $\mathcal{H}_3(C, J_\gamma)$ over F such that for any extension E/F that reduces $\mathcal{J}, \mathcal{J} \otimes_F E \cong \mathcal{H}_3(C, J_\gamma) \otimes_F E$. $\mathcal{H}_3(C, J_\gamma)$ is unique up to isomorphism and is called the *reduced model* of \mathcal{J} .

$f_3(\mathcal{J}) = 0$

A careful look at cubic subfields of first Tits algebras allows one to obtain

Theorem

If J/F is an Albert algebra, TFAE
1) J is a first Tits construction algebra,
2) The reduced model of J is split,
3) f₃(J) = 0.

Theorem

If \mathcal{J}/F is a first Tits construction algebra and \mathcal{J}' is isotopic to \mathcal{J} then \mathcal{J}' is isomorphic to \mathcal{J} .

Isotopy Invariants

Let \mathcal{J} be an Albert algebra. The definition of $f_5(\mathcal{J})$ shows that passing to an isotope may change f_5 . If \mathcal{J} is reduced then isotopes have isomorphic coefficient algebras. So f_3 will be the same for isotopes. If \mathcal{J} is a division algebra and E/F a cubic subfield of \mathcal{J} then $\mathcal{J} \otimes_F E$ is reduced and again f_3 is an isotopy invariant. By the previous Theorem, if \mathcal{J} is a first Tits algebra then all isotopes are isomorphic so g_3 is an isotopy invariant. If \mathcal{J} is not a first Tits algebra then tensoring with an appropriate quadratic extension yields a first Tits algebra.

Theorem

The invariants $f_3(\mathcal{J})$ and $g_3(\mathcal{J})$ are isotopy invariants.

Do the Invariants Determine an Albert Algebra?

- Do $f_3(\mathcal{J})$ and $g_3(\mathcal{J})$ determine \mathcal{J} up to isotopy?
- Do the invariants mod 2 and mod 3 classify Albert algebras up to isomorphism?

Theorem

Let \mathcal{J}/F and \mathcal{J}'/F be Albert algebras having the same mod 2 and mod 3 invariants. If F is of characteristic not 2 or 3 then there exists a finite extension E/F whose degree is not divisible by 3 and a finite extension K/F whose degree divides 3 such that $\mathcal{J} \otimes E \cong \mathcal{J}' \otimes E$ and $\mathcal{J} \otimes K \cong \mathcal{J}' \otimes K$.

REFERENCES

- [EKM] The Algebraic and Geometric Theory of Quadratic Forms, AMS, 2008, R. Elman, N. Karpenko, A. Merkurjev
- [J1] Exceptional Lie Algebras, Marcel Dekker, 1971, N. Jacobson
- [J2] Structure Theory of Jordan Algebras, University of Arkansas, 1981, N. Jacobson
- [KMR] The Book of Involutions, AMS, 1998, M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol
- [M] A Taste of Jordan Algebras, Springer Verlag, 2003, K. McCrimmon
- [P] Albert Algebra, Fields Institute, 2012, H. P. Petersson
- [SV] Octonions, Jordan Algebras and Exceptional Groups, Springer Verlag, 2000, T.A. Springer, F. D. Veldkamp.