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The setting:

inviscid incompressible fluid flow (Euler equations)

irrotational

with gravity

free boundary

no surface tension

periodic or nonperiodic setting

Questions:

Local well-posedness in optimal Sobolev spaces

Long time solutions

Goals:

To use Zakharov’s formulation of the equations in holomorphic
coordinates to provide a simpler approach to the local problem

To introduce a modified energy method which yields an easier
route to long time solutions
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The standard formulation

Fluid domain: Ω(t), free boundary Γ(t).
Velocity field u, pressure p, gravity g = −j.
Euler equations in Ω(t):

ut + u · ∇u = ∇p− j
div u = 0

curl u = 0

u(0, x) = u0(x)

Boundary conditions on Γt:{
∂t + u · ∇ is tangent to

⋃
Γt (kinematic)

p = 0 on Γt (dynamic)
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Velocity potential

u = ∇φ, ∆φ = 0 in Ωt

Dynamic boundary condition:

φt +
1

2
|∇φ|2 + y = 0 on Γt

Holomorphic coordinates:

Z : {=z ≤ 0} → Ωt, Z(α+ iβ)− (α+ iβ)→ 0 at infinity

Holomorphic velocity potential:

Q = φ+ iψ
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Zakharov’s equations

P - Projection onto negative (or positive) wavenumbers

α - holomorphic parameter for free surface

Z - free surface parametrization

Q - Velocity complex potential


Zt + FZα = 0,

Qt + FQα − i(Z − α) + P

[
|Qα|2

J

]
= 0,

where

F = P

[
Qα − Q̄α

J

]
, J = |Zα|2.

Boundary condition at infinity:

Z(α)− α→ 0 (nonperiodic) (Z(α)− α)avg = 0 (periodic)
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Equations for (W = Z − α,Q)


Wt + F (1 +Wα) = 0,

Qt + FQα − iW + P

[
|Qα|2

J

]
= 0.

where

F = P

[
Qα − Q̄α

J

]
, J = |1 +Wα|2.

Conserved energy (Hamiltonian):

E(W,Q) =

∫
1

2
|W |2 +

1

2i
(QQ̄α − Q̄Qα)− 1

4
(W̄ 2Wα +W 2W̄α) dα

Symmetries:

Translations in α and t.

Scaling (W (t, α), Q(t, α))→ (λ−2W (λt, λ2α), λ−3Q(λt, λ2α))
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Physical parameters

R =
Qα

1 +Wα
- velocity field on the free boundary

b = 2<P
[

R

1 + W̄α

]
- advection coefficient

a = 2=P [RR̄α] - normal derivative of the pressure (1 + a)

Alternate system for (W = Wα, R):
(∂t +Mb∂α)W + P

[
1 + W

1 + W̄
Rα

]
= G(W, R)

(∂t + Tb∂α)R− iP
[

(1 + a)W

1 + W

]
= K(W, R)

(0.1)

where

G = (1 + W)P

[
R̄α

1 + W
+

RW̄α

(1 + W̄)2

]
+ [P,W]

(
Rα

1 + W
+

R̄Wα

(1 + W)2

)
K = − P

[
RR̄α

]
represent perturbative terms in the equation.
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Local wellposedness

Energy space: (W,Q) ∈ H0 = (L2 × Ḣ
1
2 ).

Higher regularity Ḣk: (W (k), R(k−1)) ∈ H0.

Theorem

The two dimensional water wave equation is locally well-posed in
Ḣ1 ∩ Ḣ2.

Prior work by

Wu (Lagrangian coordinates)

Alazard-Burq-Zuily (Eulerian coordinates)

Main ideas:

Energy estimates for solutions and their derivatives

Energy estimates for the linearized equation
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The linearized equation
In linearized variables (w, q): non-diagonal degenerate first order
hyperbolic system. Better, use diagonalized variables (w, r = q −Rw):

(∂t +Mb∂α)w + P

[
1

1 + W̄α
rα

]
+ P

[
Rα

1 + W̄α
w

]
= G(w, r),

(∂t +Mb∂α)r − iP
[

1 + a

1 +Wα
w

]
= K(w, r),

Energy

E(w, r) =

∫
R

(1 + a)|w|2 + =(r̄rα)dα ≈ ‖(w, r)‖2H0

Control norms

A = ‖Wα‖L∞ + ‖D
1
2R‖L∞ , (scale invariant)

B = ‖D
1
2Wα‖BMO + ‖Rα‖BMO (controlled by Ḣ2)

Scale invariant energy estimate:

d

dt
E(w, r) .A BE(w, r)
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Energy estimates

Because of the translation invariance, the pair (Wα, R) solves the
linearized equation. Hence by Gronwall,

‖(Wα, R)(t)‖Ḣ0 . ec(A)Bt‖(Wα, R)(0)‖Ḣ0

The same method gives for all higher k:

‖(W (k), R(k−1))(t)‖Ḣ0 . ec(A)Bt‖(W (k), R(k−1))(0)‖Ḣ0

The case k = 2 suffices to control B and leads to the local
well-posedness result.
Higher k’s lead to results on preservation of higher regularity for as
long as B stays bounded.
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Normal forms and long time existence
Question: Find improved lifespan estimates for small data solutions.

(i) Equations with quadratic nonlinearities:

d

dt
E(u) . ‖u‖E(u)

For data ‖u(0)‖ = ε� 1 this leads by Gronwall to a lifespan Tε ≈ ε−1

(ii) Equations with cubic nonlinearities:

d

dt
E(u) . ‖u‖2E(u)

For data ‖u(0)‖ = ε� 1 this leads by Gronwall to a lifespan Tε ≈ ε−2

(iii) Normal form method: transform an equation with a quadratic
nonlinearity into one with a cubic one via a normal form
transformation,

u→ v = u+B(u, u) + higher
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Normal forms for water waves

Existence of a normal form transformation is related to the absence of
resonant bilinear interactions. For 2-d water waves in holomorphic
coordinates, such a normal form transformation exists and is given by

W̃ = W − 2M<WWα,

Q̃ = Q− 2M<WQα,
(0.2)

The normal variables solve an equation of the form{
∂tW̃ + Q̃α = cubic and higher

∂tQ̃− iW̃ = cubic and higher

However, the cubic and higher nonlinearities also contain higher
derivatives, so one cannot close the energy estimates. This is related to
the fact that the normal form transformation is not invertible, and
further to the fact that the water wave equation is quasilinear, rather
than semilinear.
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The modified energy method
Idea: Modify the energy rather than the equation in order to get cubic
energy estimates.

Step 1: Construct a cubic normal form energy

EnNF (W,Q) = quadratic+ cubic(‖W̃ (n)‖2L2 + ‖Q̃(n)‖2
Ḣ

1
2
)

Then
d

dt
EnNF (W,Q) = quartic+ higher

Here higher derivatives arise on the right, making it impossible to close.

Step 2: Switch EnNF (W,Q) to diagonal variables EnNF (Wα, R).

Step 3: To account for the fact that the equation is quasilinear,
replace the leading order terms in EnNF (Wα, R) with their natural
quasilinear counterparts to obtain a good quasilinear energy
En(Wα, R). Clue: look at the quasilinear energy for the linearized
equation.
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Cubic estimates for the linearized equation
Modified energy:

Ẽ(w, r) =

∫
(1 + a)|w|2 + =(r̄rα) + 2(=[R̄wrα]−<[W̄αw

2]) dα

Then the solutions to the linearized equation satisfy

d

dt
Ẽ(w, r) .A ABẼ(w, r)

Higher order counterpart:

Theorem

There exists a modified energy functional En(Wα, R) so that

En(Wα, R) ≈ ‖W (n), R(n−1)‖2Ḣ0

and
d

dt
En(Wα, R) .A ABE

n(Wα, R)
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The periodic case
Using the energy estimates in the previous theorem for n = 1, 2 in the
periodic case we obtain

Theorem

Consider the two dimensional water wave equation with initial data in
Ḣ1 ∩ Ḣ2, of size ε,

‖(Wα, R)‖Ḣ0 + ‖(Wαα, Rα)‖Ḣ0 . ε

Then the solutions have a lifespan of at least

Tε ≈ ε−2

The cubic energy estimates for higher norms show that bounds for
higher norms also propagate on the same timescale.

The same result applies to the water wave problem on the real
line. However on the real line one can get better results using
dispersive decay if in addition the data is spatially localized.
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Water waves on the real line: heuristics
Dispersive decay for the linear equation{

Wt +Qα = 0

Qt − iW = 0

with smooth localized data of size ε:

|W |+ |Q| . t−
1
2

This shows that one would expect our control norms to decay like

A,B ≈ εt−
1
2

Hence
d

dt
E . ε2t−1E

which provides uniform bounds up to

Tε = ecε
−2
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Almost global solutions

Idea: Obtain pointwise decay from the scaling and translation
symmetries.

Theorem

Assume that the initial data for the water wave equation satisfies***:∑
0≤j+k≤7

‖Sj∂kα(W,Q)(0)‖Ḣ0 . ε

Then the solution exists up to time Tε = ecε
−2

, with uniform bounds in
the above norms.

Result by Wu (with much more regularity)

Recent global result by Pusateri-Ionescu
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Outline of proof

Control norm:

C =
∑

0≤j+k≤2
‖Sj∂kαW‖L∞ +

∑
0≤j+k≤1

‖Sj∂kαR‖L∞

Elliptic bounds for water waves (W,Q):

sup
[1,T ]

t
1
2C . sup

[1,T ]

∑
0≤j+k≤7

‖Sj∂kα(W,Q)(t)‖Ḣ0

Modified energy method: there exist energy functionals Ej,k such that

d

dt

∑
j+k≤7

Ej,k . C2
∑
j+k≤7

Ej,k
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