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Shoaling waves

Classical Green’s law for linear shallow water waves:
Speed c = (gh)1/2,
Wavenumber k = ω/c, where ω (wave frequency) is fixed ,
Amplitude a ∝ h−1/4, due to conservation of wave energy flux, ∝ ca2.



Shoaling waves: Undular bore

Undular bore of the 2004 Indian Ocean tsunami reaching the island of
Koh Jum, Thailand.



Korteweg-de Vries equation: 1

Weakly nonlinear unidirectional long waves over variable topography are
governed by the variable-coefficient Korteweg-de Vries equation,

At + cAx +
cx
2 A +

3c
2hAAx +

ch2

6 Axxx = 0 . (1)

This is in non-dimensional form, based on a length scale h0 (depth) and a
time scale (h0/g)1/2. A(x , t) is the free surface elevation above the
undisturbed non-dimensional depth h(x), and c(x) =

√
h(x) is the

non-dimensional linear long wave phase speed. The first two terms in (1)
are the dominant terms, and by themselves describe the propagation of a
linear long wave with speed c. The remaining terms represent,
respectively, the effect of varying depth, weakly nonlinear effects and
weak dispersion. It can be derived as an asymptotic long-wave
small-amplitude reduction of the full Euler system using the usual
balance in which ∂/∂t ∼ ∂/∂x ∼ ε� 1,A ∼ ε2 with weak
inhomogeneity so that cx/c scales as ε3 .



Korteweg-de Vries equation: 2

We can cast (1) into the asymptotically equivalent form

Aτ +
hτ
4hA +

3
2hAAX +

h
6AXXX = 0 , (2)

where τ =

∫ x

0

dx ′

c(x ′) , X = τ − t . (3)

Here h = h(τ) explicitly depends on the variable τ which describes
evolution along the path of the wave. Formally we write
A(x , t) = Ã(X , τ) and h(x) = h̃(τ) but then omit the “tilde” in (2). The
balance of terms in (2) is ensured by ∂/∂τ ∼ ε3, ∂/∂X ∼ ε, A ∼ ε2.
Thus, unlike in the original variable-coefficient KdV equation (1), where
both independent variables x and t vary on the same scale ∼ 1/ε, in (2)
the “time” τ is a slow variable relative to the “spatial” coordinate X . We
stress that equations (1) and (2) are asymptotically equivalent. They
differ with respect to terms of O(ε7), which is the same as the error term
in both equations.



Korteweg-de Vries equation: initial condition
We shall suppose that

h(x) = 1 for x < 0 , h(x) = h1 < 1 for x > x1 , (4)

and varies monotonically in 0 ≤ x ≤ x1, where x1 � 1. For times t < 0
an initial condition is imposed in x < 0, that is

A(x , t = 0) = A0(x) for x < x0 < 0 , A(x , t = 0) = 0 for x > x0 . (5)

Thus initially we generate a solution of the constant coefficient KdV
equation, and the aim is to see how this develops in x > 0. The special
case when A0 is a constant for x < x0 generates an undular bore,
which then moves into shallower water.
In terms of the “signalling” variables (3) the initial condition (5) becomes

Ã(X (t = 0) = τ, τ) = A0(x) , (6)

where x(τ) is given by (3). However, because τ is a slow variable relative
to X , Ã(X , τ) = Ã(X , 0) + O(ε3) so asymptotically,

A(X , τ = 0) = A0(X ) , (7)

where we have again omitted the “tilde” for A and used the fact that
A0(x) is only non-zero in x < 0 where τ = x , and so X = x at t = 0.



Korteweg-de Vries equation: initial condition
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Korteweg-de Vries equation: alternatives
The governing equation (2) can be cast into several exactly equivalent
forms. The most common is the variable-coefficient KdV equation,

B = h1/4A , so that Bτ +
3

2h5/4 BBX +
h
6BXXX = 0 . (8)

This form shows that equation (2) has two integrals of motion with the
densities proportional to B = h1/4A and B2 = h1/2A2. That is,
conservation of “mass” and “momentum” (wave action flux). Or, recast
(2) into a perturbed KdV equation,

u =
3
2h2 A =

3
2h9/4 B , S =

1
6

∫ τ

0
h(τ

′
)dτ

′
=

1
6

∫ x

0
h(x ′)1/2dx ′ . (9)

so that uS + 6uuX + uXXX = −9hS
4h u . (10)

Yet another convenient form for (2) is obtained by putting

T =
1
6

∫ τ

0

dτ ′

h5/4(τ ′)
=

1
6

∫ x

0

dx ′

h7/4(x ′)
, (11)

U =
3B
2 UT + 6UUX + β(T )UXXX = 0 , β(T ) = h9/4 . (12)



Slowly varying solitary wave

A solitary wave propagating over slowly varying topography will deform
adiabatically so that its amplitude varies as h−1 . To show this, use the
conservation law for wave action flux. Thus, from (12),

d
dT

∫ ∞
−∞

U2dX = 0 . (13)

The slowly varying solitary wave for (12) is

U ∼ a sech2{γ(X − Φ(T ))} , V = ΦT = 2a = 4βγ2 . (14)

where the amplitude a is a slowly varying function of T . Substitution
into (13) gives

a2

γ
= 4β2γ3 = constant , (15)

and so γ ∼ β−2/3 and a ∼ β−1/3. Thus, since β = h9/4, we have
a ∼ h−3/4 and noting that U ∼ h1/4A, the result follows. Note that mass
is not conserved by the deforming solitary wave, and this is compensated
by the generation of a trailing shelf.



Undular bore: 1

When the bottom is flat, β = 1 in (12), assume that the initial condition
is U(X ,T = 0) = H(−X )U0 , U0 = 3A0/2 > 0. Then the decay of the
initial discontinuity at X = 0 leads to the development of an undular
bore, an expanding slowly modulated periodic wavetrain,
asymptotically described by Whitham modulation theory. The local
wave form of the undular bore is given by the cnoidal wave

U = a{b(m) + cn2(
q
β1/2 (X − X0 − VT ); m)}+ d , (16)

where b =
1−m

m − E (m)

mK (m)
, a = 2mq2 ,

and V = 6d + 2a
{
2−m

m − 3E (m)

mK (m)

}
. (17)

Here cn(x ; m) is the Jacobi elliptic function of modulus m (0 < m < 1)
and K (m),E (m) are the elliptic integrals of the first and second kind
respectively, a is the wave amplitude, d is the mean level, V is the wave
speed, and X0 is a constant defining the initial phase.



Undular bore: 2

Note that we have retained β in (16) and (18), in order to include the
case when β 6= 1 on the shelf. The spatial period (wavelength) is

L =
2K (m)β1/2

q . (18)

When 1−m� 1, L� β1/2/q. This family of solutions contains three
free parameters, which are chosen from the set {a, q,V , d ,m}. As
m→ 1, cn(x ; m)→ sech(x) and then the cnoidal wave (16)
becomes a solitary wave, riding on a background level d . On the
other hand, as m→ 0, cn(x ; m)→ cos x and so the cnoidal wave (16)
collapses to a linear sinusoidal wave (in this limit a→ 0).

Whitham modulation theory assumes that the expression (16)
describes a modulated wave in which the amplitude a, the mean level d ,
the speed V and the modulus m are all slowly varying functions of X and
T . The outcome is a set of three nonlinear hyperbolic equations for three
of the available free parameters, chosen from the set (a, q,V , d ,m), or
rather better, from an appropriate combination of them.



Undular bore: 3

The relevant asymptotic solution is then, using a similarity variable,

X
T = 2U0

{
1 + m − 2m(1−m)K (m)

E (m)− (1−m)K (m)

}
for − 6U0 <

X
T < 4U0 ,

(19)

a = 2U0m , d = U0

{
m − 1 +

2E (m)

K (m)

}
, q = U0

1/2 . (20)

Note that this solution does not depend on the value of β, which affects
only the wavelength of the underlying periodic wave (16). The
wavenumber distribution in the undular bore is then given by

k =
2π
L =

πU1/2
0

β1/2K (m)
. (21)

Ahead, where X/T > 4U0 , U = 0, m→ 1, a→ 2U0 and d → 0; the
leading wave is a solitary wave of amplitude 2U0 relative to a mean
level of 0. Behind, where X/T < −6U0, U = U0 and at this end
m→ 0, a→ 0, and d → U0; the wavetrain is now sinusoidal with the
wavelength L = π(β/U0)1/2.



Undular bore: 4
Plot of an undular bore (19) for U0 = 1 at T = 5.



Undular bore: evolution on a flat bottom

h(x) = 1, t = 260, 600, 1600, 3600 (left to right, top to bottom)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

A

t = 260

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

A

t = 600

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

A

t = 1600

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

A

t = 3600



Undular bore: evolution on a slope, numerical

h(x) = 1 (x < 0) , 1−αx (0 < x < 400) , 0.64 (x > 400) , α = 0.0009 .

t = 260, 600, 1600, 3600 (left to right, top to bottom)
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Undular bore: evolution on a slope, theory

UT + 6UUX + β(T )UXXX = 0 where β(T ) = h9/4 .

where β(T ) = 1 for T < T0 and varies monotonically to β1 for T > T1.
If the slope is sufficiently gentle, one might expect that the undular bore
undergoes an adiabatic change retaining its structure as a slowly
modulated nonlinear periodic wavetrain with a soliton at the
leading edge and the linear vanishing amplitude wavepacket at the
trailing edge. Let the structure be confined Xa(T ) < X < Xb(T ) so
that [U] = U(Xb)− U(Xa). Then [U]T = ∂

∂T
∫ Xb

Xa
UX dX = 0 provided

UX = UXXX = 0 at X = Xa,b(T ). Thus, since the wavetrain advances
into the undisturbed depth region, U(Xb) = 0, one has

[U] = −U0 for all T > 0 . (22)

This result is not affected by β(T ) and the actual form of the structure.
Thus if a single undular bore emerges onto the shelf with β = β1 then
(22) implies that relevant modulation solution for T > T1 will have the
same form (19) but with X generally replaced by X − X0(m), and so the
modulation solution cannot remain a centred fan but must become a
more general, simple-wave solution of the Whitham equations.



Undular bore: evolution on a slope, theory
But if the leading solitary wave in the undular bore evolves over the slope
as an isolated solitary wave (the “weak interaction scenario”, an
assumption to be confirmed), then its amplitude must vary adiabatically,
a = 2U0β

−1/3 to conserve the action flux, so that for T > T1 the
leading solitary wave amplitude is 2U0β

−1/3
1 > 2U0, which is clearly

inconsistent with the scenario based on the assumption of a single
undular bore emerging onto the shelf. To resolve the above
inconsistency an additional solitary wavetrain at the front of the undular
bore is needed to provide the gradual increase of the amplitude from 2U0
at the undular bore leading edge to the value 2U0β

−1/3
1 .

Thus, the propagation of an undular bore over a broad region of slowly
decreasing depth leads to a non-adiabatic effect, the generation of a
solitary wavetrain in front of the bore. The adiabatic deformation of
the bore itself is twofold: (i) the change of the characteristic scale of the
oscillations in the bore due to the change of the dispersion coefficient β
in (12); (ii) the occurrence of the additional slow “modulation phase
shift” X0(m) throughout the bore so that the relevant modulation
solution generally represents a non-centred simple wave of the Whitham
equations.



Undular bore: evolution on a slope, theory
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X -T plane of the evolution of an undular bore according to the KdV
equation (12). The undular bore and the solitary wavetrain are confined
to [X−(T ),X+(T )] and [X+(T ),Xs(T )] respectively. The dashed line
shows an extrapolation of the leading edge X+(T ) of the initial undular
bore so one can see the spatial shift of X+(T ) due to the interaction with
the slope.



Undular bore: evolution on a slope, theory
This plot reveals another feature of the undular bore propagation on a
slope, related to the dynamics of the trailing edge X−(T ), that is
non-monotonic behaviour of the edge X−(T ) in the interval
300 . T . 3000, which apparently is related to the occurrence of the
earlier mentioned spatial shift X0(m) in the modulation solution (20)
leading to the “de-centring” of the expansion fan. This results, for large
T , in the stationary shift for the curve X−(T ) relative to its initial
behaviour. The multiphase behaviour continues for some time after the
bore emerges onto the shelf, and at sufficiently large times, T & 3000 the
single-phase slowly modulated wave behaviour throughout the whole
wavetrain is restored. This transient multiphase dynamics near the
trailing edge does not affect the front, “solitary-wave”, part of the bore
which retains a regular single-phase structure at all times.
Three main conclusions:
(i) the generation of the solitary wavetrain ahead of the bore;
(ii) the undular bore edge speeds, X ′±(T ), asymptotically restore
their original values X ′−(T ) = cot(θ1) and X ′+ = cot(θ2) on the shelf;
(iii) the spatial shifts in the positions of the transformed undular
bore edges X±(T ) relative to those that would have taken place in
the original bore in the absence of the variable topography.



Solitary wavetrain: 1

The slowly varying solitary wave for (12)

U ∼ a sech2(γΘ) , ΘT = −κV , ΘX = κ , (23)

where V = 2a = 4βγ2κ2 , (24)

which is an extension of (14) to allow for both X ,T variation. The
modulation equations for the amplitude a and the soliton wavetrain
wavenumber κ are {

a2

κγ

}
T

+ V
{

a2

κγ

}
X

= 0 , (25)

κT + (Vκ)X = 0 . (26)

This system (25), (26) can be obtained as a reduction of the Whitham
equations for a modulated cnoidal wave, in the limit when the modulus
m→ 1, or can be obtained directly, using averaging of the KdV “mass”
and “momentum” conservation laws.



Solitary wavetrain: 2
Using the relations (23, 24), equations (25), (26) can be written in the
form

Aσ + 2AAX = 0 , A =

{
a2
√
2κγ

}2/3

= aβ1/3 , (27)

κσ + (2Aκ)X = 0 , (28)

where σ =

∫ T

0
β(T

′
)−1/3dT

′
. (29)

Remarkably, the system (27, 28) has the same form as system (25, 26) in
the case when β = β0 = constant, that is for the constant-coefficient
KdV equation. When there is no X -variation, A, κ are constants, and the
result (15) is recovered. The general solution of (27, 28) is given by,

A = constant , on dX
dσ = 2A , (30)

and dκ
dσ = −2AXκ =

Aσ
A
κ . (31)

Note that the system (30), (31) has only one multiple characteristic
family and all the characteristics are straight lines in the X -σ plane.



Solitary wavetrain: 3
The trailing edge of the solitary wavetrain is X = X+(T ) where a = 2U0,
and initially X ′+(0) = 4U0. However, X = X+(T ) is not associated with
the trajectory of a particular solitary wave, as the solitary waves must be
allowed to cross this boundary to enable the formation of the advancing
modulated solitary wavetrain. Hence

0 < X ′+(T ) < 4U0 for T0 < T < T1 . (32)

The boundary condition for (27) is,

A = 2U0β
1/3 on X = X̄ (σ) , (33)

where X̄ (σ) = X+(T (σ)), where T (σ) is the inverse of σ = σ(T ) (29).
The solution for A is

A = A0(σ0) = 2U0β
1/3(T (σ0)) , X − X̄ (σ0) = 2A0 · (σ − σ0) , (34)

σ0 ∈ [0, σ1] being a parameter on the curve X = X̄ (σ). Elimination of
the parameter σ0 from (34) yields A as a function of X , σ. The solution
(34) is defined for X̄ (σ) < X < Xs , where Xs = 4U0σ is the trajectory of
the leading wave in the solitary wavetrain, having the amplitude
a = 2U0β

−1/3, that is A = 2U0. For X > 4U0σ we have A = 0.



Solitary wavetrain: 4

Calculating the derivative AX we obtain:

AX =
A′0(σ0)

2A′0(σ0)(σ − σ0) + [X̄ ′(σ0)− 2A0(σ0)]
. (35)

Owing to (32) [X̄ ′(σ0)− 2A0(σ0)] < 0, therefore to guarantee the
existence of the obtained solution for all X , σ one must have A′0 < 0.
This, by (34), (29) implies β′(T ) < 0. This this solution represents a
rarefaction fan emanating from the curve X = X̄ (σ0). The condition
β′(T ) < 0 (decreasing depth) can be viewed as the condition of the
formation of an expanding solitary wavetrain in front of the bore.
Decreasing depth “promotes” the detachment of solitary waves at the
leading edge of the undular bore. This also confirms our initial
assumption that the leading solitary wave of the undular bore behaves as
an isolated KdV solitary wave.



Solitary wavetrain: 5

Using A(X , σ) defined by (34) the corresponding general solution for κ is
then found from (31), that is

κ = κ0

{
1 +

2A′0(σ0)(σ − σ0)

X̄ ′(σ0)− 2A0(σ0)

}−1

. (36)

where κ0 is the value of κ on the curve X = X+(T (σ0)) = X̄ (σ0) and
σ0(X , σ) is defined by (34). Generally, to find the curve X = X+(T ) for
T0 < T < T1 one needs to solve the full perturbed modulation system.
However, it is instructive to assume that

X ′+(T )� 4U0 for T0 < T < T1 , (37)

and thus X̄ ′(σ0)� 2A0(σ0). This is valid when β(T ) varyies sufficiently
fast on a typical time scale of the solitary wavetrain modulations, but still
is slow on the time scale of a single solitary wave. Thus we get that

X+(T ) ' X+(T0) = 4U0T0 for T0 < T < T1 . (38)



Solitary wavetrain: 5

Our numerical simulations confirm that (37, 38) can be safely used in the
solution (36) for κ for a broad range of the slope values specified in
terms of β(T ). The schematic behaviour of the boundaries X+(T ) and
Xs(T ) illustrating the asymptotic generation of the solitary wavetrain is
shown in this plot.



Solitary wavetrain: 6
Thus, using (37) we have to leading order

κ ' κ0

{
1− A

′

0(σ0)(σ − σ0)

A0(σ0)

}−1

= κ0

{
1− 2

3
β′(σ0)

β(σ0)
(σ − σ0)

}−1
,

(39)
where β(σ0) ≡ β(T (σ0)), β′(σ0) = βTβ

1/3(σ0) < 0 and so (39) exists
for all X , σ. Then the leading edge of the undular bore, that is also
the trailing edge of the solitary wavetrain, emerging on the shelf is
X+(T ) ' 4U0T0 + 4U0(T − T1) for T > T1 and the phase shift
∆+ = X0(m = 1)) can be estimated as ∆+ ' −4U0(T1 − T0).
Let σ1 = σ(T1). On the shelf where T > T1 , σ > σ1 we have β = β1 ,

σ = σ1 + (T − T1)β
−1/3
1 . The leading edge of the solitary wavetrain

on the shelf is Xs = 4U0σ = 4U0(σ1 + (T − T1)β
−1/3
1 ). For T > T1

both boundaries X+(T ) and Xs(T ) confining the expansion fan are
characteristics and the total number of solitary waves in the train for
T > T1 is constant. Examining the undular bore structure, we get that

κ0(σ0) ' U1/2
0

4β1/2(σ0)
I , where I ≈ 0.6569 , (40)



Solitary wavetrain: 7
Finally, from (24), (27), the wavenumber γ(X ,T ) = κ−1β−1/3(A/2)1/2

and so the slowly varying solitary wavetrain (23) is fully defined. As
T →∞, σ ∼ Tβ−1/3

1 , X+ ∼ 4U0T , Xs ∼ 4U0β
−1/3
1 T and the

asymptotic solution is,

4U0T < X < 4U0β
−1/3
1 T : A ∼ X

2σ , or a ∼ X
2T , (41)

κ ∼ g(X/(2T ))

σ
∼ g(A)

σ
, or κ ∼ G(a)

T . (42)

Here g(A) = 3κ0β(σ0)/(2β′(σ0)), where σ0(A) is found from the
solution A = 2U0β

1/3(σ0) (see (34)). The function G(a) = g(aβ1/3
1 ) is

the distribution function over amplitude in the solitary wavetrain so that
G(a)da is the number of solitons with amplitudes in the interval
[a, a + da]. Since the total number of solitons N in the train remains
constant for T > T1 it can be estimated by the formula

N '
∫ 2U0β

−1/3
1

2U0

G(a) da . (43)



Solitary wavetrain: 8

The outcome of the analysis can be described in a using a diagram
showing the behaviour of the Riemann invariants λj(X ,T ), j = 1, 2, 3 of
the Whitham modulation equations in the combined modulation solution.
These Riemann invariants λ1 ≤ λ2 ≤ λ3 can be expressed in terms of any
three independent modulation parameters f rom the set {a, q,V , d ,m}.

a = 2(λ2 − λ1) , q =
√
λ3 − λ1 , V = 2(λ1 + λ2 + λ3) ,

d = λ1 + λ2 − λ3 + 4(λ3 − λ1)
E (m)

K (m)
.

(44)

Then the Gurevich-Pitaevskii modulation solution for the undular bore is
given by λ1 = 0, λ3 = U0, while λ2 = U0m is defined by the same
expression (19). In the solitary wavetrain we have λ2 = λ3 to leading
order so the asymptotic solution (41) as T →∞ assumes the form
λ3 ∼ X/(4T ) in the interval 4U0T ≤ X ≤ 4U0Tβ−1/3

1 .



Solitary wavetrain: 9

Schematic behaviour of the Riemann invariants in the modulation
solution. Left: regular undular bore (before the slope, T < T0); Right:
undular bore with an advancing soliton train confined to [X+,Xs ] (after
the slope, T � T1)
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Numerical results: 1
The developed theory has three main assumptions:
(i) the undular bore on a slope can be described by a slowly modulated
periodic solution of the KdV equation;
(ii) the “weak interaction scenario” ensuring the behaviour of the leading
solitary wave in the undular bore on a slope as an isolated KdV soliton;
(iii) the wave structure forming in front of the undular bore is indeed a
solitary wavetrain.
We use the variable-coefficient KdV equation in the form (8),

Bτ +
3

2h5/4 BBX +
h
6BXXX = 0 ,

with the dependence h(τ) corresponding to the depth profile,

1 (τ < 400) , 1− α(τ − 400)2

2 (400 < τ < 844.44) , 0.64 (τ > 844.44) ,

where α = 0.0009. Equation (8) is exactly equivalent to the equation
(12) used for our asymptotic analysis. The initial condition is taken in
the form of a smooth step,

B(X , 0) =
1
4 (1− tanh(X/10)) . (45)



Numerical results: 1

Assuming that the locally, undular bore can be described by the periodic
solution (16) we use the numerical solutions to extract the parameters
corresponding to the modulation Riemann invariants λj introduced in
(44),or in terms of the basic wave parameters b1, b2 and b3

λ3 =
b2 + b3

2 λ2 =
b1 + b3

2 λ1 =
b1 + b2

2 . (46)

Here b2 ≡ Bmin and b3 ≡ Bmax are easily found from the numerical data.
The third parameter b1 can be obtained from the numerical values of the
local spatial period (wavelength) L, which for the variable-coefficient
KdV equation (8) is given by the formula

L =
4h9/8K (m)√
3(b3 − b1)

where m =
b3 − b2
b3 − b1

. (47)

We expect that the variables λj will demonstrate the qualitative
behaviour shown above, which will be a confirmation of the validity of
the modulation analysis.



Numerical results: 3

Initial undular bore (before slope), τ = 400. In sequence, B(X ); the
modulation Riemann variables λ1 ≤ λ2 ≤ λ3, the modulus
m = (λ2 − λ1)/(λ3 − λ2) as a function of X .
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Numerical results: 4

Undular bore on the slope, τ = 800. In sequence, B(X ); the modulation
Riemann variables λ1 ≤ λ2 ≤ λ3, the modulus m = (λ2 − λ1)/(λ3 − λ2)
as a function of X .
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Numerical results: 5

Undular bore after the slope, τ = 1400. In sequence, B(X ); the
modulation Riemann variables λ1 ≤ λ2 ≤ λ3, the modulus
m = (λ2 − λ1)/(λ3 − λ2) as a function of X .
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Numerical results: 6

Undular bore on shelf, τ = 3400. In sequence, B(X ); the modulation
Riemann variables λ1 ≤ λ2 ≤ λ3, the modulus m = (λ2 − λ1)/(λ3 − λ2)
as a function of X .
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Numerical results: 7
Note the behaviour of the Riemann variables λ2 and λ3 near the leading
edge of the undular bore in all plots, where d

dX λ2 <∞ and d
dX λ3 <∞,

which corresponds to the“weak interaction” scenario. The figure shows a
comparison for the theoretical adiabatic amplitude of on an isolated
solitary wave on a slope with the numerical values of the leading solitary
wave amplitude in the modulated wavetrain. For the variable-coefficient
KdV equation (8) the adiabatic variations of the solitary wave amplitude
are given by formula, see (15)

a = a0

(
h0

h(τ)

)3/4
, (48)

where h0 and a0 are the initial depth and the solitary wave amplitude
respectively.
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Increasing depth

Suppose that β′(T ) > 0.The lead solitary wave amplitude implied by the
"local" scenario,

a(T ) = 2U0β
−1/3(T ) .

Comparison with numerical simulations. Solid line: adiabatic theory for
an isolated solitary wave. Symbols: numerical values for the undular bore
lead solitary wave amplitude.
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Hence: non-local (strong interaction) scenario for β′(T ) > 0.



Increasing depth: non-adiabatic response
Let β vary monotonically from β(T < T0) = 1 to β(T > T1) = β1 > 1.
At the trailing edge of the undular bore, we initially (T < T0) have a
linear wave packet propagating with the group speed s− = −6U0, which
must remain the same for T > T1 since the jump [U] across the bore is
conserved.
On the other hand, the adiabatic evolution of the (initially) same linear
wave packet implies for T > T1

T > T1 : cg = 6U0(1− 2β1) < s− . (49)
Therefore, one must insert a small-amplitude wavetrain behind the bore,
a non-adiabatic response.
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