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1 Introduction

The wind-driven sea is one of the most common natural phenomena that we can
observe by our own eyes without special devices. Development of reliable analytical
theory of wind-driven sea is a really challenging task for a physicist; one can
compare it with another fundamental problem of macroscopic physics: the problem
of atmospheric boundary layer. Both problems are naturally connected because
sea waves are driven by wind; both problems are very difficult because the wind
is badly turbulent and so far we don’t have any satisfactory theory of the strong
turbulence. However, the case of wind-driven sea is easier. In this case we have
in our possession a natural small parameter: the ratio of atmospheric and water
density. The density of air depends on temperature and the level of moisture. It
is reasonable to put

ε =
ρatm

ρw
∼ 1.2 · 10−3.

Due to smallness of ε, the influence of wind to the surface is relatively weak and can
be parameterized by complexification of the dispersion law. Let η(~r, t), ~r = (x, y)
be elevation. In the linear approximation one can put

η(r, t) = Re Ψ e−i ωk t+i~k ~r. (1.1)

Here Ψ is an arbitrary complex amplitude, ωk =
√

g k + σ k3 is the dispersion law,
g is the gravity acceleration, and σ is the surface tension. In the presence of wind
the horizontal sea surface is unstable, and one should perform the replacement

ωk → ωk +
i

2
γk, (1.2)
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where γk is the growth-rate of instability (if γk > 0), or decrement (if γk < 0). In
the presence of wind, at least in some domain on the k-plane, γk > 0.

Analytic description of γk is possible if the boundary layer is laminar and its
velocity profile

Vx = U = U0(z) (1.3)

is known [4]. In reality the boundary layer is badly turbulent. However, the stan-
dard theory of turbulent boundary layer over rigid rough plane is hardly applicable
for the sea-air case. The waves exited by wind disturb atmosphere, creating the
”radiation stress” that causes deviation of U0(z) from logarithmic law. As a re-
sult, the analytical derivation of γk is still an unresolved problem. At the moment,
there are a dozen heuristic models of γk; a review can be found in [1]. In all these
models

γk = ε ωk βk,

where βk is a dimensionless growing function on k.
Let U be the wind speed on some reference height (usually oceanographers

measure it at h = 10 m). Most authors [2, 3] believe that βk grows at large k as
follow:

βk = m

(

U

c

)2

if
U

c
≥ 1. (1.4)

Here c =
√

g/k is the phase velocity of wind-driven waves, m is a dimensionless
parameter that varies in different models in a pretty wide range: 0.04 < m < 0.2.
On our opinion, the lowest value of m is more realistic.

If the sea is smooth, the instability takes place for all small scales until is
arrested by viscosity in the capillary region at wave length λ ' 2÷ 3 mm. Notice,
that capillary effects are essential, if the wave length λ ≤ 10 cm; for λ < 1.7 cm
they are predominant. If the surface is not smooth, the situation is much more
complicated. Wave breaking events create drops and microscale turbulence. In
this case the wave motion is strongly contaminated by the vorticity. We can speak
about long enough waves only, with the wave length more than the characteristic
scale of white-capping.

Let U10 ' 15 m/sec; then the critical wave length is

λmax ' 2π

k0
=

2π U2
10

g
∼ 144 m.

If we accept that the characteristic size of wave-breaker, λmin ' 1 m, we can speak
about pure potential waves in the range λmax < λ < λmin. Even for λ ∼ 1 m,
we have γ/ω ' 7 · 10−3 � 1. Study of more short waves is important if we are
interested in microwave or optical images of ocean surface. Moreover, short waves
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realize the lion share of stress or momentum transport from air to water. However,
short waves with λ ≤ λmin do not contribute essentially to the energy balance.

The impact of wind on the sea surface is of two kinds. First, the presence of
wind makes the sea surface unstable. This effect is universal. It takes place for
the laminar (Miles mechanism [4]) as well as for turbulent boundary layers. In
the last case turbulent fluctuations of air pressure create also ”seeds” of unstably
growing waves (Phillips mechanism [5]). The central question of the wind-driven
sea theory is the following: what is the mechanism of instability arresting? As far
as instability is a linear process, this mechanism must be nonlinear.

It was Phillips again who in 1958 offered the mechanism of instability arresting
[6]. To describe his scenario we must mention first that the characteristic feature
of the wind-driven sea kinetics is the downshift of the spectral peak. When wind
starts blowing, it excites first the short waves, such that the spectral peak is posed
at kmax � k0. Then the spectral peak drifts to small wave numbers, approaching
the critical value k0. This downshift, which is the increasing of the mean wave
length, one can easily observe. When k approaches k0, the downshift is arrested,
and the sea reaches the stage of ”maturity”.

In 1960, Phillips explained this process in the following way [7]. Initially waves
are excited in the area, where γk has maximum, k ∼ kmax. The waves grow until
their amplitude reaches the value allowed for the stationary Stokes wave of the
wavelength λm ' 2π/km. At that moment all wave crests have wedge-like shape
with the angle 120o. Further growth is not possible. The obtuse wedges turn to
white-caps, which absorb all energy supplied to sea by the wind. When waves are
saturated at k ∼ kmax, they are not yet saturated for k < kmax. Thus more long
waves continue to grow until saturation completes. As far as they are saturated on
more high level, the downshift of the spectral peak is in progress. The downshift
arrests only at the moment, when the wave number of the spectral peak reaches its
critical value k0. More long waves move faster than wind and do not take energy
from the atmospheric boundary layer.

This is an attractive scenario but it is inconsistent for several reasons. First of
all, the Stokes wave of a finite amplitude is unstable. The theory of this instability
has a long history described in details in the article [8]. The analytical theory
of this instability is developed for waves of small amplitude only. However, our
recent numerical simulation shows [9] that waves of high amplitudes, comparable
with the limiting, are also badly unstable. Thus the Stokes waves can not be used
as a model for the real wind-driven sea.

Another reason of inconsistency is even more important. One of the main
characteristics of the wind-driven sea is its average steepness µ. It could be defined
by several different ways; the most ”scientific” definition is the following:

µ2 = 〈|∇η|2〉. (1.5)
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However, steepness defined by this way can not be easily measured. As a result,
oceanographers prefer another definition of µ (thereafter we denote it as µp):

µ2
p = 〈η2〉 k2

p = 〈η2〉
ω4

p

g2
(1.6)

In this equation, kp and ωp are the wave number and the frequency of the spectral
peak. For a typical sea, µ > µp, though for the limiting Stokes wave µ and µp are
close to each other, µ ' µp ' 0.3.

According to Phillips theory we have to observe exactly this value of steepness.
However, that high level of steepness was never observed. Being artificially created,
these steep waves immediately break and lose their energy, making only a few
oscillations. Field observations show that steepness essentially depends on the
”wave age”, a = cp/U , which is the ratio of the phase and wind velocities. The
younger waves are, the higher the steepness, though even for very young waves,
when a ' 0.1, the steepness is limited: µp ≤ 0.12. The ”mature” sea is essentially
less steep: µp ' 0.06− 0.07. This is very serious discrepancy with Phillips theory.
Wind-driven ocean waves are much more smooth than predicts the Phillips model.

One more weak point of Phillips theory is that it fails to predict with accu-
racy the energy spectrum. In the stationary sea the autocorrelation function of
elevation,

F̂ (τ) = F̂ (−τ) = 〈η(t) η(t + τ)〉, (1.7)

does not depend on t. Its cosine Fourier transform, defined as

F (ω) =
1

π

∫

∞

0
F̂ (τ) cos ω τ dτ, (1.8)

traditionally is called the energy spectrum of the surface. Apparently the mean
squared elevation is

〈η2〉 = F̂ (0) =

∫

∞

0
F (ω) dω. (1.9)

Spectrum F (ω) has dimension L2T . Why is it called the energy spectrum? Let us
introduce function

E(ω) = ρw g F (ω), (1.10)

that has dimension M/T , the same as the spectral distribution of energy density.
Indeed, in an ensemble of non-interacting waves E(ω) dω is the spectral density
of wave energy propagating in all directions and having frequencies within the
spectral band ω → ω +dω. Let us stress that the very concept of energy spectrum
makes sense in the linear theory only. The real sea is nonlinear, and such quantity
as energy spectrum just cannot be properly defined. It would be better to call F (ω)
the ”elevation spectrum”, but in this article we will use the traditional language.
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One can notice that the energy spectrum can be constructed from gravity
acceleration g and circular frequency ω in a unique way:

F (ω) =
α g2

ω5
= FPh(ω). (1.11)

This is the famous Phillips spectrum, where α is a dimensionless ”Phillips con-
stant”. It is widely considered that Phillips spectrum is automatically consistent
with the Phillips scenario of wind-driven sea based on the concept of Stokes wave.
Actually, this question is not that simple. Realization of Phillips spectrum pre-
sumes not only the domination of Stokes breakers – it presumes also equipartition
of the breakers over their wave numbers as well as validity of linear dispersion law
ω2 = gk. These questions are discussed in recent articles [36, 37]. Another prob-
lem is the divergence of steepness. In the case of Phillips spectrum, the integral
in the expression for steepness,

µ2 =
1

g2

∫

∞

0
ω4 F (ω) dω, (1.12)

is divergent and must be cut off at certain ω = ωmax. Also, there is the lower
border of Phillips spectrum applicability, ω = ωmin. As a result, the steepness will
be:

µ2 = α ln
ωmax

ωmin
. (1.13)

Here we suppose that spectrum (1.11) is realized within the range ωmin < ω <
ωmax. If ωmax → ∞, then µ → ∞. Meanwhile the average steepness of any
Stokes wave is finite. This is a serious contradiction, showing that the theory of
”Phillips sea” is far from being simple. We will discuss this subject in more details
in Chapter 8.

The Phillips spectrum does not include the wind velocity. Since 1972, starting
with the article of Toba [11], experimentalists found that equation (1.11) does not
explain the results of laboratory and field observations. The ”rear faces” of the
spectra, ω > ωp, are described much better by the less steep spectrum

F (ω) =
β1 g V

ω4
= F1(ω). (1.14)

Here β1 is a small dimensionless parameter of order ε ∼ 10−3, V is some char-
acteristic velocity composed of the wind velocity U and the phase velocity of the
spectral peak cp. In seria of articles [38, 39] Resio and Long claim that

β ' 0.05, V =
(

U2 cp

)1/3
.
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The more detailed study of experimental data shows that just after the spectral
peak function F (ω) is even less steep:

F (ω) = F2(ω) =
β2 g V

ω11/3 ω
1/3
p

. (1.15)

In many experiments the subject of measurements is the spatial spectrum

Ik = 2π〈|ηk|2〉k, (1.16)

with a typical behavior right after the spectral peak described as:

I
(2)
k =

β2

2

V

g1/2 k11/3 k
1/6
p

, (1.17)

I
(1)
k =

β1

2

V

g1/2 k5/2
. (1.18)

Spectra (1.17), (1.18) are ”spacial analogs” of frequency spectra (1.16) and (1.15).
Phillips spectrum (1.11) also has the spatial analog:

IPh(k) =
1

2

α

k3
. (1.19)

Factor 1/2 appears from the identity ω/g dω = 1/2 dk.
Spectra (1.14 – 1.18) are often called Zakharov-Filonenko (ZF) spectra. They

were predicted theoretically in 1966 [10, 34], later on were observed in many field
and laboratory experiments (see, for instance [11–13, 18]) and found in numerical
experiments [14-16]. In 1985, Phillips acknowledged [17] that spectrum (1.14) is
much closer to reality than (1.11). Theoretical explanation of spectra (1.14) - (1.18)
is very simple: they are Kolmogorov-Zakharov (KZ) spectra carrying constants of
motion – the energy and the wave action – along the k-space. Spectra (1.14),
(1.18) describe the direct cascade – the transport of energy from large to small
scales, while spectra (1.16), (1.17) describe the inverse cascade – the transport of
wave action to large scales. These spectra appeared first in PhD thesisis of V.
Zakharov in 1966 [34] and were published in the refereed scientific journal much
later, in 1982 [35].

Ubiquitity of ZF-spectra, F (ω) ' ω−4, does not mean that Phillips spectra
FPh ' ω−5 and Ip(ω) ' k−3 are not observed in the ocean and in the wave
tanks. They are systematically noticed [19–21] as high-frequency, in other words,
short scale asymptotics. Also, they were observed in numerical experiments [22].
Appearance of these asymptotics is inevitable: KZ-spectra decay too slowly to
provide convergence of average steepness. Meanwhile, the average steepness should
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be small, µ2 < 0.02, otherwise the intensive wave-breaking will immediately occur
to consume any excessive energy.

The Phillips spectrum does not arrest the divergence of steepness completely,
but the logarithmic divergence is very slow, and the factor ln(ωmax/ωmin) ' 2.5.
From (1.13) we can estimate the Phillips constant α to be of order 10−2. In
reality, α varies in the limit 5 · 10−3 < α < 0.01. We should stress that with
increasing of steepness the onset of wave-breaking is very sharp. This is a threshold
phenomenon, like the second-order phase transition. We will discuss this point in
Chapter 8.

As far as µ is small, one can use expansion in powers of µ as a basic analytic
technique for study of nonlinear wave interaction. Performing this expansion we
realize that we have to deal with resonant interactions of certain amount of waves
that form ”a resonant group”. For gravity waves on two-dimensional plane the
most important groups are quadruplets of waves with wave vectors ~k1,~k2,~k3,~k4,
satisfying resonant conditions

~k1 + ~k2 = ~k3 + ~k4,

ωk1
+ ωk2

= ωk3
+ ωk4

. (1.20)

We should stress that the study of these resonance processes makes sense only
if the basin where waves propagate is large enough. If λ is the largest wave-
length in the quartet and µ is the characteristic steepness, the size of basin must
be at least L ∼ 1

µ2 λ. If λ ∼ 100 m and µ ' 0.1, one gets L > 10 km. This
condition is fulfilled in the ocean but hardly can be satisfied in wave-tanks. There
is another type of nonlinear wave interaction, localized in space: the white-capping.
In some situations, especially for very young waves, this phenomenon can play a
very important role, in experimental wave tanks as well. However for the well-
developed wind-driven sea the white-capping is an effect of secondary importance.

There is no doubts that the wind-driven sea needs a statistical description. It
can be presented as an ensemble of gravity waves of different scales. These waves
take energy from wind, lose energy in the white-capping event, and exchange en-
ergy in four-wave resonant interactions. All these three processes can be described
by a single kinetic equation, first derived by Hasselmann in 1962 [23, 24], named
after him, and written for the spectrum of ”wave action”, N(~k, ~r, t):

∂N

∂t
+

∂ω

∂~k
∇N = Snl + Sin + Sdiss. (1.21)

In this equation ω =
√

gk is the dispersion law for gravity waves, Sin is the
input from wind, Sdiss is the dissipation due to white-capping, and Snl is the
collision term that describes four-wave resonant interaction. The last term can
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be derived from the ”first principles” and we will perform the brief derivation in
Chapter 2. In fact, Hasselmann equation is just a kinetic equation for bosonic
particles known in theoretical physics since 1928 [40]. Kinetic equations have
standard thermodynamic solutions, however we will concentrate our attention on
completely different, Kolmogorov-like solutions. Theory of these solutions is called
weak turbulence.

It is astonishing what a large amount of information could be extracted from
a careful study of pure conservative kinetic equation

∂N

∂t
+

∂ω

∂k
∇N = Snl (1.22)

and even from the ultimately simple equation

Snl = 0. (1.23)

It would not be correct to think that (1.23) is similar to other integral equations.
In fact, it is much closer to the nonlinear elliptic equation of second order and has
a rich family of solutions parameterized by an arbitrary function of one variable.
In particulary, it has the family of solutions parameterized by three parameters:
fluxes of energy, wave action, and momentum. The simplest ones, the parametric
solutions, are powerlike (1.17)–(1.18). As we have mentioned before, they describe
rare faces of observed ocean spectra perfectly well. We will discuss this fact in
Chapter 7.

From the analytical view-point equation (1.22) is even more interesting. It has
a rich family of self-similar solutions [1, 26, 27], which pretty well describe the
dependance of main characteristics of wind-driven sea – the mean energy and the
frequency of spectral peak – on fetch (distance from the shore) and duration (time
since the start of wind blowing). These solutions have free parameters depending
on the choice of model for Sin. The dissipative term Sdiss for well-developed sea
plays a role of universal sink of energy at high wave numbers and does not affect
essentially the dynamics of spectral peak (see Chapter 8). In other words, we
strongly disagree with presumption that Sdiss makes an essential contribution to
the energy balance. Actually, in the case of Sdiss we even don’t have such idealized
but accurate model that gives the Miles theory. All existing models are purely
heuristic; they are not supported by theoretical considerations or experimental
observations. There is one thing only that we know for sure: Sdiss should not
surpass Sin, otherwise the wind will not excite waves. In Chapter 7 we offer the
first scientifically justified model of Sdiss. In Chapter 9 we discuss shortly the
results of numerical simulation of the wind-driven sea.

We are ready now to formulate the central message of this article. The wind-
driven sea is a very complicated object. Such complex and difficult for study
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phenomena as excitation of waves by wind and the wave-breaking make the devel-
opment of self-consistent theory of wind-driven sea an arduous problem. Never-
theless, the situation is not hopeless. The leading physical process that dominates
in the ocean and in the certain wave-tanks is the nonlinear four-wave interaction;
this process can effectively be studied analytically and numerically. It is widely
accepted that on the ”rear face” of the spectrum, in the equilibrium range of wave
numbers, the Hasselmann equation should be reduced to the stationery equation

Snl + Sin + Sdiss = 0. (1.24)

Some researches suppose that all three terms in this equation are equally impor-
tant, while some others believe that Snl is the term of secondary importance,
comparable with Sin. Our viewpoint is completely different: the leading term in
the balance equation (1.24) is the collision term Snl. Thus the study of equation
(1.23) is a matter of key importance. It has plenty solutions, which can be used for
description of observed spectra and are characterized by constant fluxes of wave
action, energy and momentum. In the real sea in presence of Sin and Sdiss the
fluxes are not constant: they are slowly varying functions on wave vector k. If Sin

and Sdiss are known, the solution behind the spectral peak can be efficiently found
by combination of analytic and numeric approaches.

In the same way, the conservative equation (1.22), though not being complete,
is a very good approximation of the more exact equation (1.21). It has self-similar
solution that depends on two arbitrary parameters. In the real sea these constants
are slow varying functions on wave vector and time. They can be found from the
average equation

∂

∂t
〈N〉 + 〈∂ω

∂k
∇N〉 = 〈Sin + Sdiss〉, (1.25)

where averaging means integration over k. In Chapter 6 we discuss equation (1.25)
in more details and just mention now that to get it we have assumed 〈Snl〉 = 0.
What is formulated above sounds like a program for future researchers, however
this program is rather far advanced, and in this article we present some aspects of
its current status.

2 Kinetic Hasselmann equation

We study the weakly nonlinear waves on the surface of an ideal fluid on infinite
depth in an infinite basin. The vertical coordinate is

−∞ < z < η(r, t), r = (x, y), (2.1)

the fluid is incompressible,
div V = 0, (2.2)
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and velocity V is a potential field

V = ∇Φ, (2.3)

where potential Φ satisfies the Laplace equation

∆ Φ = 0 (2.4)

under boundary conditions

Φ|z=η = Ψ(r, t), Φz|z=−∞ = 0. (2.5)

The total energy of the fluid, H = T + U , has the following terms:

T =
1

2

∫

d~r

∫ η

−∞

(∇Φ)2 dz =
1

2

∫

Ψ Φn dS, (2.6)

U =
1

2
g

∫

η2 d~r. (2.7)

The Dirichlet-Neumann boundary problem (2.4), (2.5) is uniquely resolved;
thus the flow is defined by fixation of η and Ψ. This pair of variables is canonical;
thus the evolution equations for η, Ψ take the form [28]:

∂η

∂t
=

δH

δΨ
,

∂Ψ

∂t
= −δH

δη
. (2.8)

After non-symmetric Fourier transform,

Ψ(r) =

∫

Ψ(k) eikr dk, Ψ(k) =
1

(2π)2

∫

Ψ(r) e−ikr dr, (2.9)

equation (2.8) reads:

∂η

∂t
=

δH̃

δΨ∗

k

,
∂Ψ

∂t
= − δH̃

δη∗k
, (2.10)

H̃ =
1

4π2
H = H0 + H1 + H2 + · · · (2.11)

In [41, 42] was shown that Hamiltonian H̃ can be expanded in Taylor series in
powers of η:

H0 =
1

2

∫

{

k|Ψk|2 + g |ηk|2
}

dk

H1 =
1

2

∫

L(1)(k1, k2)Ψk1
Ψk2

ηk3
δ( ~k1 + ~k2 + ~k3) dk1 dk2 dk3 (2.12)

H2 =
1

2

∫

L(2)(k1, k2, k3, k4)Ψk1
Ψk2

ηk3
ηk4

δ(k1 + k2 + k3 + k4) dk1dk2ηk3
ηk4
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Here

L(1)(k1, k2) = −(k1, k2) − |k1| |k2| (2.13)

L(2)(k1, k2, k3, k4) =
1

4
|k1||k2| {−2|k1| − 2|k2| + |k1 + k3| + |k1 + k4| + |k2 + k3| + |k2 + k4|}

Variables η, Ψ are not the optimal canonical ones. We can perform a canonical
transformation to new variables in such a way that cubic terms in the Hamiltonian
will be cancelled. The details of this transformation are given in Appendix 1.

Let us denote the new variables as ξ, R. In new variables the cubic terms in
the Hamiltonian vanish and one can introduce the normal variables bk,

ξk =
1√
2

(

k

g

)1/4

(bk + b∗
−k),

Rk =
i√
2

(

g

k

)1/4

(bk − b∗
−k). (2.14)

In new variables equation (2.10) takes form

∂bk

∂t
+ i

δH̃

δb∗k
= 0, (2.15)

where the Hamiltonian is expressed as

H̃ =

∫

ωk bk b∗k dk +
1

4

∫

Tk1k2k3k4 b∗
k1

b∗
k2

bk3
bk4

×

×δ(k1 + k2 − k3 − k4) dk1 dk2 dk3 dk4, (2.16)

and the coupling coefficient Tk1k2,k4k3
satisfies the symmetry conditions:

Tk1k2,k3k4
= Tk2k1, k3k4

= Tk1k2, k4k3
= Tk2k4,k1k2

. (2.17)

The explicit expression for T is complicated [32, 42]:

T12,34 =
1

2

(

T̃12,34 + T̃21,34

)

,

T̃12,34 = −1

2

1

(k1k2k3k4)1/4

{

− 12k1k2k3k4 −

−2(ω1 + ω2)
2
[

ω3ω4

(

(~k1 · ~k2) − k1k2

)

+ ω1ω2

(

(~k3 · ~k4) − k3k4

)] 1

g2

−2(ω1 − ω3)
2
[

ω2ω4

(

(~k1 · ~k3) + k1k3

)

+ ω1ω3

(

(~k2 · ~k4) + k2k4

)] 1

g2
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−2(ω1 − ω4)
2
[

ω2ω3

(

(~k1 · ~k4) + k1k4

)

+ ω1ω4

(

(~k2 · ~k3) + k2k3

)] 1

g2

+[(~k1 · ~k2) + k1k2][(~k3 · ~k4) + k3k4] + [−(~k1 · ~k3) + k1k3][−(~k2 · ~k4) + k2k4]

+[−(~k1 · ~k4) + k1k4][−(~k2 · ~k3) + k2k3]

+4(ω1 + ω2)
2 [(~k1 · ~k2) − k1k2][(~k3 · ~k4) − k3k4]

ω2
1+2 − (ω1 + ω2)2

+4(ω1 − ω3)
2 [(~k1 · ~k3) + k1k3][(~k2 · ~k4) + k2k4]

ω2
1−3 − (ω1 − ω3)2

+ 4(ω1 − ω4)
2 [(~k1 · ~k4) + k1k4][(~k2 · ~k3) + k2k3]

ω2
1−4 − (ω1 − ω4)2

}

. (2.18)

Here ωi =
√

g |ki|. Then equation (2.15) reads:

∂bk

∂t
+ i

(

ωk bk +
1

2

∫

Tkk1k2k3 b∗
k1

bk2
bk3

δ(k + k1 − k2 − k3) dk1dk2dk3

)

= 0. (2.19)

This equation was derived and studied in [28, 41, 42].
Equation (2.10) has natural motion constants of energy and momentum,

H̃ = const, P̃ =

∫

~k bk b∗k dk = const. (2.20)

while equation (2.19) conserves one additional constant N :

Ñ =
1

g

∫

|bk|2 dk. (2.21)

Thereafter we call (2.21) the ”wave action”. The energy and momentum are exact
motion constants, while Ñ is only an approximate integral. Next-order resonant
wave interactions, including five-wave interaction, destroy conservation of wave
action. However, this process is slow (see [43]).

Let us start now the statistical description of the basic dynamic equation.
Since this moment we assume that η(~r, t), Ψ(~r, t) are random fields and in the first
approximation consider them statistically homogenous. One can introduce the
following correlation functions:

〈η(r) η(r + R)〉 = I(R) (2.22)

〈ηk ηk′〉 = Ik δ(k + k′) (2.23)

〈bk b∗k′〉 = g Nk δ(k − k′) (2.24)

〈ξk ξk′〉 = Ĩk δ(k + k′) (2.25)

I(R) =

∫

Ik eikR dk (2.26)
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Functions I(k) and Ĩ(k) are close to each other. In the area of spectral maximum

∆(k) =
Ĩ(k) − I(k)

I(k)
∼ µ2

is small, however it grows fast at k → ∞. This subject is discussed in details in
the forecoming article [43]. By definition

Ĩ(k) =
ω(k)

2
(Nk + N−k). (2.27)

Thereafter we assume that N = N(r, k, t) is also a slowly varying function
on coordinate r and accept that N = N(r, k, t) satisfies the Hasselmann kinetic
equation. The derivation of the resulting equation

dNk

dt
= Snl = πg2

∫

|Tkk1,k2k3
|2 δ(k + k1 − k2 − k∗

3) δ(ωk + ωk1
− ωk2

− ωk3
) ×

×(Nk1
Nk2

Nk3
+ NkNk2

Nk3
− NkNk1

Nk2
− NkNk1

Nk3
)dk1dk2dk3. (2.28)

can be found, for instance, in [41, 42]. Here

dNk

dt
=

∂Nk

∂t
+

∂ω

∂k
∇Nk (2.29)

and Tkk1k2k3
is a homogenous function of order 3:

Tλk,λk1,λk2,λk3
= λ3 Tkk1k2k3

. (2.30)

Simple calculation shows that Tk,k,k,k = T = 2k3.
For smooth spectra Snl can be estimated as follow:

Snl ' 4π ωp µ4
p Nk. (2.31)

Notice that µ4
p ' 〈η2〉2ω8

p/g
4, thus Snl ' ω9

p. That makes Snl very sensitive to
the accurate calculation of ωp. Moreover, the experimental spectra usually have
”peakedness”, when the essential part of wave energy is concentrated in a narrow
spectral band δk near the spectral peak wave number kp. In this case the resonant
interaction term is much more powerful. To estimate it, let us change the variables,
ki = kp + κi, and perform the expansion

ωk +ωk1
−ωk2

−ωk3
= (~V ,~κ+~κ1 −~κ2 −~κ3)+∆ωk −∆ωk1

−∆ωk2
−∆ωk3

(2.32)

~V =
∂ω

∂~k
, ∆ωk =

1

2

∂2ω

∂ki∂kj

∣

∣

∣

∣

∣

k=kp

κiκj

13



After replacement Tkk1k2k3
→ Tkp,kp,kp,kp = 2k3

p, the nonlinear term Snl reads:

Snl = 4πk6
p

∫

(Nκ1
Nκ2

Nκ3
− NκNκ2

Nκ3
− NκNκ1

Nκ2
− NκNκ1

Nκ3
) ×

×δ(κ + κ1 − κ2 − κ3) δ(∆ωκ + ∆ωκ1
− ∆ωκ2

− ∆ωκ3
) dκ1 dκ2 dκ3 (2.33)

If δk is characteristic width of the spectrum, the characteristic value of ∆ω is the
following:

∆ω ' 1

8
ωp

(δ k)2

k2
p

. (2.34)

Replacement ωp → ∆ω leads to multiplication of Snl by factor ωp/∆ω ' 8k2
p/(δk)2,

and finally we get for Snl the following estimate:

Snl ' Λ ωp µ4
p N3

k (2.35)

Here Λ is the ”enhancement factor” that depending on peakedness varies within
limits 10 < Λ < 103. An accurate estimate of Λ is a very delicate problem because
of its strong susceptibility from detailed picture of the spectrum. Moreover, the
enhancing factor could strongly depend on frequency ω. Anyway, we insist that
after a very short initial period of wind-sea development, Snl becomes the leading
player in the wind-sea balance. The negligence of Λ is the main reason that leads to
underestimating of Snl role in the energy balance of wind-driven sea. Notice, that
peakedness should not be too strong, otherwise the spectra become too narrow for
regular statistical description. The narrow spectra are modulationally unstable
and generate freak waves (see [44, 45]).

The next important question concerns the constants of motion. For infinite
statistically homogenous sea all motion constants are infinite, however their spatial
density is finite. Quantities

N =

∫

Nk dk, E =

∫

ωk Nk dk = 〈η2〉, ~P =

∫

~k Nk d~k, (2.36)

are finite. We should expect that they conserve energy but it is true only partly.
This question was carefully studied in article [29]. In fact, only Nk is the motion
constant, while E and ~P ”escape” to the area of very short waves, k → ∞, forming
powerlike Kolmogorov type tails. They are just ”formal” motion constants. In
more details this question is described in Chapter 6.

Thereafter we will often use polar coordinates in k-space. More exactly speak-
ing, we will use coordinates ω, φ, such that |k| = ω2/g. In these coordinates the
action spectrum N(ω, φ) is defined as

N(ω, φ) dω dφ = N(~k) d~k, (2.37)
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that actually means that

N(ω, φ) =
2ω3

g2
N(~k). (2.38)

Now we can introduce the energy spectrum

F (ω, φ) = ω N(ω, φ) (2.39)

and define

N(ω) =

∫ 2π

0
N(ω, φ) dφ, (2.40)

F (ω) =

∫ 2π

0
F (ω, φ) dφ. (2.41)

Notice that we already have defined F (ω) by equation (1.8). It is not obvious that
equation (2.43) leads to the same F (ω), but they coincide in a certain approxima-
tion. Let us perform the time Fourier transform of bk(t) and introduce the pair
correlation function

〈b(k, ω) b∗(k′, ω′)〉 = g N(k, ω) δk−k′ δω−ω′ (2.42)

In the case of weak nonlinearity, N(k, ω) and N(k) are connected by relation

N(k, ω) = N(k) δ(ω − ωk), (2.43)

which can be easily proved for the waves of very small amplitude. If (2.43) is
satisfied, definitions of F (ω) by both equations (1.8) and (2.41) coincide.

Notice also that the spatial spectrum of elevation (1.16) can be expressed in
terms of Nk as follow:

Ik = πk(Nk + N−k) (2.44)

3 Kolmogorov-type spectra

In this chapter we address the following question: How to solve the stationery
kinetic equation

Snl ≡ 0 ? (3.1)

Formally speaking, this equation has thermodynamically equilibrium solutions

Nk =
T

ωk + µ
, (3.2)

15



where temperature T and µ are constants. However, we should be more careful.
Suppose that Nk depends on modulus ~k only. Let k = |~k|, and

Nk = k−x. (3.3)

By plugging (3.3) into (3.1) we find that each particular term in Snl is diverging,
but in different terms the divergence can be cancelled, thus there is a ”window of
opportunity” for the exponent x. As a result,

Snl = g3/2 k−3x+19/2 F (x). (3.4)

Here F (x) is a dimensionless function, defined inside interval x1 < x < x2. The
edges of the window, x1 and x2, are the subject for determination.

Let us study the quadruplet of waves with wave vectors ~k,~k1,~k2,~k3, satisfying
resonant conditions (1.12). Suppose that |k1| � |k|. The three-wave resonant
condition,

~k = ~k2 + ~k3, ωk = ωk2
+ ωk3

, (3.5)

has no nontrivial solutions, thus one of vectors ~k2,~k3 must be small. If |k3| � |k2|,
then

~k2 = ~k + ~k1 − ~k3,

ω(k2) =
√

gk

(

1 +
1

2

(k,~k1 − ~k3)

k2
+ · · ·

)

, (3.6)

and we can put |k3| = |k1|. Vectors ~k1,~k3 are small and have approximately
the same length k1. If vector k is directed along axis x, the coupling coefficient
Tkk1k2k3

depends on four parameters k, k1, θ1, θ3. Here θ1, θ3 are angles between
~k1,~k3 and ~k. Remembering that k1 � k, we calculate the coupling coefficient in
this asymptotic domain. A tedious calculation presented in article [25] leads to
the following compact result:

Tkk1k2k3
' 1

2
k k2

1 Tθ1,θ3
,

Tθ1,θ2
= 2(cos θ1 + cos θ3) − sin(θ1 − θ3)(sin θ1 − sin θ3). (3.7)

On the diagonal k3 = k1, θ3 = θ1 we get a very simple expression published in
2003 [32]:

Tkk1
' 2k2

1k cos θ1. (3.8)

Suppose that spectrum is separated to the low-frequency component N0(k) and
the high-frequency component N1(k). We assume that N1 � N0 and take into
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account the interaction between N0 and N1 only. One can see that N1 satisfies the
linear diffusion equation

∂

∂t
N1 =

∂

∂ki
Dij k2 ∂

∂kj
N1, (3.9)

where Dij is the diffusion tensor

Dij = 2πg3/2
∫

∞

0
dq q17/2

∫ 2π

0
dθ1

∫ 2π

0
dθ3|T (θ1, θ3)|2 pipjN(θ, q)N(θ3, q) (3.10)

p1 = cos θ1 − cos θ3, p2 = sin θ1 − sin θ3

If spectrum is isotropic and does not depend on angle θ, we get the further sim-
plification:

Dij = D δij , D =
5

8
π3 g3/2

∫

∞

0
q17/2 N2(q)dq. (3.11)

Taking into account (3.3), we find that diffusion coefficient D diverges at k → 0 if
x > 19/4. Thus x2 = 19/4.

Let us find behavior of function F (x) near x = x2. In the isotopic case equation
(3.9) reads

∂N1

∂t
=

D

k

∂

∂k
k3 ∂

∂k
N1. (3.12)

If k → 19/4, we get the following estimate:

F (x) =
19

4
· 11

4
· 5π3

16

1

19/4 − x
' 126.4

19/4 − x
(3.13)

To find x1, the lower end of window, we should study the influence of short
waves to the long ones. Let us suppose that |k1|, |k2| � k. In the first approxima-
tion |k3| = |k|, and the resonant interaction Snl can be separated into two groups

of terms: Snl = S
(1)
nl +S

(2)
nl . For S

(1)
nl the integrand includes product Nk1

Nk2
. If we

put k1 = k2, we get the following expression for the low-frequency tail of spectrum:

S
(1)
nl = 2πg2

∫

|Tkk1,k1,k3
|2 δ(ω − ωk3

) (Nk3
− Nk) N2

k1
dk1. (3.14)

Notice, if |k1| � |k|, then |Tkk1,k1,k3
|2 ' k2

1 and integrand in (3.14) is proportional
to k2

1 N2
k1

. If x < 2, integral (3.14) diverges.
The group of terms linear with respect to the high-frequency tail of spectrum

is more complicated:

S
(2)
nl = 2πg2 Nk

∫

|Tkk1k2k3
|2 Nk3

(Nk1
− Nk2

) ×

× δ(ωk + ωk1
− ωk2

− ωk3
) δ(k + k1 − k2 − k3) dk1 dk2 dk3. (3.15)
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Figure 1: Plot of function F (x).

We can perform expansion

Nk1
− Nk3

= pi
∂N

∂k1i
, pi = (k − k3)i. (3.16)

In the general anisotropic case the integrand is proportional to k2
1(p∇Nk1

) and
the divergence occurs if x = x1 = 2. However, in the isotropic case this term,
the most divergent one, is cancelled after integration by angles. In this case we
should study quadratic terms in expansion of the integrand in powers of parameter
(P, k1)/k

2
1. The most aggressive term appears from the expansion of δ-function on

frequencies δ(ωk1
− ωk1+p + ωk − ωk3

). Performing integration by angles we end
up with the equation

∂Nk

∂t
= q k7 Nk

∂N

∂k
, (3.17)

q =
25

16
π3 g3/2 E =

25

8
π3 g3/2

∫

∞

0
k3/2 Nk dk.

Here E is the total energy. Thus in the isotropic case x1 = 5/2 and we get for
function F (x) the following estimate:

F =
5

2

25

8
π3 1

5/2 − x
=

241.86

5/2 − x
. (3.18)

On Figure 1 is presented the plot of function F (x) for the isotropic case that
we calculated numerically. One can see that in the interval x1 < x < x2 function
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F (x) has exactly two zeros at

x = y1 = 4, x = y2 =
23

6
. (3.19)

To prove this result, let us consider that spectra are isotropic and present conser-
vation laws of energy and wave action in the differential form:

∂Ik

∂t
= 2πkωk

∂Nk

∂t
= −∂P

∂k
, (3.20)

P = 2π

∫ k

0
kωk Snl dk, (3.21)

2πk
∂Nk

∂t
=

∂Q

∂k
, (3.22)

Q = 2π

∫ k

0
k Snl dk. (3.23)

Here P is the flux of energy directed to high wave numbers, while Q is the flux of
wave action directed to small wave numbers. Equations

P = P0 = const, Q = Q0 = const (3.24)

apparently are solutions of stationary equation Snl = 0. We will look for the
solution in the powerlike form N = λ k−x; then equations (3.24) read

P0 = 2πg2 λ3 F (x)

3(x − 4)
k−3(x−4) (3.25)

Q0 = −2πg3/2 λ3 F (x)

3(x − 26/3)
k−3(x−26/3) (3.26)

One can see that P0 and Q0 are finite only if F (4) = 0 and F (26/3) = 0, moreover,
if F ′(4) > 0 and F ′(26/3) < 0. We conclude that equation Snl = 0 has the following
solutions:

N
(1)
k = cp

(

P0

g2

)1/3 1

k4
, (3.27)

N
(2)
k = cq

(

Q0

g3/2

)1/3 1

k23/6
. (3.28)

Here cp, cq are dimensionless Kolmogorov constants

cp =

(

3

2π F ′(4)

)1/3

, cq =

(

3

2π |F ′(23/6)|

)1/3

.
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Figure 2: Plot of function F (x); zoom in the vertical direction.

On Figure 2 is presented the zoom of function F (x) in vertical coordinate. The
numerics gives F ′(4) = 45.2 and F ′(23/6) = −40.4. In the area of zeros F (x) can
be approximated by parabola,

F (x) ' 256.8(x − 23/6)(x − 4). (3.29)

To estimate the Kolmogorov constants, we need the value of F (x) at x = 9/2; that
is:

F (9/2) = 85.6. (3.30)

Thus we get
cp = 0.219, cq = 0.227, (3.31)

and see that the both Kolmogorov constants are numerically small. In the ”parabolic
approximation” (3.29)

In the isotropic case, the energy spectrum F (ω) defined by (1.8) can be ex-
pressed through Nk,

F (ω)dω = 2πωk Nk k dk, (3.32)

and the energy spectrum corresponding to solution (3.27) has the following form,
called Zakharov-Filonenko spectrum:

F (1)(ω) = 4πcp

(

P

g2

)1/3 g2

ω4
. (3.33)

This spectrum was found in 1966 as a solution of equation Snl = 0 [10]. For the
spatial spectrum

Ik dk = 2πωk N(k) k dk, (3.34)
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solution (3.27) transforms to

I
(1)
k = 2π cp

(

P

g2

)1/3 g1/2

k5/2
' k−2.5. (3.35)

Spectra (3.27), (3.33), (3.25) are realized if we have a source of energy that is
concentrated at small wave number and generates the amount of energy P in a
unit of time. For the spectrum (3.28), first reported by Zakharov in 1966 [34],

I
(2)
k = 2π cq Q1/3 k−7/3 ' 2π cq Q1/3 k2.33, (3.36)

F (2)(ω) = 4π cq Q1/3 g4/3

ω11/3
. (3.37)

Spectra (3.30) and (3.36) can be realized in the case of a small source of wave
action in the high wave numbers area.

The described spectra exhaust all powerlike isotropic solutions of the stationary
kinetic equation Snl = 0. It is important to stress that thermodynamical solutions
N = const and N = c/k1/2 are not the solutions of this equation, because their
exponents x = 0 and x = 1/2 are far below the lower end of the ”window of pos-
sibility” x1 = 5/2. This fact means that thermodynamics has nothing in common
with the theory of wind-driven sea.

Solutions (3.29) and (3.30) are not the unique stationary solutions of Snl = 0.
The general isotropic solution describes the situation when both the energy source
at small wave numbers and the wave action source exist simultaneously and have
the following form:

N
(3)
k = cp

(

P

g2

)1/3 1

k4
L

(

g1/2 Q k1/2

P

)

. (3.38)

Here L is an unknown function of one variable,

L → 1 at k → 0, L(ξ) → cq

cp
ξ1/3 at k → ∞. (3.39)

In Chapter 5 we will present the approximate but rather accurate form of
(3.38). Moreover, we will show that equation (1.21), (3.1) has a rich family of
anisotropic solutions parameterized by an arbitrary function of one variable: the
angular dependence of the spectrum at a certain value of frequency. In particular
we will present anisotropic KZ solutions depending on three fluxes: wave action
Q, energy P , and momentum Rx.
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4 Damping due to nonlinear interaction

In this Chapter we show that Snl is the leading term in the balance equation
(1.24). In fact, the forcing terms Sin and Sdiss are not known well enough, thus it
is reasonable to accept the most simple models of both terms assuming that they
are proportional to the action spectrum:

Sin = γin(k) N(k), (4.1)

Sdiss = −γdiss(k) N(k). (4.2)

Hence
γ(k) = γin(k) − γdiss(k). (4.3)

In reality γdiss(k) depends dramatically on the overall steepness µ. We will
discuss this point in Chapter 8. So far let us notice that the balance kinetic
equation (1.24) can be written in the form

Snl + γ(k) Nk = 0, (4.4)

and present the Snl term as follow:

Snl = Fk − Γk Nk, (4.5)

Fk = πg2
∫

|Tkk1k2k3
|2 δ(k + k1 − k2 − k3) δ(ωk + ωk1

− ωk2
− ωk3

) ×

×Nk1
Nk2

Nk3
dk1dk2dk3, (4.6)

Γk = πg2
∫

|Tkk1k2k3
|2 δ(k + k1 − k2 − k3) δ(ωk + ωk1

− ωk2
− ωk3

) ×

×(Nk1
Nk2

+ Nk1
Nk3

− Nk2
Nk3

) dk1dk2dk3. (4.7)

The solution of stationary equation (4.4) is the following:

Nk =
Fk

Γk − γk
. (4.8)

The positive solution exists if Γk > γk. The term Γk can be treated as the nonlinear
damping that appear due to four-wave interaction. This damping has a very
powerful effect. A ”naive” dimensional consideration gives

Γk ' 4πg2

ωk
k10 N2

k , (4.9)

however, this estimate works only if k ' kp; kp being the wave number of the
spectral maximum.
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Let k � kp. Now for Γk one gets

Γk = 2πg2
∫

|Tkk1,kk3
|2 δ(ωk1

− ωk3
) Nk1

Nk3
dk1dk2. (4.10)

The main source of Γk is the interaction of long and short waves. To estimate
integral (4.7) more accurately, we assume that the spectrum of long waves is narrow
in angle, N(k1, θ1) = Ñ(k1) δ(θ1). Long waves propagate along the axis x and ~k
is the wave vector of short wave propagating in direction θ. For the coupling
coefficient we must put Tkk1,k2,k3

' 2k2
1k cos θ. Then

Γk = 8πg3/2 k2 cos2 θ

∫

∞

0
k

13/2
1 Ñ2(k1) dk1. (4.11)

Even for the most mildly decaying KZ spectrum, Nk ' k−23/6, the integrand in

(4.8) behaves like k
−7/6
1 and the integral diverges. For more steep KZ spectra the

divergence is stronger.
Let us estimate Γk for the case of ”mature sea”, when the spectrum can be

taken in the form

Nk ' 3

2

E√
g

k
3/2
p

k4
θ(k − kp). (4.12)

Here E is the total energy. By plugging (4.12) to (4.11) one gets the equation

Γω = 36 πω

(

ω

ωp

)3

µ4
p cos2 θ, (4.13)

that includes a huge enhancing factor: 36π ' 113.04. For the very modest value
of steepness, µp ' 0.05, we get

Γω ' 7.06 · 10−4ω

(

ω

ωp

)3

cos2 θ. (4.14)

In the isotropic case, to find Γk for ω/ωp � 1 we need to perform simple
integration over angles that yields:

∫ 2π

0

∫ 2π

0
T 2

θ1,θ2
dθ1 dθ2 =

5

2
(2π)2.

Now, instead of (4.11) we get:

Γk = 5πg3/2k2
∫

∞

0
k

13/2
1 Ñ(k1)

2 dk1 (4.15)
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or

Γω =
45π

2
g3/2ω

(

ω

ωp

)3

µ4
p. (4.16)

Finally, assuming that

Nkp
' 3

2

E
√

gk
5/2
p

,

we get from (4.9) the following estimate for Γp = Γ|k=kp:

Γp ' 9πωpµ
4
p (4.17)

Even in this case we have a pretty high enhancing factor: 9π ' 28.26. In Chapter
6 we will show that in all known models Γk surpasses γk at least in order of
magnitude even for these very smooth waves.

In the presence of peakedness

Γp ' Λ ωpµ
4
p. (4.18)

Here Λ ' 4πωp/δω is the enhancing factor due to peakedness. If Λ µ2
p ∼ 1,

then Γp is associated with the maximal growth of modulational instability for
monochromatic wave: Γp ' γmod ∼ ωpµ

2
p. If Λ ∼ 1/µ2

p, the nonlinearity becomes
so strong that the weak-turbulent statistical approach is not applicable. This is
quite realistic situation. Suppose that µp ' 0.11 and ωp/δω ' 5. Then Λ µ2

p ∼ 0.76
and the weak turbulent description is hardly correct. In the situation of strong
nonlinearity the wind-driven sea generates freak waves (see [44, 45]). The very fact
of their existence as a common phenomenon is an implicit proof of Snl domination
in the energy balance.

Notice that Γk diverges for KZ spectra. However, it does not hurt the spectra
existence because in the full kinetic equation the divergence in Γk is cancelled by
divergence in Fk. Indeed, if we consider the contribution of small wave-numbers
in integral (4.1), we end up with the following expression:

Fk = 2πg2 Nk

∫

|Tkk1,kk3
|2 δ(ωk1

− ωk3
) Nk1

Nk3
dk1dk3 ' Nk Γk. (4.19)

In negligence of γk, equation (4.5) is satisfied automatically.
Let us return to equation (4.1) and assume that the total energy is finite,

E < ∞, and the flux of all motion constants to and from infinity is zero. This is
possible, if the following conditions are satisfied:

∫

γ(k) Nk dk = 0, (4.20)
∫

ωk γ(k) Nk dk = 0, (4.21)
∫

~k γ(k) Nk dk = 0. (4.22)
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To satisfy these conditions, we must assume that γ(k) is positive in some area
bounded from both ends: γ(k) > 0 if kmin < k < kmax. We have to demand
that γk < 0 for k > kmax and k < kmin. Dissipation in high wave numbers
is not a problem: either the white capping mechanism or the transformation to
capillary waves are efficient enough to absorb the flux of energy headed to k →
∞. The dissipation of long waves is a matter of discussion. Does such thing as
”mature sea” really exist? Does the arrest of frequency downshift come from finite
time of any duration and finite size of any fetch? This is a question directed to
experimentalists.

In equation (4.8) we can put Γ̃k = Γk − γk. If we know Γ̃k, we can restore the
spatial frequency spectrum Nk,ω as follow:

Nk,ω =
1

π

Γ̃k

(ω − ω̃k)2 + Γ̃2
k

. (4.23)

Here

ω̃k = ωk + 2πg2
∫

|Tkk1
|2 Nk1

dk1 (4.24)

is the dispersion law of surface waves renormalized due to nonlinear wave interac-
tion.

5 Differential form of Hasselmann equation

In this Chapter we exploit the fact that Hasselmann equation conserves wave
action, energy, and momentum at least on the formal level. We start with the
equation in polar coordinates:

∂N(ω, φ)

∂t
+

g

2ω
cos φ

∂(ω, φ)

∂x
= Snl + γ(ω, φ) N(ω, φ), (5.1)

Snl(ω, φ) = 2πg2
∫

|Tω,ω1,ω2,ω3
|2 δ(ω + ω1 − ω2 − ω3) ×

×δ(ω2 cos φ + ω2
1 cos φ1 − ω2

2 cosφ2 − ω2
3 cos φ3) ×

×δ(ω2 sin φ + ω2
1 sin φ1 − ω2

2 sin φ2 − ω2
3 sin φ2) ×

×
{

ω3 N(ω1, φ1) N(ω2, φ2) N(ω3, φ3) + ω3
1 N(ω, φ) N(ω2, φ2) N(ω3, φ3)−

−ω2
2 N(ω, φ) N(ω1, φ1) N(ω3, φ3) − ω2

3 N(ω, φ) N(ω1, φ1) N(ω2, φ2)
}

dω1 dω2 dω3 dφ1 dφ2 dφ3. (5.2)
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Exactly this form of Snl is used for numerical simulation of Hasselmann equa-
tion. Suppose that N(ω, φ) = ω−z is isotropic spectrum. Then

Snl =
ω−3z+13

4g4
F

(

z + 3

2

)

=
G(z)

g4
ω−3z+13, (5.3)

where F (x) is presented on Figures 1, 2. Now the ”window of opportunity” is:
2 < z < 13/2. Zeros of G(z) are posed at z1 = 5 and z2 = 14/3 and near these
zeros G(z) can be presented as parabola,

G(z) ' 16.05(z − 5)(z − 14/3). (5.4)

To make the motion constants more conspicuous, we introduce the elliptic differ-
ential operator

L f(ω, φ) =

(

∂2

∂ω2
+

2

ω2

∂2

∂φ2

)

f(ω, φ) (5.5)

with following parameters: 0 < ω < ∞, 0 < φ < 2π. Equation

L G = δ(ω − ω′) δ(φ − φ′) (5.6)

with boundary conditions

G|ω→0 = 0, Gω→∞ < ∞, G(2π) = G(0),

can be resolved as

G(ω, ω′, φ − φ′) =
1

4π

√
ωω′

∞
∑

n=−∞

ein(φ−φ′) ×

×
[

(

ω

ω′

)∆n

Θ(ω′ − ω) +

(

ω′

ω

)∆n

Θ(ω − ω′)

]

, (5.7)

where ∆n = 1/2
√

1 + 8n2. Now we present Snl in the form:

A(ω, φ) =

∫

∞

0
dω′

∫ 2π

0
dφ′ G(ω, ω′, φ − φ′) Snl(ω

′, φ′). (5.8)

Notice that A(ω, φ) is a regular integral operator and suppose that N(ω, φ) =
ω−z. Then

A[ω−z] =
ω−3z+15

g4
H(z),

H(z) =
G(z)

9(z − 5)(z − 14/3)
. (5.9)
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Function H(z) is positive and has no zeros. If G(z) is presented by parabola (5.4),
H(z) is just a constant:

H(z) = H0 = 16.05/9 = 1.83. (5.10)

This fact leads to a bold idea. If we assume that

A =
H0

g4
ω15 N3, (5.11)

the nonlinear term Snl turns to the elliptic operator:

Snl =
H0

g4

(

∂2

∂ω2
+

2

ω2

∂2

∂φ2

)

ω15 N3. (5.12)

This is the so-called ”diffusion approximation”, introduced in article [33]. Being
very simple, it grasps the basic features of wind-driven sea theory. We will refer
mostly to this model, having in mind that the real case (5.9) does not differ much
from it, at least qualitatively.

Let us integrate equation (5.1) by angles. We get:

∂N(ω, t)

∂t
+

∂B(ω, t)

∂x
=

∂Q

∂ω
+ S(ω, t). (5.13)

As before, here N(ω, t) =
∫ 2π
0 N(ω, φ) dφ. Then

B(ω, t) =
g

2ω

∫ 2π

0
cos φ N(ω, φ) dφ, S(ω, t) =

∫

γ(ω, φ) N(ω, φ) dφ, (5.14)

and the flux of wave action is:

Q =
∂K

∂ω
, K =

∫ 2π

0
A(ω, φ) dφ. (5.15)

After multiplication of equation (5.9) by ω one obtains equation

∂F (ω, t)

∂t
+

∂

∂x
ω B(ω, t) +

∂P

∂ω
= ω S(ω, t), (5.16)

where P = K − ω ∂K/∂ω is the flux of energy.
Let us introduce now the following definitions: the integrated by angle spectral

density of momentum

Mx(ω, t) =
ω2

g

∫ 2π

0
cos φ B(ω, φ) dφ, (5.17)
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the quantity

Cx(ω, t) =
ω

2g

∫ 2π

0
cos2 φ N(ω, φ) dφ, (5.18)

the flux of momentum

Rx =

∫ 2π

0
cos φ(ω A − ω2

2

∂A

∂ω
) dφ, (5.19)

and the spectral density of horizontal flux

τx =
ω2

g

∫ 2π

0
γ(ω, φ) N(ω, φ) cos φ dφ. (5.20)

All these quantities are connected by equation

∂Mx

∂t
+

∂Cx

∂x
+

∂Rx

∂ω
= τx. (5.21)

Equations (5.9), (5.12) and (5.17) are averaged by angle balance equations for the
basic conservative quantities.

Now we can return to the question formulated above. How many solutions has
the stationary kinetic equation (1.23), (3.1)? Notice that we simplified it to the
linear equation

(

∂2

∂ω2
+

2

ω2

∂2

∂φ2

)

A = 0. (5.22)

In particulary, kinetic equation has the KZ solution

A =
1

2π

{

P + ω Q +
Rx

ω
cos φ

}

, (5.23)

where P and Rx are fluxes of energy and momentum at ω → ∞ and Q is the flux of
wave action directed to small wave numbers. In a general case, (5.23) is a nonlinear
integral equation, however in the diffusion approximation the KZ solution can be
found in the explicit form:

N(ω, φ) =
1

(2π H0)1/3

g4/3

ω5

(

P + ω Q +
Rx

ω
cos φ

)1/3

. (5.24)

By comparison with (3.33), (3.37) we easily find that in this case

cp = cq =
1

2(2π H0)1/3
= 0.223, H0 = 1.83.

This is exactly the arithmetic mean between the values of Kolmogorov constants
given by (3.31).
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By multiplication of (5.24) to 2πω we get the general KZ spectrum in the
diffusion approximation:

F (ω) = 2.78
g4/3

ω4

(

P + ω Q +
Rx

ω
cos φ

)1/3

. (5.25)

We must be sure that in the isotropic case Rx = 0, expression

F (ω) = 2.78
g4/3

ω4
(P + ω Q)1/3 (5.26)

approximates the generic KZ spectrum with accuracy up to few percents. In the
general anisotropic spectrum (5.25) we must be more cautions.

If somehow we know the value of A(ω, φ) on the circle ω = ω0, then we can
solve the external and internal Dirichlet boundary problem for equation (5.22).
Suppose that

A(ω, φ) = A0(φ) − A0 + A1 cos φ +
∞
∑

n=2

An

(

ω0

ω

)

−1/2+
√

1/4+4n2

cosφ. (5.27)

First two terms in (5.27) present the KZ spectrum with Q = 0, P = 2πAn, Rx =
2πω0 A1. The next terms describe the fast stabilization of any arbitrary solution
to the KZ spectrum at ω/ω0 → ∞. The first additional term in (5.27) decays as
(ω0/ω)3.53 cos 2φ.

This stabilization to KZ spectrum is actually the ”angular spreading” on wind-
driven wave spectra that is usually observed in field experiments (see, for instance
[12]). If Q = 0, the general KZ solution (5.25) at ω → 0 is the following spectrum:

F (ω) → 2.78

ω4
g4/3 p1/3

(

1 +
1

3

Rx

P ω
cos φ + · · ·

)

. (5.28)

Similar results were predicted by Kontorovich and Kats [47] and Balk [48]. Inside
the circle ω = ω0, the solution of equation (5.22) is presented by series

A = A0
ω

ω0
+

∞
∑

n=1

An cos nφ

(

ω

ω0

)1/2+
√

1/4+4n2

. (5.29)

To get the finite value of N at ω → 0 one must demand that A(ω) < ω15. It
presumes that first eight terms in (5.29) must be zero (A0 = 0, . . . A7 = 0). Thus
any finite in ω → 0 solution must badly oscillate in angle. It means that the pure
conservative equation (5.22) is not applicable in the small frequency area. It must
be augmented by nonstationary, nonuniformity or additional damping. Usually
spectra in the area of small wave numbers are almost one-dimensional. Theory of
these spectra started with the work of Zakharov and Smilga [58] and is pretty well
developed now [59]. We will not discuss this theory in the presented article.
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6 Direct and inverse cascades

In this Chapter we study the forced stationary Hasselmann equation
(

∂2

∂ω2
+

2

ω2

∂2

∂φ2

)

A + γ(ω, φ) N(ω, φ) = 0. (6.1)

After integration by angle we get:

∂2

∂ω2
K + S(ω) = 0. (6.2)

Equations(6.2) are simple, nevertheless, very instructive. We have mentioned al-
ready that equation (6.1) is resolvable if only conditions (4.20–4.22) are satisfied.
It presumes that we have some dissipation in the small wave vectors area. As far
as this dissipation is an absolutely unexplored land, at the moment the study of
regular solutions of this equation is a pure academic question. Instead we study
the singular solutions of equation (6.2). For these solutions the flux of wave action
is given by expression

Q =
∂K

∂ω
=

∫

∞

ω
S(ω) dω. (6.3)

Then at ω → 0,

Q → Q0 =

∫

∞

0
S(ω) dω, (6.4)

in the same way

P = K − ω
∂K

∂ω
=

∫ ω

0
ω S(ω) dω, (6.5)

P0 = P (∞) =

∫

∞

0
ω S(ω) dω. (6.6)

Function K(ω) is given by equation

K(ω) =

∫ ω

0
dp

∫

∞

p
S(q) dq, (6.7)

that is the solution of (6.2) under boundary conditions

K(0) = 0,
∂K

∂ω
= 0 at ω → ∞. (6.8)

These conditions mean that neither energy nor the wave action come to the system
from outside. The corresponding energy spectra are singular:

F (ω) → 4π cq
g4/3 Q1/3

ω11/3
, ω → 0 (6.9)

F (ω) → 4π cp
g4/3 P

1/3
0

ω4
, ω → ∞ (6.10)
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Suppose that the source term S(ω) is concentrated at certain frequency ω = ω0:

S(ω) = S0 δ(ω − ω0). (6.11)

Then

Q(ω) = S0 = Q0 if ω < ω0, Q(ω) = 0 if ω > ω0. (6.12)

On the contrary,

P (ω) = 0 if ω < ω0, P (ω) = P0 = ω0 S0 if ω > ω0. (6.13)

The spectral range ω > ω0 can be called the ”area of direct cascade”, while
the spectral range ω < ω0 is the ”area of inverse cascade”. In the framework of
diffusion model the spectra in both areas are exactly spectra (6.9) and (6.10). In
the real sea the transition between two areas is smooth, however, as our numerical
experiments show, in the transition zone from inverse to direct cascade they are
rather narrow as is seen on Figure 2.

In the real sea S(ω) does not have a clear maximum in a certain spectral band
and separation of direct and inverse cascades is less obvious. One can consider
that if P < ω Q, the inverse cascade prevails, in the opposite case the direct
cascade dominates. In the marginal case S(ω) ' ω−3/2, for all frequencies we have
P = ω Q. In this case Nω ' ω−5+1/6 = ω−29/6 and F (ω) ' ω−23/6. This regime
is realized if γ(ω) ' ω10/3. In all existing models γ(ω) grows more slowly and
separation of inverse and direct cascades is possible. It is important to notice that
if the spectrum is approximated by powerlike function F (ω) ' ω−ν(ω), exponent
ν varies in the very narrow interval 11/3 < ν(ω) < 4. In real sea all the energy
transported to high wave frequency region must be absorbed by dissipation. Hence
P (ω) → 0 at ω → ∞.

By differentiation of equation (6.5) we get an interesting identity:

∂P

∂ω
= −ω

∂2K

∂ω2
= −ω

∂Q

∂ω
. (6.14)

It denotes that in the area ∂P/∂ω < 0, the energy is absorbed, while in the area,
where ∂Q/∂ω > 0, the flux of wave action grows. As far as Q → 0 at ω → ∞,
it means that for large wave numbers Q < 0 and at certain ω = ωmax the flux of
wave action is zero, Q = 0. One can say that waves born in the spectral range
ω > ωx move to high wave numbers, while waves born in the range ω < ωmax move
to small wave numbers, loosing their energy during this way. Apparently K > 0
reaches its maximum at ω = ωmax.

In reality energy and wave number spectra are regular at small wave numbers.
The inverse cascade is matched with nonstationary or nonhomogeneous downshift.
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At certain point ω = ωmin, the energy flux P changes its sign. This is a real lower
border of equilibrium area.

Typical distribution of fluxes during time evolution are presented on Figure 3.
In experimentally observed spectra the inverse and the direct cascades are clearly
distinguishable. An example of such spectrum is presented on Figure 4.

7 Interaction with wind

No doubts that ocean waves are generated by wind, however a reasonable theory
of this phenomenon is not developed yet, in spite of enormous invested efforts.
The difficulties are caused not only by the turbulence of atmospheric boundary
layer over the sea surface, they are caused also by necessity to take into account
the inverse influence of waves to the atmosphere. Let us put together the reliable
information about this process.

Let u, v, w be x, y, z components of the air velocity. The boundary layer is
characterized by the following measurable quantities: the averaged horizontal ve-
locity

U(z) = 〈u〉 (7.1)

and the downward Reynolds stress

−〈u w〉 = u2
∗
. (7.2)

Velocity U(z) is a slowly growing function on z, while according to the theory
∂/∂z〈u w〉 = 0. Thus, at least theoretically u∗ does not depend on height. For this
reason u∗ together with g are often used for the scaling of all quantities connected
with the boundary layer. As for U(z), this function is usually evaluated on the
”height of standard anemometer”, z = 10 m, is denoted as U10 = U |z=10 and is
also used for scaling.

Numerous measurements show that in the open sea the following relation holds
with a fair accuracy:

U10 ' 28 u∗. (7.3)

The Reynolds stress u2
∗

is directly connected with the momentum flux from air to
water,

τ = ρair u2
∗

= ε u2
∗
, (7.4)

and with the drag coefficient

cd =
u2
∗

U2
10

. (7.5)
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Relation (7.3) is the first approximation only; in fact the drag coefficient slowly
depends on U10. In 1977, Garratt offered the following law for this dependance
[49]:

cd = (0.75 + 0.067 U10) · 10−3 (7.6)

Value (7.3) is realized for U10 = 11.17 m/sec.
Both relations (7.4) and (7.6) are purely empiric. Nevertheless, with a good

accuracy,
1

28
=

1√
ε
. (7.7)

So far, this interesting fact hasn’t any theoretical interpretation. Theory of atmo-
spheric boundary layer over sea is not developed yet in a proper degree. Tradition-
ally oceanographers refer to Von-Karman - Prandtl theory of turbulent boundary
layer over the rigid flat surface. According to this theory (see, for instance [50]),
the profile of u(z) is a logarithmic function,

u(z) = 2.5 u∗ ln
z

z0
(7.8)

Here z0 is the characteristic length associated either with thickness of viscous
sublayer

zv ' 0.13 ν

u∗

(7.9)

or with characteristic roughness of the surface

z0 '
√

(∇ η)2. (7.10)

Theory of turbulent boundary layer over the rigid flat surface is question of great
practical importance and subject of numerous theoretical and experimental stud-
ies. Relation (7.9) can be considered as very well established. In the wind-driven
sea the viscous length zν is very small: with the kinematic viscosity of fluid
ν ' 0.150 cm2/sec and a typical value of u∗ = 50 cm/sec, we get

zν ' 4 · 10−4 cm. (7.11)

Hence we conclude that z0 must be the roughness of fluid. We can find z0 from
equation (7.8) assuming that at z = 103, U(z) = 28 u∗. We get:

ln
103

z0
= 11.2 z0 = 0.0136 cm ' 0.1 mm (7.12)

This is much more than estimate (7.11). Thus, viscosity does not play an important
role in the momentum transport.

33



If we believe in logarithmic profile (7.8), we should offer some analytic expres-
sion for z0. Charnock [51] offered the following formula for z0:

z0 = cCh
u2
∗

g
. (7.13)

To obtain z0 ' 0.0136 at u∗ = 50 we must choose the Charnock constant very
small,

cCh ' 5.3 · 10−3. (7.14)

Charnock formula (7.13) is widely used but is in fact very vulnerable for criticism.
For the scales of 0.1 mm the gravitational effects are completely suppressed by
capillarity. Moreover, the smallness of cCh is a new riddle that has no reasonable
solution.

It is more naturally to assume that z0 is defined by surface tension:

z0 = cz
σ

u2
∗

. (7.15)

Now cz ' 0.46 is a constant of order of unit. Implicitly formula (7.15) presumes
that all transport of momentum is realized by capillary waves. These waves must
be very much nonlinear, so it is not astonishing that constant cz, which is just a
characteristic steepness of those capillary waves, is of order of unit. Theoretically
speaking, this is an acceptable scenario but a more detailed study shows that it is
consistent neither with experiment nor with a common sense.

Logarithmic law (7.8) means that all variations of velocity from zero to char-
acteristic wing velocity are going on in a very thin layer over the sea surface. Let
z = 100 cm z0 = 1.36 cm. According to (7.8), at this height

U |z=1.36 cm = 0.41 U10. (7.16)

This is unrealistically high level of velocity. The see surface is not a polished steel
plate and wind velocity grows much more slower with the height, otherwise neither
swimming no sailing would be possible in the windy sea. Moreover, visual obser-
vations as well as optical and radio experiments show that in the range of scales
10 mm < l < 0.1 mm, the sea surface is relatively smooth. Visually observed
maximum of steepness is z0 ' 1 ÷ 2 cm. This corresponds exactly to the transi-
tion between gravity and capillary dominated waves. Theoretical justification of
this view-point is published in the article by Newell and Zakharov [52].

There are another arguments about logarithmic profile of U(z). It was men-
tioned in the monograph of Young [53] that logarithmic profile predicts too low
values of γk, even if we neglect the turbulence and perform the calculation in the
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quasilaminar approach. In this approximation the coefficient of interaction with
the wind is given by Miles formula

γk = π ε ωk
u′′

|u′| |χk|2
∣

∣

∣

∣

∣

z=zcr

(7.17)

Here U(zcr) = ω/k cos φ and χk(z) is a solution of Taylor-Goldstein equation

d2χ

dz2
=

[

k2 +
w′′

0

w0

]

χ (7.18)

with boundary conditions

χ(0) = 1, χ → 0 at z → ∞

and
w0(z) = U0(z) − ωk

k cos φ
(7.19)

Let us add unit to (7.21) to avoid singularity at z = 0:

U0(z) =
u∗

κ
ln

(

z

z0
+ 1

)

By introducing of new variable y = z/z0, we transform (7.20) to

χ′′ =

(

ξ2 +
w′′

w

)

χ =

(

ξ2 − 1

(1 + y)2
1

ln(1 + y) − λ

)

χ. (7.20)

Here w = ln(1 + y) − λ, ξ = k z0, and

λ =
ωκ

k cos φ u∗

=
ωp

ω

κ U10

u∗ cos φ
= 11.2

ωp

ω cos φ
. (7.21)

Thereafter we will assume cos φ = 1. Notice, that λ → 0 if ω/ωp → ∞.
In the area

λ � ln
1

ξ
(7.22)

the boundary problem (7.20), (7.21) can be solved analytically. For y � 1/ξ,
equation (7.20) can be simplified up to the form

χ′′ =
w′′

w
χ (7.23)

This equation can be solved explicitly:

χ = 1 +
1

λ
ln(1 + y) + c [ln(1 + y) − λ]

∫ y

0

dz

[ln(1 + z) − λ]2
(7.24)

35



Here c is indefinite, so far is a constant. The condition χ(0) = 1 is satisfied.
Another form of the same solution is the following:

χ = 1 − 1 + c

λ
ln(1 + y) + c

(

−y + [ln(1 + y) − λ]

∫ y

0

dz

ln(1 + z) − λ

)

(7.25)

From (7.24) one can see that

χ
∣

∣

∣

z=zcr

= −c(1 + y) = −c zcr

z0
(7.26)

Solution (7.24) should be matched with the far asymptotic solution χ ' e−ξy in
the area y ∼ 1/ξ. In accordance with (7.22), in this area by we can find asymptotic
behavior for χ:

χ ' − 1

λ
ln y +

cy

ln y
(7.27)

From condition χ′/χ ' −ξ at y ' 1/ξ, we get

c =
ξ

2λ
ln2 1

ξ
. (7.28)

Combining (7.19), (7.26) and (7.27) we get:

γk

ωk
' ε

π

4

k zcr

11.22
ln4 1

k z2
0

(

ω

ωp

)2

. (7.29)

If we consider the short wave limit

zcr → z0, k ' 10 cm−1, ln
1

kz0
' 6.6, k ' 0.4,

we get

γ

ω
= 0.012 ε

(

ω

ωp

)2

. (7.30)

Let us compare this formula with the ”less aggressive” empiric formula for γ/ω,
offered by Hsiao and Shemdin [2] and Plant and Wright [3]:

γ

ω
' 0.04 ε

(

ω

ωp

)2

.

We see that Miles formula underestimates the wind input term at least in factor
three. The main reason of discrepancy is the hypothesis of logarithmic shape
on the boundary layer. In fact there is no serious arguments in support of this
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approximation. On the hard polished plate, where indeed the logarithmic profile
takes place, all momentum transport happens exactly on the surface of plate at
z = 0. In the sea, the extraction of momentum from air is distributed in height.
Each wave with wave factor ~k interacts with the critical layer with horizontal
velocity Ucr = ω/k cos φ. Withholding of energy and momentum from this critical
layer is called usually ”radiation stress”. The total value of this stress is given by
integral

τrad =

∫ 2π

0
dφ

∫

∞

0
ω2 γ(ω, φ) N(ω, φ) dω. (7.31)

Apparently,
τrad ≤ ε u2

∗
(7.32)

Inequality (7.32) can be used for checking of validity of different models for γk.
It is clear from all written above that the wind-wave interaction is a self-

consistent process and a detailed study of the inverse influence of the waves on
the shaping of the atmospheric boundary layer is an important and urgent prob-
lem. Some steps on this direction were done by Fabrikant [54] and Janssen [55,
56]. They developed the so-called ”quasilinear theory of wind-wave interaction”,
similar to quasilinear theory of interaction of electrons and Langmuir waves in
non-magnetized plasma (see, for instance [57]). This theory cannot be considered
as accomplished, because the question about separation of roles between radiation
τrad and turbulent τturb stresses is not yet clear, though it demonstrates much
better approximation to reality than the ”primitive” theory of the logarithmic
boundary layer. Nevertheless, this theory did not became a basic model for de-
scription of air-water interaction. One of the reasons is the deficit of experimental
data, both the field experiments and the laboratory ones. The number of such ex-
periments is a few and their accuracy is rather poor. The scatter in measurements
of γ/ω is of order of this quantity.

On Figure 5 is plotted the dimensionless growth rate γ/f as a function of
u∗/C compiled from experimental measurements by Plant [??]. The solid line
drawn amid the experimental dots is exactly the quasilaminar Miles theory evalu-
ated by Janssen [??]. The dashed straight line drawn above corresponds to Γω/f ,
the dissipation due to nonlinear interaction. This term was calculated according
to equation (4.14) at θ = 0 and u∗ = 1

28
g
ωp

, that gives for dependance the fol-

lowing estimate: Γf/f ' 97(u∗/c)
3. It is clearly seen that the nonlinear damping

surpasses the income from wind at least in order of magnitude.
A waste literature is devoted to description of different heuristic models of Sin.

However all of them are easily surpassed by the nonlinear dissipation term Γω,
hence the question about the optimal choice of Sin is not a question of primary
importance.
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Figure 3: Dominance of nonlinear damping over input from wind. On the
right: a comparison of quasilaminar Miles theory with observational wave
growth vs frequency γ/f as given in [??]. On the left: dissipation due to
nonlinear interaction Γf/f calculated according to (4.14).
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8 Phillips sea

Numerous experiments show that that the energy spectrum F (ω) could not exceed
some experimental value

F (ω) <
α g2

ω5
. (8.1)

In different experiments the dimensionless constant α varies between 0.7 < α <
0.01. Corresponding measurements of spatial correlation function give

Ik ' αc

k4
. (8.2)

Here αc ' 10−3.
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Equation (1.15) also has a rich family of anisotropic solutions. For a real ocean
case, they are not so far properly explored. To find these solutions numerically,
we need to perform a lot of calculations; however their basic properties could
be understood in a framework of a ”toy” differential model. Instead of the real
complicated function (2.18), let us consider another function that is homogeneous
in ki and satisfies the symmetry conditions (2.17). Then, we assume that this
function is ”local”, concentrated in in the region, where all ki are close to each
other. In this case the kinetic Hasselmann equation can be replaced by the fourth-
order differential equation. This idea was offered independently by Hasselmann et
al [30] and by Iroshnikov, who performed a corresponding tedious calculation [31].
However, they did not manage to present their results in the compact form and
analyze the solutions of obtained PDE’s. The differential wave kinetic equation
was derived in [33] on the base of a very elementary consideration; see also [46].
Moreover, in the same article was offered a drastic simplification of this equation
that makes possible to reduce the fourth-order PDE kinetic equation to a nonlinear
diffusion equation. This very simple model, which can be easily studied both
analytically and numerically, inherits the basic properties of original Hasselmann
equation.

To derive the PDE Hasselmann equation one has to exploit three facts only:
this equation has a proper set of motion constants, Rayley-Jeans thermodynamic
solutions, and the kernel that is a homogenous function of order 3. These condi-
tions make possible to construct the kinetic equation by a unique way up to an
arbitrary constant. It is easier to perform in the polar coordinates in k-space,
replacing |k| by ω2/g.

Now we replace Nk → n(ω, φ) and introduce the operator

L =
1

2

∂2

∂ω2
+

1

ω2

∂2

∂φ2
, (8.3)

where φ is the angle. The PDE analog for the kinetic equation reads as

∂n

∂t
=

c

g8 ω3
L n4 ω26 L

1

n
= Snl. (8.4)

This is a unique equation, which has thermodynamic solutions (3.2) as well as
conserving quantities (2.36-2.38), and gives for axially-symmetric solutions of the
stationary equation the following expression:

Snl =
c

g8 ω3

∂2

∂ω2
n4 ω26 ∂2

∂ω2

1

n
= 0. (8.5)

Looking for solution in the form n = λ(ω2/g)−x we end up with:

Snl = c λ3 g3/2

(

ω2

g

)

−3x+9/4

F (x), (8.6)
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F (x) = 72x(2x − 1)(x − 4)(x − 23/6).

In this case ”the window of opportunity” is the whole real axis. Function F (x) has
four zeros. Besides the KZ zeros at x = 4 and x = 23/6, it has ”thermodynamic
zeros” at x = 0 and x = 1/2. For the differential version of Hasselmann equation,
the thermodynamic distribution of wave action n = P/(ω + ν) is a real solution.

Thermodynamic solutions are not the subject of our interest; we are concerned
with the fast-decaying solutions only. For these solutions we can simplify the
kinetic equation further and replace it with the nonlinear diffusion equation:

∂N(ω, φ)

∂t
=

a

g4
L ω15 N3(ω, φ) =

a

g4

(

1

2

∂2

∂ω2
+

1

ω2

∂2

∂φ2

)

ω15 N3(ω, φ). (8.7)

Here a is some dimensionless constant and

N(ω, φ) =
2ω3

g2
n(ω, φ). (8.8)

Thereafter for any function g(φ) we will notate 〈g〉 =
∫ 2π
0 g(φ) dφ; then introduce

Ñ(ω) = 〈N(ω, φ)〉 =
1

2π

∫ 2π

0
N(ω, φ) dφ. (8.9)

Apparently,

F (ω) = ωÑ(ω), N =

∫

∞

0
N̂(ω) dω, 〈σ2〉 = E =

∫

∞

0
F (ω) dω.

For the components of spectral density momentum,

Mx =
1

g
〈ω2 N(ω, φ) cos φ〉,

My =
1

g
〈ω2 N(ω, φ) sin φ〉, (8.10)

total values of momentum are:

Mx =

∫

∞

0
Mx(ω) dx, My =

∫

∞

0
My(ω) dy. (8.11)

From equation (3.44) one gets

∂Ñ

∂t
=

∂2

∂ω2
K, K =

a

2g4
〈ω15 N3(ω, φ)〉. (8.12)

46



In the similar way we obtain the conservation laws of wave action and energy in
differential form:

∂Ñ

∂t
=

∂Q

∂ω
, Q =

∂K

∂ω
, (8.13)

∂F (ω)

∂t
= −∂P

∂ω
, P = K − ω

∂K

∂ω
. (8.14)

Conservation of momentum can also be written in differential form:

∂M̂x

∂t
+

∂Rx

∂ω
= 0,

∂M̂y

∂t
+

∂Ry

∂ω
= 0. (8.15)

Here Rx, Ry are components of momentum flux. For the diffusion model of the
Hasselmann equation

Rx =
a

g5
〈cos φ

(

ω − ω2

2

∂

∂ω

)

ω15 N3(ω, φ)〉

Ry =
a

g5
〈sin φ

(

ω − ω2

2

∂

∂ω

)

ω15 N3(ω, φ)〉 (8.16)

Now we can find the general KZ (Kolmogorov-Zakharov) solution of the stationary
equation:

a

g4
L ω15 N3(ω, φ) = 0, (8.17)

N(ω, φ) =

(

2g4

a

)1/3
1

ω5

(

P + ωQ +
2Rx

ω
cos φ

)1/3

. (8.18)

Here P, Q, R are fluxes of energy, wave action and x-component of momentum. In
the isotropic case Rx = 0, and we get the general axially-symmetric solution

N(ω, φ) =

(

2g4

a

)1/3
1

ω5
(P + ωQ)1/3 (8.19)

In the particular cases Q = 0 and P = 0 we get KZ spectra for energy and
wave action. If Rx = 0, P > 0, Q > 0, solution (3.55) is strictly positive. If
Rx 6= 0 in some area of small frequencies, N changes sign. Negative N has no
physical meaning; it means that generic equation (3.54) can be realized only for
large enough frequencies.

From equation (3.35) we get the energy and the wave action spectra for KZ-
equation:

F (1)(ω) =

(

2

a
g4
)1/3 P 1/3

ω4
, F (2)(ω) =

(

2

a
g4
)1/3 Q1/3

ω11/3
. (8.20)
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To reach coincidence with (3.33) and (3.37) we have to neglect the difference
between cp and cq and put a = 2/(4πcp)

3. For cp ' 0.22, we get a = 0.094.
Returning to the general Hasselmann equation, we can again introduce coor-

dinates ω, φ and rewrite the equation as follow:

∂N(ω, φ)

∂t
=

(

∂2

∂ω2
+

2

ω2

∂2

∂φ2

)

A = 2LA. (8.21)

Here

A =
1

g2
L−1 ω3 Snl, (8.22)

and N(ω, φ) is defined by (3.45). The explicit expression for L−1 is presented in
Appendix 2. The solution of equation

LA = 0 (8.23)

can be chosen as follow:

A(ω, φ) = P + ωQ +
2Rx g cos φ

ω
. (8.24)

As before, here P is flux of energy to high wave numbers, Q is flux of wave action
to small wave numbers, and Rx is flux of x-component of momentum to high wave
numbers. Thus, general solutions, symmetric with reflection y → −y, depend on
three arbitrary constants. At ω → 0, the energy spectrum behaves as (3.39). If
Q = 0 we get ZF asymptotics (3.35).

The general anisotropic solution becomes negative for backward direction φ =
π in the area of small frequency. If P = 0, Q = 0, one gets the third KZ spectrum,

F 3(ω, φ) = f(φ)

(

Rx

g2

)1/3 g2

ω13/3
, (8.25)

however from the symmetry consideration follows that f(π − φ) = −f(φ). Thus
this spectrum has no independent importance.

From (3.58) one can see that the general anisotropic spectrum (3.58????) has
tendency for isotropisation at ω → ∞. Weakly anisotropic KZ spectra were studied
by Kantorovich and Katz [46] and by Balk [47].
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