Notes for September 25 and 27

Exercises are to be turned in. Questions are to be discussed.

1. PROBABLY ALL WE WILL GET DONE ON SEPTEMBER 25

Definition 1. For a formula $\varphi(v_1, \ldots, v_n)$ and sets $\{\tau_1, \ldots, \tau_n\} \subset M$, we say that $p \Vdash \varphi(\tau_1, \ldots, \tau_n)$ if for each generic $G \subset \mathbb{P}$, with $p \in G$, we have that $M[G] \models \varphi(val_G(\tau_1), \ldots, val_G(\tau_n))$.

Theorem 2 (A forcing theorem). For each formula $\varphi(v_1, \ldots, v_n)$ (all free variables showing), and each set $\{\tau_1, \ldots, \tau_n\} \subset M$, there is a dense set D such that for all $d \in D$, we have that either $d \Vdash \varphi(\tau_1, \ldots, \tau_n)$ or $d \Vdash \neg \varphi(\tau_1, \ldots, \tau_n)$.

Exercise 1 (the maximum principle). Prove that if $p \Vdash (\exists x) \varphi(x, \tau_1, \ldots, \tau_n)$, then there is a τ_0 such that $p \Vdash \varphi(\tau_0, \tau_1, \ldots, \tau_n)$.

Pursuant to our discussion about the difference between forcing with $\omega^{<\omega}$ and $\omega_1^{<\omega}$, let us now consider the Hechler poset $\mathcal{H} = \omega^{<\omega\uparrow} \times \omega^{\omega\uparrow}$ with the ordering (s, f) < (t, g) implies s(k) > g(k) for all $k \in dom(s) \setminus dom(t)$.

Proposition 3. Suppose that G is $\omega^{<\omega}$ -generic over M and H is \mathcal{H} -generic. Then M[G] is not equal M[H] because $M \cap \omega^{\omega}$ is unbounded mod finite in M[G].

Remark 4. It is a reasonable exercise in Kunen to construct for any τ a function f_{τ} so that, for any $p \in \mathbb{P} = \omega^{<\omega}$, if $p \Vdash_{\mathbb{P}} \tau \in \omega^{\omega}$, then $p \Vdash_{\mathbb{P}} \check{f}_{\tau} \not\leq^* \tau$.

Exercise 2. If $MA_{\mathcal{H}}(\omega_1)$ holds in M, then $M \models \mathfrak{b} > \omega_1$? Recall that \mathfrak{b} is the minimum cardinality of a unbounded mod fin set of functions.

In contrast to Proposition 3 we have the following

Proposition 5. For each $\omega^{<\omega}$ -generic filter G, there an \mathcal{H} -generic filter H so that $M[G] \subset M[H]$. And for each \mathcal{H} -generic filter H, there is an $\omega^{<\omega}$ -generic filter G such that $M[G] \subset M[H]$.

Proof. We choose a partition $\{A_k : k \in \omega\}$ of ω into infinite sets. Let π denote the function from ω to ω which sends each A_k to k. This is all done in M. When we add the generic function $h_{\mathcal{H}}$ for \mathcal{H} , we will keep track of the "path" it makes through the sequence of A_k 's.

It's an easy step to show that if H is \mathcal{H} -generic, then we can define $G = \{\pi \circ s_q : q \in H\}$ and simply check that G is $\omega^{<\omega}$ -generic. (very similar to the earlier discussion about a poset being dense in another).

Now suppose that G is a generic for $\omega^{<\omega}$. Remember that M is just a countable model. For any $t \in \omega^{<\omega}$, let \tilde{t} abbreviate $\pi \circ t$. For any $(s, f) \in \mathcal{H}$ and dense subset D of \mathcal{H} , show that $E(D, s, f) = \{\tilde{t} : \tilde{t} \perp \tilde{s} \text{ or } (\exists h)((t, h) < (s, f) \text{ and } (t, h) \in D)\}$ is a dense subset of $\omega^{<\omega}$. Show that we can inductively define H given G.

This brings up a question (actually Exercise 2 does but we are now better prepared).

Question 1. Does $\mathfrak{b} > \omega_1$ imply that $MA_{\mathcal{H}}(\omega_1)$ holds in M?

No. But here's a very interesting result that makes it feel like we're just a Cohen real away

Proposition 6 (Truss). If $f \in \omega^{\omega}$ dominates mod fin $M \cap \omega^{\omega}$, and if $c = \bigcup G$ for $G \subset \omega^{<\omega}$ generic over M[f] (actually, given my presentation of \mathcal{H} you should ensure that c is strictly increasing, i.e. force with $\omega^{<\omega\uparrow}$, then f + c is \mathcal{H} -generic over M.

I want to use this later in the course. It raised an interesting question though: if \mathfrak{b} is greater than ω_1 and we add a Cohen real, do we get a model of $MA_{\mathcal{H}}(\omega_1)$?¹

Recall that if H is \mathcal{H} -generic, then $M \cap \mathbb{R}$ is meager. Here's a nice proof that this does not happen with Cohen.

Proposition 7. If G is $\omega^{<\omega}$ -generic over M, then every dense G_{δ} subset of \mathbb{R} in M[G] will hit $M \cap \mathbb{R}$.

Actually, let us prove a stronger theorem (why is it stronger?). Let \mathbb{P} be the poset

$$Fn(\omega_2, 2) = \{s : (\exists F \in [\omega_2]^{<\omega}) s \in 2^F\}$$

ordered by s < t if $s \supset t$. (If $\{s_{\alpha} : \alpha \in \omega_1\} \subset Fn(\omega_2, 2)$, then there is a $\lambda < \omega_2$ such that $dom(s_{\alpha}) \subset \lambda$, and so each s_{α} corresponds to a clopen subset of the separable space 2^{λ} – hence \mathbb{P} is ccc)

Theorem 8. If G is \mathbb{P} -generic over M, then every dense G_{δ} subset of \mathbb{R} in M[G] will hit $M \cap \mathbb{R}$. And, of course, CH fails in M[G].

Proof. Let τ be such that there is some $p \in \mathbb{P}$ such that p forces that τ is a countable collection of dense open subsets of \mathbb{R} . Using the forcing theorem and the maximum principle we could, but will not, instead simply assume that we have a sequence $\{\tau_n : n \in \omega\}$ so that for each n, p forces that τ_n is a dense open set and that $val_G(\tau) = \{val_G(\tau_n) : n \in \omega\}$.

Let us use an elementary submodel argument (working in M). Let $p, \tau \in N$ where N is a countable elementary submodel of V_{β} for some large enough β (usually we would use $H(\theta)$ for some large enough regular cardinal θ). As it happens, \mathbb{P} is automatically in N in this case.

Choose any $x \in \mathbb{R}$ such that x is not in any nowhere dense set K which is in N. Equivalently, x is in U for each dense open set U which is in N.

- (1) p forces that $\tau = \tau \cap N$ (true using that \mathbb{P} is ccc but easier is $p \Vdash_{\mathbb{P}} \tau \subset N$ [not \check{N}]) (this is by elementarity and the fact that p forces that τ is countable)
- (2) for each $\sigma \in N$ and each $q \in N$ such that $q \Vdash \sigma$ is a dense open subset of $\mathbb{R}, q \Vdash \check{x} \in \sigma$; $[\bigcup \{(a, b) : (a, b \in \mathbb{Q}) \ (\exists r < q)r \Vdash (\check{a}, b) \subset \sigma\}$ is a dense set which is N; so x is in this union; now to get $q \Vdash \check{x} \in \sigma$???]

In fact, $q \Vdash_{\mathbb{P} \cap N} \check{x} \in \sigma$ is easy, and then $q \Vdash_{\mathbb{P}} \check{x} \in \sigma$ because every dense subset of $\mathbb{P} \cap N$ is predense in \mathbb{P} (discussed later). \Box

Definition 9. A sequence $\{a_{\alpha} : \alpha \in \omega_1\}$ is a \diamond -sequence if for all $A \subset \omega_1$, the set $S_A = \{\alpha : A \cap \alpha = a_{\alpha}\}$ is **stationary**. Of course \diamond implies CH $(2^{\omega} = \omega_1)$ and CH does not imply \diamond (advanced topic).

Definition 10. A poset \mathbb{P} is ω_1 -closed if each countable descending sequence has a lower bound.

¹No, Miller shows it can lower the value of \mathfrak{b} to ω_1 .

Exercise 3. If \mathbb{P} is ω_1 -closed, then every countable set b of ordinals in M[G] is an element of M.

Proposition 11. Let G be $2^{<\omega_1}$ -generic over M

- (1) $\mathbb{R} \cap M[G] = \mathbb{R} \cap M$, and same for $2^{<\omega_1}$
- (2) CH holds in M[G]
- (3) \diamondsuit holds in M[G]
- (4) there is a Souslin tree $\mathbb{S} \subset 2^{<\omega_1}$ in M[G] (\mathbb{S} is uncountable, branching, and all antichains are countable)

Proof. (1) is the previous Exercise, and (2) is a simple density argument similar to the proof that forcing with $\omega_1^{\leq \omega}$ "collapses" ω_1 .

for (3), if $G \subset 2^{<\omega_1}$ is generic, and $t_{\alpha} \in G \cap 2^{\alpha+\alpha}$, let $a_{\alpha} = \{\beta < \alpha : t_{\alpha}(\alpha+\beta) = 1\}$. Let \dot{A} (new, but standard, notation for name) be such that $val_G(\dot{A})$ is a subset of ω and let \dot{C} be a name of a cub. Find increasing sequence $\{\beta_n, \gamma_n, t_n : n \in \omega\}$ where $\beta_n < \gamma_{n+1} < \beta_{n+1}, t_n \subset t_{n+1} \in 2^{\beta_{n+1}}$ and t_{n+1} forces $\gamma_{n+1} \in \dot{C}$ and "forces a value on" $\dot{A} \cap \beta_n$.

for (4), the poset \mathbb{P} is forcing isomorphic to making countable sequences of choices $\mathbb{S}_{\alpha} \in [2^{\alpha}]^{\omega}$ so that $\{\mathbb{S}_{\beta} : \beta < \alpha\}$ is a nice tree topped up by \mathbb{S}_{α} . More precisely, a condition is a sequence $\langle \mathbb{S}_{\beta} : \beta < \delta \rangle$ for some $\delta \in \omega_1$. For each $\beta < \alpha < \delta$ and each $s \in \mathbb{S}_{\alpha}, s \upharpoonright \beta \in \mathbb{S}_{\beta}$, and for each $t \in \mathbb{S}_{\beta}$, there are at least two extensions of t in \mathbb{S}_{α} . Same argument as in \diamondsuit shows it will be Souslin.

Question 2. For a given α , what does a name \dot{a}_{α} for a_{α} look like?

It's important to have an exercise showing that a poset is ccc.

Exercise 4 (Tennenbaum). There is a ccc poset \mathcal{T} for adding a Souslin tree: a condition is a pair $\langle t, <_t \rangle$ where $t \in [\omega_1]^{<\omega}$ and $<_t$ is a tree ordering on t so that $\alpha <_t \beta$ implies $\alpha \in \beta$. We define $\langle t_1, <_{t_1} \rangle$ to extend $\langle t_2, <_{t_2} \rangle$ providing $<_{t_1} \cap (t_2 \times t_2) = <_{t_2}$. Show that this poset is ccc (isomorphic conditions are compatible) and forcing with it gives a Souslin tree. [try a countable elementary submodel argument for both]

Proposition 12. There is a model of $\neg CH$ in which there is a Souslin tree obtained by first forcing with $Fn(\omega_2, 2)$ then, over that model, forcing with Tennenbaum's poset \mathcal{T} .

Not adding uncountable branches (or antichains) to a tree is well studied. That part of this next exercise is due to Kunen and Tall. The other part is what one would call "preserving towers".

Exercise 5. Assume that M is a model in which there is a Souslin tree S and $\mathcal{A} = \{a_{\alpha} : \alpha \in \kappa\} \subset [\omega]^{\omega}$ is a maximal mod finite descending family. Show that if G is $Fn(\omega_2, 2)$ -generic, then S is still Souslin, and that \mathcal{A} is still maximal in M[G].

2. Factoring Forcing

We discussed above how we can view adding a Hechler real as first adding a Cohen real and then adding something else (a Hechler real?). This idea also came up when discussing $\mathbb{P} \cap N$ versus \mathbb{P} in the proof that adding any number of Cohen reals preserves that the ground model is non-meager.

Definition 13. Say that a poset $P \subset R$ is completely embedded if every dense $D \subset P$ is a predense subset of R. Equivalently, for each $G \subset R$ which is generic for R, we have that $G \cap P$ is a generic for P.

For a poset R and a set $B \subset R$, B^{\perp} is the set of $q \in R$ which are not compatible with any element B. Of course $r^{\perp} = \{r\}^{\perp}$. B^{\perp} is empty if and only if B is predense.

Proposition 14. If $G \subset P$ is a generic filter, then set $G^+ = \{r \in R : G \cap r^{\perp} = \emptyset\}$. We can think of $\dot{Q} = G^+$ as a *P*-name of a poset in M[G].

- (1) If $H \subset G^+$ is generic over M[G], then H (as a subset of R) is R-generic over M and M[G][H] = M[H].
- (2) Similarly, if H' is any R-generic, and $G' = H' \cap P$, then H' is $(G')^+$ -generic over M[G'].

Proof. Here are the key ideas for (1) and (2). Note that $G \subset H$ because H is upward closed.

- (1) Suppose that D ∈ M is a dense subset of R. We have to show that H ∩ D is not empty. The key is to show that D ∩ G⁺ is dense in G⁺. Suppose that r ∈ G⁺ and, in M, define a set E (and show that it is dense in P). r[⊥] ∩ P will be contained in E, and for each d ∈ D with d < r, ensure that E contains the set (P ∩ (d[⊥]))[⊥] = {p ∈ P : (∀s ∈ P)(s ⊥ d → s ⊥ p)} ≠ Ø. This set is non-empty because otherwise there would be a dense subset of P every member of which was incompatible with d. Then since we have that r ∈ G⁺, for p ∈ G ∩ E, it must be that there is some d ∈ D such that p ∈ (P ∩ d[⊥])[⊥]. This ensures that d ∈ G⁺.
- (2) Suppose that $\tau \in M$ and $val_{G'}(\tau)$ is a dense subset of $(G')^+$. We may assume that the base set for R is an ordinal, and so that τ is of the form τ^{SON} . Notice then that for $(\check{d}, p) \in \tau$, we have that $p \Vdash \check{d} \in G^+$. Define D to be the set $\{d : (\exists p)(\check{d}, p) \in \tau\}$. Check that D is a dense subset of R. (okay, kind of standard, I am assuming that $1_P \Vdash \tau$ is dense).

Example 15. If R is $Fn(\kappa, 2)$ and $P = Fn(\lambda, 2)$ (for any $\lambda < \kappa$), then for any P-generic G, G^+ is isomorphic to $Fn(\kappa \setminus \lambda, 2)$.

Proposition 16. If (as above) τ is an *R*-name and *G* is *P*-generic, we can (recursively) define $\tau^G = \{(\sigma^G, r) : r \in G^+\}$, i.e. we think of this as getting a G^+ -name. Then, if *H* is G^+ -generic over M[G], $val_H(\tau) = val_H(\tau^G)$.

It is very useful to be able to factor our forcing. For convenience we start using V to denote the ground model (rather than M a ctm).

Theorem 17. Let G be $Fn(\omega_3, 2)$ -generic over $V \models CH$. Let $\mathcal{A} = \{\dot{a}_{\alpha} : \alpha \in \omega_2\}$ be names of subsets of ω . Let $\mathcal{A} \in M \prec H(\theta)$ such that $M^{\omega} \subset M$ and $|M| = \omega_1$. The following are true in V[G]:

- (1) (Kunen) the family $val_G(\mathcal{A}) = \{val_G(\dot{a}_{\alpha}) : \alpha \in \omega_2\}$ is not a mod finite chain
- (2) (Miller) the family $val_G(\mathcal{A})$ is not maximal almost disjoint.
- (3) (there are many) interesting results in the Cohen model.

Proposition 18. If P, Q are posets, and if $R = P \times Q$, then

(1) $P \times \{1_Q\}$ is completely embedde in $P \times Q$,

- (2) if $G_P \subset P$ is generic, then $G = G_P \times \{1_Q\}$ satisfies that G^+ is isomorphic to $\{1_P\} \times \check{Q} \approx \check{Q}$
- (3) same as above for $Q \times P$
- (4) each generic for P × Q has the form G_P × G_Q, where, simply, G_P, G_Q are generics for P, Q respectively, and yet G_Q is still generic for Q over V[G_P].
 (5) there is some real substance here:
 - (a) if \dot{E} is a *P*-name of a dense subset of \check{Q} , then there is a dense set $D \subset P$ such that $D^+ = val_G(\dot{E})$, and
 - (b) if $D \subset P \times Q$ is dense, then D^+ is a dense subset of \check{Q} .

Let us ponder the (psychological) difference between Q and \dot{Q}

Question 3. Let G_P be P-generic. In $V[G_P]$,

- (1) do we have that $Fn(\omega_2, 2) = (Fn(\omega_2, 2))^V$?
- (2) If P adds a real, then \mathcal{H} is not the same as $(\mathcal{H})^V$

It is interesting to be able to reverse the order

Exercise 6. Assume, for convenience, that $2^{\omega_1} = \omega_2$. Let $P = Fn(\omega_2, 2)$ and $Q = 2^{<\omega_1}$ and let G_P, G_Q be generics.

- (1) in $V[G_P]$, the poset Q (i.e. \dot{Q}) is not ω_1 -closed, but it does still preserve ω_1 and it adds no new countable sets
- (2) (Easton) again in $V[G_P]$, if D is a dense subset of Q, then there is an $E \in V$ such that $D \supset E$ (try for a combinatorial proof using names).
- (3) CH fails in $V[G_P \times G_Q]$, but "a weak \diamond for clubs" holds (for each club C, there is a stationary $S = \{\alpha : C \cap \alpha \supset a_\alpha \text{ cofinal in } \alpha\}$; show/use that a ccc poset "adds no new clubs")

And confusing to reverse the order

Proposition 19. The measure algebra on 2^{I} will be denoted \mathcal{M}_{I} ; let G_{κ} be a generic. If $\omega \leq \lambda < \kappa$ then $\mathcal{M}_{\lambda}^{\kappa} = \{b \times 2^{\kappa \setminus \lambda} : b \in \mathcal{M}_{\lambda}\}$ is isomorphic to \mathcal{M}_{λ} . It is completely embedded of course.

Then if $G_{\lambda} = G_{\kappa} \cap \mathcal{M}_{\lambda}^{\kappa}$, we have that $V[G_{\lambda}] \models G_{\lambda}^{+} \approx \mathcal{M}_{\kappa \setminus \lambda}$, and the set $V \cap \mathbb{R}$ is now meager and has outer measure 1 (dual to the Cohen results). Also, $V \cap \omega^{\omega}$ is dominating.

Proof. The most direct is to show that $V \cap 2^{\omega}$ is meager. From the generic G_{λ} , we get a function $g \in 2^{\omega}$ given by g(n) = 1 if and only if the clopen set [(n, 1)] is in G. For each $n \in \omega$, define the open set $U_n \subset 2^{\omega}$ given by $[g \upharpoonright [2^n, 2^{n+1})]$. For each infinite $I \subset \omega$, the set $\bigcup_{n \in I} U_n$ is dense. Let \dot{U}_n denote the canonical name for U_n . Back in V, we notice that for $x \in 2^{\omega}$, the set $D_x = \{b \in \mathcal{M}_{\kappa} : \{n \in \omega : b \cap [x \upharpoonright [2^n, 2^{n+1})] \neq \emptyset\}$ is finite} is dense.

It is a nice "question" to show that \mathcal{M}_{κ} is ω^{ω} -bounding (adds no unbounded real) and we skip.

Now we check that $V \cap 2^{\omega}$ has outer measure 1. Suppose that τ is a name of an open subset of 2^{ω} and that $b \in \mathcal{M}_{\lambda}$ forces that τ is open, contains $V \cap 2^{\omega}$ and has measure less than $1 - \frac{1}{k}$. Working in V, define W to be a subset of $2^{\omega} \times b$ given by $\bigcup \{(a, b) \times c : a, b \in [\mathbb{Q}]^2$ and $(\exists c \in \mathcal{M}_{\lambda}) c \Vdash (a, b) \subset \tau\}$. Since \mathcal{M}_{λ} is ccc (every set has a measure), W is a Borel set. Use Fubini's theorem to calculate the measure of W. For each $x \in 2^{\omega}$, the measure of $W \cap (\{x\} \times b)$ is equal to b(since $b \Vdash x \in \tau$). Choose a compact subset K of W with measure greater than $(1-\frac{1}{2k})$ times the measure of b. Choose a $y \in b$ so that the measure of the fiber $K_y = K \cap (\{y\} \times 2^{\omega})$ is greater than $1-\frac{1}{k}$. Finish with a compactness argument to find a positive measure set $c \subset b$ with $y \in c$ and an open set $U \supset K_y$ (a finite union of intervals) such that $c \Vdash U \subset \tau$.

Question 4. Assume CH in V; let $P = Fn(\omega_2, 2)$ and $Q = \mathcal{M}_{\omega_2}$. Let $G \times H$ be generic for $P \times Q$. In $V[G \times H]$, every set of \aleph_1 many reals has measure 0, but is there is a non-meager set of size \aleph_1 ?