Shift-minimal Groups

Workshop on Applications to Operator Algebras Fields Institute, September 2012

Robin D. Tucker-Drob

Department of Mathematics California Institute of Technology rtuckerd@caltech.edu

Wednesday, Sept. 12, 2012

Part I: Total Ergodicity.

Fix a countably infinite set *T* and view *X* = ℕ^T as the space of ordered partitions of *T*.

Fix a countably infinite set T and view X = N^T as the space of ordered partitions of T. Let Y be the space of unordered partitions of T.

- Fix a countably infinite set T and view X = N^T as the space of ordered partitions of T. Let Y be the space of unordered partitions of T.
- The countable group Γ = FSym_T of finitely supported permutations of T acts naturally on both X and Y

- Fix a countably infinite set *T* and view *X* = ℕ^T as the space of ordered partitions of *T*. Let *Y* be the space of unordered partitions of *T*.
- The countable group $\Gamma = FSym_T$ of finitely supported permutations of T acts naturally on both X and Y and the forgetful map $X \to Y$ is equivariant.

- Fix a countably infinite set *T* and view *X* = ℕ^T as the space of ordered partitions of *T*. Let *Y* be the space of unordered partitions of *T*.
- The countable group Γ = FSym_T of finitely supported permutations of T acts naturally on both X and Y and the forgetful map X → Y is equivariant.
- For any (probability) measure μ on \mathbb{N} , the Bernoulli measure μ^{T} on X is Γ -invariant.

- Fix a countably infinite set *T* and view *X* = ℕ^T as the space of ordered partitions of *T*. Let *Y* be the space of unordered partitions of *T*.
- The countable group Γ = FSym_T of finitely supported permutations of T acts naturally on both X and Y and the forgetful map X → Y is equivariant.
- For any (probability) measure μ on \mathbb{N} , the Bernoulli measure μ^T on X is Γ -invariant. The push-forward measure ν is then Γ -invariant on Y.

- Fix a countably infinite set *T* and view *X* = ℕ^T as the space of ordered partitions of *T*. Let *Y* be the space of unordered partitions of *T*.
- The countable group Γ = FSym_T of finitely supported permutations of T acts naturally on both X and Y and the forgetful map X → Y is equivariant.
- For any (probability) measure μ on \mathbb{N} , the Bernoulli measure μ^{T} on X is Γ -invariant. The push-forward measure ν is then Γ -invariant on Y.
- ν -almost every $y \in Y$ has infinite classes

- Fix a countably infinite set *T* and view *X* = ℕ^T as the space of ordered partitions of *T*. Let *Y* be the space of unordered partitions of *T*.
- The countable group Γ = FSym_T of finitely supported permutations of T acts naturally on both X and Y and the forgetful map X → Y is equivariant.
- For any (probability) measure μ on \mathbb{N} , the Bernoulli measure μ^T on X is Γ -invariant. The push-forward measure ν is then Γ -invariant on Y.
- ν -almost every $y \in Y$ has infinite classes and for such y

$$\Gamma_y = \bigoplus_{C \in y} \mathsf{FSym}_C.$$

- Fix a countably infinite set *T* and view *X* = ℕ^T as the space of ordered partitions of *T*. Let *Y* be the space of unordered partitions of *T*.
- The countable group Γ = FSym_T of finitely supported permutations of T acts naturally on both X and Y and the forgetful map X → Y is equivariant.
- For any (probability) measure μ on \mathbb{N} , the Bernoulli measure μ^T on X is Γ -invariant. The push-forward measure ν is then Γ -invariant on Y.
- ν -almost every $y \in Y$ has infinite classes and for such y

$$\Gamma_y = \bigoplus_{C \in y} \mathsf{FSym}_C.$$

This implies that the map $y \mapsto \Gamma_y$ is injective!

- Fix a countably infinite set *T* and view *X* = ℕ^T as the space of ordered partitions of *T*. Let *Y* be the space of unordered partitions of *T*.
- The countable group Γ = FSym_T of finitely supported permutations of T acts naturally on both X and Y and the forgetful map X → Y is equivariant.
- For any (probability) measure μ on \mathbb{N} , the Bernoulli measure μ^T on X is Γ -invariant. The push-forward measure ν is then Γ -invariant on Y.
- ν -almost every $y \in Y$ has infinite classes and for such y

$$\Gamma_y = \bigoplus_{C \in y} \mathsf{FSym}_C.$$

This implies that the map $y \mapsto \Gamma_y$ is injective!

• For each $\sigma \in \Gamma$ we also have $\nu(Fix(\sigma)) > 0$.

• One may show that Vershik's example is weakly mixing.

- One may show that Vershik's example is weakly mixing.
- Weiss observed that if Γ is an amenable group then any faithful m.p. action of Γ with completely positive entropy is free.

- One may show that Vershik's example is weakly mixing.
- Weiss observed that if Γ is an amenable group then any faithful m.p. action of Γ with completely positive entropy is free.

Definition

A m.p. action $\Gamma \curvearrowright (X, \mu)$ is called *totally ergodic* if every infinite subgroup H of Γ acts ergodically.

- One may show that Vershik's example is weakly mixing.
- Weiss observed that if Γ is an amenable group then any faithful m.p. action of Γ with completely positive entropy is free.

Definition

A m.p. action $\Gamma \curvearrowright (X, \mu)$ is called *totally ergodic* if every infinite subgroup H of Γ acts ergodically.

Example: all mixing actions are totally ergodic.

- One may show that Vershik's example is weakly mixing.
- Weiss observed that if Γ is an amenable group then any faithful m.p. action of Γ with completely positive entropy is free.

Definition

A m.p. action $\Gamma \curvearrowright (X, \mu)$ is called *totally ergodic* if every infinite subgroup H of Γ acts ergodically.

Example: all mixing actions are totally ergodic.

Theorem (TD, 2012)

Let $\Gamma \curvearrowright (X, \mu)$ be a nontrivial totally ergodic action of a countable group. Then there is a finite normal subgroup N of Γ such that $\Gamma_x = N$ for almost all $x \in X$.

- One may show that Vershik's example is weakly mixing.
- Weiss observed that if Γ is an amenable group then any faithful m.p. action of Γ with completely positive entropy is free.

Definition

A m.p. action $\Gamma \curvearrowright (X, \mu)$ is called *totally ergodic* if every infinite subgroup H of Γ acts ergodically.

Example: all mixing actions are totally ergodic.

Theorem (TD, 2012)

Let $\Gamma \curvearrowright (X, \mu)$ be a nontrivial totally ergodic action of a countable group. Then there is a finite normal subgroup N of Γ such that $\Gamma_x = N$ for almost all $x \in X$. Thus, all faithful totally ergodic actions of countable groups are free.

The following trick will be seen again later:

The following trick will be seen again later:

• For any subgroup $H \leq \Gamma$, every subset of

$$\mathsf{Fix}(H) = \{x \in X : H \le \Gamma_x\}$$

The following trick will be seen again later:

• For any subgroup $H \leq \Gamma$, every subset of

$$\mathsf{Fix}(H) = \{x \in X : H \le \Gamma_x\}$$

is H-invariant.

• Therefore Fix(H) is null for all infinite subgroups H of Γ .

The following trick will be seen again later:

• For any subgroup $H \leq \Gamma$, every subset of

$$\mathsf{Fix}(H) = \{x \in X : H \le \Gamma_x\}$$

- Therefore Fix(H) is null for all infinite subgroups H of Γ .
- Let A denote the union of the sets Fix(H) as H ranges over all infinite finitely generated subgroups of Γ.

The following trick will be seen again later:

• For any subgroup $H \leq \Gamma$, every subset of

$$\mathsf{Fix}(H) = \{x \in X : H \le \Gamma_x\}$$

- Therefore Fix(H) is null for all infinite subgroups H of Γ .
- Let A denote the union of the sets Fix(H) as H ranges over all infinite finitely generated subgroups of Γ.
- *A* is null, being a countable union of null sets.

The following trick will be seen again later:

• For any subgroup $H \leq \Gamma$, every subset of

$$\mathsf{Fix}(H) = \{x \in X : H \le \Gamma_x\}$$

- Therefore Fix(H) is null for all infinite subgroups H of Γ .
- Let A denote the union of the sets Fix(H) as H ranges over all infinite finitely generated subgroups of Γ.
- *A* is null, being a countable union of null sets.
- By definition x ∈ A if and only if the stabilizer group Γ_x contains an infinite finitely generated subgroup.

The following trick will be seen again later:

• For any subgroup $H \leq \Gamma$, every subset of

$$\mathsf{Fix}(H) = \{x \in X : H \le \Gamma_x\}$$

- Therefore Fix(H) is null for all infinite subgroups H of Γ .
- Let A denote the union of the sets Fix(H) as H ranges over all infinite finitely generated subgroups of Γ.
- *A* is null, being a countable union of null sets.
- By definition x ∈ A if and only if the stabilizer group Γ_x contains an infinite finitely generated subgroup.
- We have shown that the stabilizer subgroup Γ_x is locally finite for almost every x ∈ X

The remaining difficulty consists in showing that the set

 $X_{\infty} = \{x \in X : \Gamma_x \text{ is infinite and locally finite}\}$

is null.

The remaining difficulty consists in showing that the set

 $X_{\infty} = \{x \in X : \Gamma_x \text{ is infinite and locally finite}\}$

is null. One ingredient is the following:

The remaining difficulty consists in showing that the set

 $X_{\infty} = \{x \in X : \Gamma_x \text{ is infinite and locally finite}\}$

is null. One ingredient is the following:

Theorem (Hall-Kulatilaka, Kargapolov; (1963))

Every infinite locally finite group contains an infinite abelian subgroup.

The remaining difficulty consists in showing that the set

 $X_{\infty} = \{x \in X : \Gamma_x \text{ is infinite and locally finite}\}$

is null. One ingredient is the following:

Theorem (Hall-Kulatilaka, Kargapolov; (1963))

Every infinite locally finite group contains an infinite abelian subgroup.

All known proofs of this fact rely on the Feit-Thompson Theorem.

The remaining difficulty consists in showing that the set

 $X_{\infty} = \{x \in X : \Gamma_x \text{ is infinite and locally finite}\}$

is null. One ingredient is the following:

Theorem (Hall-Kulatilaka, Kargapolov; (1963))

Every infinite locally finite group contains an infinite abelian subgroup.

All known proofs of this fact rely on the Feit-Thompson Theorem.

Question

Is there a proof that all mixing actions are almost free which avoids Feit-Thompson?

Part II: Shift-minimality.

An analogy

Definition

A m.p. action $\Gamma \curvearrowright (X, \mu)$ is called *NA-ergodic* if every non-amenable subgroup *H* of Γ acts ergodically.

Definition

A m.p. action $\Gamma \curvearrowright (X, \mu)$ is called *NA-ergodic* if every non-amenable subgroup *H* of Γ acts ergodically.

The trick used earlier shows that almost every stabilizer of an NA-ergodic action is amenable.

Definition

A m.p. action $\Gamma \curvearrowright (X, \mu)$ is called *NA-ergodic* if every non-amenable subgroup *H* of Γ acts ergodically.

The trick used earlier shows that almost every stabilizer of an NA-ergodic action is amenable.

Question

Let $\Gamma \curvearrowright (X, \mu)$ be a non-trivial NA-ergodic action of Γ . Does there necessarily exist an amenable normal subgroup $N \leq \Gamma$ such that the stabilizer Γ_x is contained in N for almost every $x \in X$?

Definition

A m.p. action $\Gamma \curvearrowright (X, \mu)$ is called *NA-ergodic* if every non-amenable subgroup *H* of Γ acts ergodically.

The trick used earlier shows that almost every stabilizer of an NA-ergodic action is amenable.

Question

Let $\Gamma \curvearrowright (X, \mu)$ be a non-trivial NA-ergodic action of Γ . Does there necessarily exist an amenable normal subgroup $N \leq \Gamma$ such that the stabilizer Γ_x is contained in N for almost every $x \in X$?

It turns out that this is closely related to an open question concerning the reduced C^* -algebra of Γ .

The Bernoulli shift of Γ is the m.p. action \mathbf{s}_{Γ} of Γ on $([0,1]^{\Gamma}, \lambda^{\Gamma})$ given by: $(\gamma \cdot f)(\delta) = f(\gamma^{-1}\delta).$

The Bernoulli shift of Γ is the m.p. action \mathbf{s}_{Γ} of Γ on $([0,1]^{\Gamma}, \lambda^{\Gamma})$ given by: $(\gamma \cdot f)(\delta) = f(\gamma^{-1}\delta).$

Definition

A weak Bernoulli factor of Γ is a factor of the ultrapower $\mathbf{s}_{\Gamma}^{\mathcal{U}}$ of \mathbf{s}_{Γ} .

The Bernoulli shift of Γ is the m.p. action \mathbf{s}_{Γ} of Γ on $([0,1]^{\Gamma}, \lambda^{\Gamma})$ given by: $(\gamma \cdot f)(\delta) = f(\gamma^{-1}\delta).$

Definition

A weak Bernoulli factor of Γ is a factor of the ultrapower $\mathbf{s}_{\Gamma}^{\mathcal{U}}$ of \mathbf{s}_{Γ} .

Fact

All weak Bernoulli factors are NA-ergodic.

The Bernoulli shift of Γ is the m.p. action \mathbf{s}_{Γ} of Γ on $([0,1]^{\Gamma}, \lambda^{\Gamma})$ given by: $(\gamma \cdot f)(\delta) = f(\gamma^{-1}\delta).$

Definition

A weak Bernoulli factor of Γ is a factor of the ultrapower $\mathbf{s}_{\Gamma}^{\mathcal{U}}$ of \mathbf{s}_{Γ} .

Fact

All weak Bernoulli factors are NA-ergodic.

Definition

A countable group Γ is called *shift-minimal* if all of its non-trivial weak Bernoulli factors are free.

Definition

 The reduced C*-algebra of Γ, denoted C^{*}_r(Γ), is the C*-algebra generated by the unitaries {λ_Γ(γ)}_{γ∈Γ} in B(ℓ²(Γ)).

Definition

- The reduced C*-algebra of Γ, denoted C^{*}_r(Γ), is the C*-algebra generated by the unitaries {λ_Γ(γ)}_{γ∈Γ} in B(ℓ²(Γ)).
- Γ is called C^* -simple if $C^*_r(\Gamma)$ is simple.

Definition

- The reduced C*-algebra of Γ, denoted C^{*}_r(Γ), is the C*-algebra generated by the unitaries {λ_Γ(γ)}_{γ∈Γ} in B(ℓ²(Γ)).
- Γ is called C^* -simple if $C^*_r(\Gamma)$ is simple.
- The canonical trace on $C_r^*(\Gamma)$ is the tracial state $\tau_{\Gamma} : C_r^*(\Gamma) \to \mathbb{C}$ given by $\tau_{\Gamma}(a) = \langle a(\delta_e), \delta_e \rangle$.

Definition

- The reduced C*-algebra of Γ, denoted C^{*}_r(Γ), is the C*-algebra generated by the unitaries {λ_Γ(γ)}_{γ∈Γ} in B(ℓ²(Γ)).
- Γ is called *C**-simple if $C_r^*(\Gamma)$ is simple.
- The canonical trace on $C_r^*(\Gamma)$ is the tracial state $\tau_{\Gamma} : C_r^*(\Gamma) \to \mathbb{C}$ given by $\tau_{\Gamma}(a) = \langle a(\delta_e), \delta_e \rangle$.
- Γ has unique trace if τ_{Γ} is the unique tracial state on $C_r^*(\Gamma)$.

Definition

- The reduced C*-algebra of Γ, denoted C^{*}_r(Γ), is the C*-algebra generated by the unitaries {λ_Γ(γ)}_{γ∈Γ} in B(ℓ²(Γ)).
- Γ is called *C**-simple if $C_r^*(\Gamma)$ is simple.
- The canonical trace on $C_r^*(\Gamma)$ is the tracial state $\tau_{\Gamma} : C_r^*(\Gamma) \to \mathbb{C}$ given by $\tau_{\Gamma}(a) = \langle a(\delta_e), \delta_e \rangle$.
- Γ has unique trace if τ_{Γ} is the unique tracial state on $C_r^*(\Gamma)$.

Question (B. Bekka and P. de la Harpe)

Is there a general implication (in either direction) between C^* -simplicity and uniqueness of trace?

Definition

- The reduced C*-algebra of Γ, denoted C^{*}_r(Γ), is the C*-algebra generated by the unitaries {λ_Γ(γ)}_{γ∈Γ} in B(ℓ²(Γ)).
- Γ is called *C**-simple if $C_r^*(\Gamma)$ is simple.
- The canonical trace on $C_r^*(\Gamma)$ is the tracial state $\tau_{\Gamma} : C_r^*(\Gamma) \to \mathbb{C}$ given by $\tau_{\Gamma}(a) = \langle a(\delta_e), \delta_e \rangle$.
- Γ has unique trace if τ_{Γ} is the unique tracial state on $C_r^*(\Gamma)$.

Question (B. Bekka and P. de la Harpe)

Is there a general implication (in either direction) between C*-simplicity and uniqueness of trace? Are there any groups which are not C*-simple, but have non-trivial normal amenable subgroups?

Theorem (TD)

If Γ is not shift-minimal then Γ does not have unique trace.

Theorem (TD)

If Γ is not shift-minimal then Γ does not have unique trace.

Main Idea of Proof.

Let $\Gamma \curvearrowright (X, \mu)$ be a non-trivial Bernoulli factor which is not free.

Theorem (TD)

If Γ is not shift-minimal then Γ does not have unique trace.

Main Idea of Proof.

Let $\Gamma \curvearrowright (X, \mu)$ be a non-trivial Bernoulli factor which is not free.

• We obtain a representation $\int_x^{\oplus} \lambda_{\Gamma/\Gamma_x} d\mu$ of Γ on the Hilbert space $\mathcal{H} = \int_x^{\oplus} \ell^2(\Gamma/\Gamma_x) d\mu(x)$.

Theorem (TD)

If Γ is not shift-minimal then Γ does not have unique trace.

Main Idea of Proof.

Let $\Gamma \curvearrowright (X, \mu)$ be a non-trivial Bernoulli factor which is not free.

- We obtain a representation $\int_x^{\oplus} \lambda_{\Gamma/\Gamma_x} d\mu$ of Γ on the Hilbert space $\mathcal{H} = \int_x^{\oplus} \ell^2(\Gamma/\Gamma_x) d\mu(x)$.
- Using that Γ_x is almost surely amenable one shows this extends to a representation of $C_r^*(\Gamma)$.

Theorem (TD)

If Γ is not shift-minimal then Γ does not have unique trace.

Main Idea of Proof.

Let $\Gamma \curvearrowright (X, \mu)$ be a non-trivial Bernoulli factor which is not free.

- We obtain a representation $\int_x^{\oplus} \lambda_{\Gamma/\Gamma_x} d\mu$ of Γ on the Hilbert space $\mathcal{H} = \int_x^{\oplus} \ell^2(\Gamma/\Gamma_x) d\mu(x)$.
- Using that Γ_x is almost surely amenable one shows this extends to a representation of $C_r^*(\Gamma)$.
- There is then an "obvious" vector such that the associate vector state τ is tracial. The action being non-free implies $\tau \neq \tau_{\Gamma}$.

A connection with cost

A connection with cost

Theorem (TD)

Suppose that Γ does not have fixed price 1. Then there is a finite normal subgroup N of Γ such that Γ/N is shift-minimal.

A connection with cost

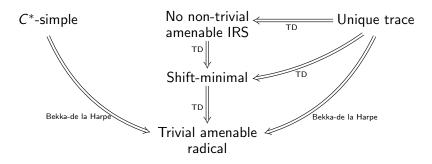
Theorem (TD)

Suppose that Γ does not have fixed price 1. Then there is a finite normal subgroup N of Γ such that Γ/N is shift-minimal.

Question

If the first ℓ^2 -Betti number of Γ is non-zero then is $C_r^*(\Gamma)$ simple with a unique tracial state?

Are they are all equivalent?



Results of T. Poznansky imply that these are all equivalent for Linear Groups.