I realized I made a simple error in discussing the proof and that I wanted to explain in more detail how to use make use of the fact that the elementary submodel we chose satisfied that $M^{\omega} \subset M$.

First, in case this is new to you, here is how we get such models.
Start with any countable model $M_{0} \prec H(\theta)$ (e.g. $\theta=\mathfrak{c}^{+}$. Recursively choose, for $\alpha \in \omega_{1}$, a model $M_{\alpha} \prec H(\theta)$ so that, by induction, $\left|M_{\alpha}\right| \leq \mathfrak{c}$, and the size \mathfrak{c} set $\left[\bigcup\left\{M_{\beta}: \beta<\alpha\right\}\right]^{\omega}$ is an element and contained in M_{α}. A theorem of Tarski implies that $M_{\omega_{1}}=\bigcup\left\{M_{\alpha}: \alpha \in \omega_{1}\right\}$ is an elementary submodel of $H(\theta)$. Easy to check that $\left[M_{\omega_{1}}\right]^{\omega} \subset M_{\omega_{1}}$ and that $\left|M_{\omega_{1}}\right|=\mathfrak{c}$.

The mistake I made was after choosing $M \prec H(\theta)$ with $|M|=\omega_{1}$ and describing λ as $M \cap \omega_{2}$, I acted as though $M \cap \omega_{3}$ is also equal to λ. Well, it is not, so instead, let G be $F n\left(\omega_{3}, 2\right)$-generic. Let $I=M \cap \omega_{3}$, and set $G_{M}=G \cap M$ which is $F n(I, 2)$-generic, and believe (just the way we did with $F n(\lambda, 2)$) that $V[G]$ is obtained by forcing over $V\left[G_{M}\right]$ with the poset $F n\left(\omega_{3} \backslash I, 2\right)$.

The other very important thing is how to fully use the elementarity of M. As I said, since $M^{\omega} \subset M$, we know that $V\left[G_{M}\right]$ and $M\left[G_{M}\right]$ have the same countable sets of ordinals - hence the same subsets of ω. Also, what is $M\left[G_{M}\right]$? Well, of course, it is just the valuations of the names that are members of M. A straightforward exercise though, is that $M\left[G_{M}\right]$ is an elementary submodel of $H(\theta)[G]$ (the full G).
Theorem 1. Let G be $F n\left(\omega_{3}, 2\right)$-generic over $V \models C H$. Let $\mathcal{A}=\left\{\dot{a}_{\alpha}: \alpha \in \omega_{2}\right\}$ be names of subsets of ω. Let $\mathcal{A} \in M \prec H(\theta)$ such that $M^{\omega} \subset M$ and $|M|=\omega_{1}$. The following are true in $V[G]$:
(1) (Kunen) the family $\operatorname{val}_{G}(\mathcal{A})=\left\{\operatorname{val}_{G}\left(\dot{a}_{\alpha}\right): \alpha \in \omega_{2}\right\}$ is not a mod finite chain
(2) (Miller) the family $\operatorname{val}_{G}(\mathcal{A})$ is not maximal almost disjoint.

Proof. (1) We let \mathcal{F} denote the collection of \dot{b} which are forced to be subsets of ω which mod finite contain every member of \mathcal{A}. We now pass to the model $V\left[G_{M}\right]$ and we check that
for each $\alpha \in \lambda, \dot{a}_{\alpha} \in M$ and so $a_{\alpha}=\operatorname{val}_{G_{M}}\left(\dot{a}_{\alpha}\right)$ is in $V\left[G_{M}\right]$
and, for each $\alpha \in \omega_{2} \backslash \lambda$, we may assume that \dot{a}_{α} is not in M because we are assuming that $V[G]$ sees this as an ω_{2}-chain and $V\left[G_{M}\right]$ is a model of CH and so \dot{a}_{λ} (for example) can not be a $F n\left(M \cap \omega_{3}, 2\right)$-name.

Using that $M^{\omega}=M$, check that, in $V\left[G_{M}\right]$, for all $c \subset \omega$ such that $a_{\alpha} \subset^{*} c$ for all α, there is a $\dot{b} \in \mathcal{F} \cap M$ such that $\operatorname{val}_{G_{M}}(\dot{b})=c$.

Here's something we should have talked about: we now know that the name \dot{a}_{λ} can be thought of as a $F n\left(\omega_{3} \backslash I, 2\right)$-name. But also, remember that we can assume that \dot{a}_{λ} is actually a "nice" name (for each n, there is an antichain A_{n} so that \dot{a}_{λ} is just the union of the collection $\check{n} \times A_{n}$). This means that there is a countable subset J of $\omega_{3} \backslash I$ such that \dot{a}_{λ} is simply an $F n(J, 2)$-name. The point being that $F n(J, 2)$ is countable.

For each $\alpha \in \lambda$, there is a condition $p_{\alpha} \in F n(J, 2)$ and an integer n_{α} so that $p_{\alpha} \Vdash a_{\alpha} \backslash \dot{a}_{\lambda} \subset n_{\alpha}$. Choose a cofinal set $\Gamma \subset \lambda$ and a single pair p, n so that $p_{\alpha}=p$ and $n_{\alpha}=n$ for all $\alpha \in \Gamma$.

But this is bad: notice that we have that p forces that \dot{a}_{λ} contains the set $Y=\bigcup\left\{a_{\alpha}: \alpha \in \Gamma\right\}$ which is in the model $V\left[G_{M}\right]$. Since Y contains mod finite all the sets $\left\{a_{\beta}: \beta<\lambda\right\}$, this means that Y is in the family $\left\{v a l_{G_{M}}(\dot{b}): \dot{b} \in \mathcal{F} \cap M\right\}$. This contradicts that p forces that \dot{a}_{λ} is properly contained in every member of \mathcal{F}.
(2) Now suppose that some $p \in M$ forces that \mathcal{A} is a mad family. Observe that there is an infinite $J \subset \omega_{3}$ such that, for all $\alpha \in \omega_{2}$, we have that \dot{a}_{α} is an $F n\left(\omega_{3} \backslash J, 2\right)$-name. We may assume that $J \in M$. Now we pass to the model $V\left[G_{M}\right]$ and we more carefully examine the almost disjoint family $\left\{a_{\alpha}: \alpha \in \lambda\right\}$. We again factor the forcing, but not with any elementary submodels, we just take the generic $G^{\prime}=G_{M} \cap F n(M \backslash J, 2)$. The family $\left\{a_{\alpha}: \alpha \in \lambda\right\}$ is unaffected. But the main thing is, is that it has the property that if we then force with $F n(J, 2)$ it remains maximal because it is maximal in the model $V\left[G_{M}\right]$. But!! \dot{a}_{λ} is a Cohen name using a different index set. There is an isomorphism from the "support" of \dot{a}_{λ} into J which sends \dot{a}_{λ} to a $F n(J, 2)$-name \dot{b} which is forced to be almost disjoint from each $a_{\alpha}(\alpha<\lambda)$.

