Non-trivial automorphisms from variants of small \mathfrak{d}

Juris Steprāns

Fields — October 24, 2012

通 ト イ ヨ ト イ ヨ ト

JURIS STEPRĀNS NON-TRIVIAL AUTOMORPHISMS FROM VARIANTS OF SMALL

NOTATION

If A and B are subsets of \mathbb{N} let \equiv^* denote the equivalence relation defined by $A \equiv^* B$ if and only if $A \Delta B$ is finite. Let [A] denote the equivalence class of A modulo \equiv^* . Then $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ is the same as $\mathcal{P}(\mathbb{N})/\equiv^*$.

NOTATION

If f is a function defined on the set A and $X \subseteq A$ then the notation f(X) will be used to denote $\{f(x) \mid x \in X\}$. An automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ is called trivial if there is $f: \mathbb{N} \to \mathbb{N}$ such that $f(A) \in \Phi([A])$ for each $A \subseteq \mathbb{N}$.

通 ト イ ヨ ト イ ヨ ト

Theorem (W. Rudin)

If $2^{\aleph_0} = \aleph_1$ then there is a non-trivial automorphism of the Boolean algebra $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$.

First argument: Let \mathcal{U} and \mathcal{V} be P-points generated by $\{U_{\xi}\}_{\xi \in \omega_1}$ and $\{V_{\xi}\}_{\xi \in \omega_1}$. Choose bijections $\psi_{\xi} : U_{\xi} \to V_{\xi}$ forming a (partial) coherent family. Define

$$\Psi([A]) = egin{cases} \psi_{\xi}(A) & ext{if } A \subseteq^{*} U_{\xi} \ \psi_{\xi}(\mathbb{N} \setminus A) & ext{otherwise.} \end{cases}$$

and note that Ψ is a well defined automorphism. How can it be made non-trivial? Ask Hausdorff.

Now use that there are $2^{2^{\aleph_0}}$ P-points assuming $2^{\aleph_0} = \aleph_1$.

Second argument: Use the countable saturation of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ to inductively construct the automorphism. Use $2^{\aleph_0} = \aleph_1$ to diagonalize against all possible trivial automorphisms.

Definition

An automorphism of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ is called somewhere trivial if there is an infinite $Z \subseteq \mathbb{N}$ and $f : Z \to \mathbb{N}$ such that $f(A) \in \Phi([A])$ for each $A \subseteq Z$. An automorphism that is not somewhere trivial is called nowhere trivial.

The automorphism constructed by the second method can be made nowhere trivial.

伺下 イヨト イヨト

Theorem (Shelah)

It is consistent with set theory that all automorphisms of the Boolean algebra $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ are trivial.

Recall that OCA implies that all coherent families are trivial. This play a key role in the following:

Theorem (Velickovic)

OCA and MA_{\aleph_1} implies that all automorphism of the Boolean algebra $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ are trivial.

On the other hand, the CH P-point argument can be extended to show:

Theorem (Velickovic)

It is consistent with MA_{\aleph_1} that there is a non-trivial automorphism of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$.

Just as in the P-point argument, the automorphism constructed by Velickovic is somewhere trivial. However:

Theorem (Shelah - S.)

It is consistent with MA and $2^{\aleph_0} > \aleph_1$ that there is a nowhere trivial automorphism of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$.

Theorem

In the model obtained by adding \aleph_2 Cohen reals to a model of CH there is a nowhere trivial automorphism of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$.

QUESTION

Are there nowhere trivial automorphisms of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{\langle\aleph_0}$ in the model obtained by adding \aleph_3 Cohen reals to a model of CH?

- The original model of Shelah is obtained by a finite support iteration of oracle-cc partial orders and hence it shares many properties with Cohen real models; for example $\mathfrak{d} = 2^{\aleph_0}$.
- Velickovic's argument for getting all automorphisms trivial uses OCA and recall that OCA implies that b = ℵ₂.

So one might ask if $\mathfrak{d} > \aleph_1$ is necessary for all automorphisms of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ to be trivial. However:

THEOREM (FARAH – SHELAH)

It is consistent with $\mathfrak{d}=\aleph_1$ that all automorphisms of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ are trivial.

・ 同 ト ・ ヨ ト ・ ヨ ト

On the other hand, except for the CH arguments, the other methods mentioned for getting nontrivial automorphisms — Cohen model and consistency with MA — all use methods that yield $\mathfrak{d} > \aleph_1$.

So, is it consistent with $\mathfrak{d}=\aleph_1<2^{\aleph_0}$ that all automorphisms of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ are trivial?

伺下 イヨト イヨト

LEMMA

There is a nontrivial automorphism of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ provided that there is a partition of \mathbb{N} into finite sets $\{I_n\}_{n\in\omega}$ such that:

- For each ξ ∈ ω₁ and n ∈ ω there is a Boolean subalgebra 𝔅_{ξ,n} of 𝒫(I_n) and an automorphism Φ_{ξ,n} of 𝔅_{ξ,n}.
- **2** If $\xi \in \eta$ then $\mathfrak{B}_{\xi,n} \subseteq \mathfrak{B}_{\eta,n}$ and $\Phi_{\xi,n} = \Phi_{\eta,n} \upharpoonright \mathfrak{B}_{\xi,n}$ for all but finitely many $n \in \omega$.
- So For any one-to-one F : N → N there are ξ ∈ ω₁ and infinitely many n ∈ ω such that there is an atom a ∈ 𝔅_{ξ,n} and j ∈ a such that F(j) ∉ Φ_{ξ,n}(a).
- O For any A ⊆ N there is ξ ∈ ω₁ such that A ∩ I_n ∈ 𝔅_{ξ,n} for all but finitely many n.

イロト イポト イヨト イヨト

Define

$$\Phi([A]) = \lim_{\xi \to \omega_1} \left[\bigcup_{n \in \omega} \Phi_{\xi,n}(A \cap I_n) \right]$$

Why is this is well defined?

If $A\Delta B$ is finite there is $\alpha \in \omega_1$ such that for all $\xi > \alpha$ and for all but finitely many *n* the equation

$$\Phi_{\xi,n}(A\cap I_n)=\Phi_{\xi,n}(B\cap I_n)$$

holds. From Hypothesis 2 it then follows that if ξ and η are greater than α then

$$\bigcup_{n\in\omega}\Phi_{\xi,n}(A\cap I_n)\equiv^*\bigcup_{n\in\omega}\Phi_{\eta,n}(B\cap I_n)$$

and, hence, $\Phi([A])$ is well defined. Since each $\Phi_{\xi,n}$ is an automorphism it follows that Φ is an automorphism of $\underset{\substack{\mathbb{U} \ \mathbb{N} \ \mathbb{V} \ \mathbb{C} \ \mathbb{N}}{\mathbb{N}} \mathbb{C}^{\mathbb{N}}(\mathbb{N})/[\mathbb{N}]^{\leq \aleph_0}$.

通 ト イヨ ト イヨト

Why is Φ is nontrivial?

Suppose that there is a one-to-one function $F : \mathbb{N} \to \mathbb{N}$ such that $F(A) \in \Phi([A])$ for all $A \subseteq \mathbb{N}$. Choose $\xi \in \omega_1$ and an infinite $Z \subseteq \mathbb{N}$ and atoms $a_n \in \mathfrak{B}_{\xi,n}$ and $j_n \in a_n$ such that $F(j_n) \notin \Phi_{\xi,n}(a_n)$ for each $n \in Z$.

Let $W \subseteq Z$ be an infinite subset such that for each $n \in W$, if $F(j_n) \in I_k$ and $k \neq n$ then $k \notin W$. Let $A = \bigcup_{n \in W} a_n$. For any $\eta \geq \xi$

$$\{F(j_n) \mid j \in W\} \cap \bigcup_{n \in W} \Phi_{\eta,n}(a_n) \equiv^* \{F(j_n) \mid j \in W\} \cap \bigcup_{n \in W} \Phi_{\xi,n}(a_n) \equiv^* \emptyset$$

and, hence, $F(A) \notin \Phi([A])$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

When are the hypotheses of Lemma 1 satisfied?

Definition

Given functions f and g from ω to ω let $\mathfrak{d}_{f,g}$ be the least cardinal of a family $\mathcal{D} \subseteq \prod_{n \in \omega} [f(n)]^{g(n)}$ such that for every $F \in \prod_{n \in \omega} f(n)$ there is $G \in \mathcal{D}$ such that $F(n) \in G(n)$ for all n.

Given a filter \mathcal{F} on ω define $\mathfrak{d}_{f,g}(\mathcal{F})$ to be the least cardinal of a family $\mathcal{D} \subseteq \prod_{n \in \omega} [f(n)]^{g(n)}$ such that for every $F \in \prod_{n \in \omega} f(n)$ there is $G \in \mathcal{D}$ and $X \in \mathcal{F}$ such that $F(n) \in G(n)$ for all $n \in X$. (So $\mathfrak{d}_{f,g} = \mathfrak{d}_{f,g}(\mathcal{F})$ where \mathcal{F} is the co-finite filter.)

Note that $\mathfrak{d}_{f,g} > \mathfrak{d}$ and $\mathfrak{d}_{f,g} < \mathfrak{d}$ are both possible. Random and Laver reals provide the relevant models.

S Non-trivial automorphisms from variants of small

- 4 得下 - 4 戸下 - 4 戸下 -

LEMMA

If there are functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ such that for all $k \in \mathbb{N}$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)k^{g(n)}}=\infty$$

and if $\mathfrak{d}_{f!,g}(\mathcal{F}) = \aleph_1$ for some filter generated by a \subseteq^* -descending tower of length ω_1 then the hypotheses of Lemma 1 hold.

₽ ► < Ξ ► < Ξ ►

Given the hypothesis, it may be assumed that there are \subseteq^* -descending sets $\{X_{\xi}\}_{\xi\in\omega_1}\subseteq \mathcal{F}$ and functions $\{G_{\xi}\}_{\xi\in\omega_1}\subseteq\prod_{n\in\omega}[f(n)!]^{g(n)}$ such that for every $F\in\prod_{n\in\omega}f(n)!$ there is $\xi\in\omega_1$ such that $F(n)\in G_{\xi}(n)$ for all but finitely many $n\in X_{\xi}$.

Why? Reindex so that for all $\xi \in \omega_1$ there are cofinally many $\eta \in \omega_1$ such that $G_{\xi} = G_{\eta}$.

- 本語 と く き と 一 き

Second step

There are functions $h_{\xi} : \mathbb{N} \to \mathbb{N}$ and $H_{\xi} : \mathbb{N} \to [f(n)!]^{h_{\xi}(n)}$ for $\xi \in \omega_1$ such that

$${igle 0}$$
 if $\xi\in\eta\in\omega_1$ then $4h_\xi\leq^*h_\eta\leq g$

2 if $\xi \in \eta \in \omega_1$ then $H_{\xi}(n) \subseteq H_{\eta}(n)$ for all but finitely many n

◎ if $F \in \prod_{n \in \mathbb{N}} f(n)!$ and $F(n) \in G_{\xi}(n)$ for all but finitely many $n \in X_{\xi}$ then also $F(n) \in H_{\xi}(n)$ for all but finitely many $n \in X_{\xi}$.

Why? The hypothesis that $\lim_{n\to\infty} f(n)/g(n)k^{g(n)} = \infty$ for all k makes it possible to choose $h : \mathbb{N} \to \mathbb{N}$ such that

$$\lim_{n\to\infty}\frac{f(n)}{g(n)h(n)2^{g(n)h(n)}}=\infty$$

and $\lim_{n\to\infty} h(n) = \infty$.

Let $H_0(n) = G_0(n)$. Given H_ξ satisfying Conditions 2 and 3, define $H_{\xi+1}(n) = H_\xi(n) \cup G_{\xi+1}(n)$ and note that

$$|H_{\xi+1}(n)| \leq |H_{\xi}(n)| + |G_{\xi+1}(n)| \leq h_{\xi}(n) + g(n)/h(n) \leq h_{\xi+1}(n).$$

On the other hand, if η is a limit ordinal and H_{ξ} satisfying the desired requirements have been chosen for $\xi \in \eta$, then a diagonalization argument yields H_{η} such that $|H_{\eta}(n)| = h_{\eta}(n)$ and $H_{\xi}(n) \subseteq H_{\eta}(n)$ for all but finitely many n for each $\xi \in \eta$.

Now let $\{I_n\}_{n\in\omega}$ partition \mathbb{N} such that $|I_n| = f(n)$ and let $\{\theta_{j,n}\}_{j\in f(n)!}$ enumerate all permutations of I_n . Without loss of generality, f(n) is even for each n.

Let $A_{0,n}$ and $A_{1,n}$ partition I_n into two equal sized sets and let $\varphi_{0,n}$ be an involution of I_n interchanging $A_{0,n}$ and $A_{1,n}$. For $n \in X_0$ let $\mathfrak{B}_{0,n} = \{\emptyset, I_n, A_{0,n}, A_{1,n}\}$ and let $\Phi_{0,n}$ be the automorphism of $\mathfrak{B}_{0,n}$ induced by $\varphi_{0,n}$.

For $n \in \omega \setminus X_0$ let $\mathfrak{B}_{0,n} = \mathcal{P}(I_n)$ and let $\Phi_{0,n}$ be the identity.

As the induction hypothesis assume Condition 2 of the first lemma holds and that, in addition,

• $\mathcal{A}_{\xi,n}$ are the atoms of $\mathfrak{B}_{\xi,n}$ and that $|\mathcal{A}_{\xi,n}| \leq 2^{4h_{\xi}(n)}$ provided that $n \in X_{\xi}$

• for $n \in X_{\xi}$ there are involutions $\varphi_{\xi,n}$ of I_n that induce $\Phi_{\xi,n}$. If $\mathfrak{B}_{\xi,n}$, $\mathcal{A}_{\xi,n}$, $\varphi_{\xi,n}$ and $\Phi_{\xi,n}$ have been defined for all ξ less than the limit ordinal η then a standard diagonalization yields $\mathfrak{B}_{\eta,n}$, $\mathcal{A}_{\eta,n}$, $\varphi_{\xi,n}$ and $\Phi_{\eta,n}$.

Assume that $\mathfrak{B}_{\xi,n}$, $\mathcal{A}_{\xi,n}$, $\varphi_{\xi,n}$ and $\Phi_{\xi,n}$ have been defined. Let $\mathcal{A}_{\xi+1,n}^*$ be the atoms generated by $\mathcal{A}_{\xi,n}$ and $\{A_n(j), \varphi_{\xi,n}(A_n(j))\}_{j \in H_{\xi+1}(n)}$. Then $|\mathcal{A}_{\xi+1,n}^*| \leq |\mathcal{A}_{\xi,n}| 4^{h_{\xi+1}(n)} \leq 2^{g(n)}$.

Since $f(n) > g(n)2^{g(n)}$ there must be some $a_n \in \mathcal{A}_{\xi+1,n}^*$ such that $|a_n| > g(n)$ for each $n \in X_{\xi}$. Let $\varphi : a_n \to \varphi_{\xi,n}(a_n)$ be any bijection such that for each $n \in X_{\xi+1}$ and each $j \in H_{\xi+1}(n)$ there is some $k_{j,n} \in a_n$ such that $\varphi(k_{j,n}) \neq \theta_{j,n}(k_{j,n})$.

イロト イポト イヨト イヨト 二日

Now for $n \in X_{\xi+1}$ let $\mathcal{A}_{\xi+1,n} = \mathcal{A}^*_{\xi+1,n} \cup \{\{k_{j,n}\} \mid j \in H_{\xi+1}(n)\}$ and let $\varphi_{\xi+1,n}$ be defined by

$$\varphi_{\xi+1,n}(z) = \begin{cases} \varphi_{\xi,n}(z) & \text{if } z \notin a_n \cup \varphi_{\xi,n}(a_n) \\ \varphi(z) & \text{if } z \in a_n \\ \varphi^{-1}(z) & \text{if } z \in \varphi_{\xi,n}(a_n) \end{cases}$$

and let $\Phi_{\xi+1,n}$ be induced by $\varphi_{\xi+1,n}$. Let $\mathfrak{B}_{\xi+1,n}$ be the Boolean algebra whose atoms are $\mathcal{A}_{\xi+1,n}$. On the other hand, for $n \in \omega \setminus X_{\xi+1}$ let $\mathfrak{B}_{\xi+1,n} = \mathcal{P}(I_n)$ and let $\Phi_{\xi+1,n}$ be induced by $\varphi_{\xi,n}$. Then $\mathfrak{B}_{\xi,n} \subseteq \mathfrak{B}_{\xi+1,n}$ and that $\Phi_{\xi+1,n} \upharpoonright \mathfrak{B}_{\xi,n} = \Phi_{\xi,n}$. Moreover,

$$|\mathcal{A}_{\xi+1,n}| \leq |\mathcal{A}^*_{\xi+1,n}| + h_{\xi+1}(n) \leq 2^{3h_{\xi+1}(n)} + h_{\xi+1}(n) \leq 2^{4h_{\xi+1}(n)}$$

for all but finitely many $n \in X_{\xi+1}$ as required.

- 本語 と 本語 と 本語 と 二語

Why is this non-trivial?

Let $F : \mathbb{N} \to \mathbb{N}$ be one-to-one. If there are infinitely many n such that there is $z_n \in I_n$ such that $F(z_n) \notin I_n$ then let $\xi = 0$ and, without loss of generality, it may be assumed that z_n belongs to the atom $A_{0,n}$ of $\mathfrak{B}_{0,n}$ for infinitely many n. Since $\varphi_{0,n}(A_{0,n}) = A_{1,n} \subseteq I_n$ it is clear that $F(z_n) \notin \varphi_{0,n}(A_{0,n})$.

If $F(I_n) \subseteq I_n$ for all but finitely many n then $F \upharpoonright I_n = \theta_{J(n),n}$ for some J(n) also or all but finitely many n. There is some $\xi \in \omega_1$ such that $J(n) \in H_{\xi}(n)$ for all but finitely many $n \in X_{\xi}$. By construction, for all but finitely many $n \in X_{\xi}$ there is a singleton $\{k\} \in \mathcal{A}_{\xi,n}$ such that $\varphi_{\xi,n}(\{k\}) = \{\varphi_{\xi,n}(k)\}$ and $\varphi_{\xi,n}(k) \neq \theta_{J(n),n}(k)$.

Why is the automorphism defined on all of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$? This is the same argument using that $2^n \leq n!$.

Corollary

If $\mathfrak{d}_{f!,g}=\aleph_1$ then there is a nontrivial automorphism of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}.$

Let \mathcal{F} be the co-finite filter.

COROLLARY

If there is an \aleph_1 -generated filter \mathcal{F} such that $\mathfrak{d}_{f!,g}(\mathcal{F}) = \aleph_1 \neq \mathfrak{d}$ then there is a nontrivial automorphism of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$.

Let \mathcal{F} be generated by $\{X_{\xi}\}_{\xi\in\omega_1}$. Use Rothberger's argument and $\aleph_1 \neq \mathfrak{d}$ to construct a \subseteq^* -descending sequence $\{Y_{\xi}\}_{\xi\in\omega_1}$ all of whose terms are \mathcal{F} positive and such that $Y_{\xi} \subseteq X_{\xi}$. Let \mathcal{F}' be generated by $\{Y_{\xi}\}_{\xi\in\omega_1}$ and note that $\mathfrak{d}_{f!,g}(\mathcal{F}') = \aleph_1$.

・ロト ・伺 ト ・ヨト ・ヨト

Recall that Farah–Shelah showed it is consistent that $\mathfrak{d} = \aleph_1$ and all automorphisms of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ are trivial. Hence the assumption of $\aleph_1 \neq \mathfrak{d}$ in Corollary 2 is essential. (To be precise, one should check that $\mathfrak{u} = \aleph_1$ in their model.)

QUESTION

Is $\aleph_1 \neq \mathfrak{d}$ essential in Corollary 2?

It is worth observing that the automorphism of Lemma 1 is trivial on some infinite sets — indeed, if $\xi \in \omega_1$ and $X \subseteq \mathbb{N}$ are such that $\{x\}$ belongs to some $\mathfrak{B}_{\xi,n}$ for each $x \in X$ then Φ is trivial on $\mathcal{P}(X)$.

However, if $\mathcal{T}(\Phi)$ is defined to be the ideal $\{X \subseteq \mathbb{N} \mid \Phi \upharpoonright \mathcal{P}(X) \text{ is trivial } \}$ then $\mathcal{T}(\Phi)$ is a small ideal in the sense that the quotient algebra $\mathcal{P}(\mathbb{N})/\mathcal{T}(\Phi)$ has large antichains, even modulo the ideal of finite sets — in the terminology of Farah, the ideal $\mathcal{T}(\Phi)$ is not ccc by fin.

One should not, therefore, expect to get a nowhere trivial automorphism by these methods. Hence the following result:

(日) (周) (王) (王) (王)

THEOREM

Let \mathbb{P} be the product of κ Sacks partial orders. Assuming $2^{\aleph_0} = \aleph_1$, there is an automorphism Θ of $\mathcal{P}(\mathbb{N}/[\mathbb{N}]^{<\aleph_0}$ such that

 $1 \Vdash_{\mathbb{P}}$ " Θ is a nowhere trivial automorphism of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ "

and note that, in particular, this means Θ has a natural definition in the generic extension by \mathbb{P} .

