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Bounded subgroups of GL(X )

To fix our attention, we will assume throughout the talk that all
spaces considered are separable, infinite-dimensional Banach
spaces.

We let GL(X ) denote the group of all automorphisms of X , i.e.,
linear isomorphisms of X with itself.
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The group GL(X ) comes equipped with several natural topologies,
each of independent interest.

The norm topology is that induced from the norm

‖T‖ = sup
x∈BX

‖Tx‖.

The strong operator topology is given by pointwise convergence on
X , i.e.,

Ti → T ⇔ ‖Tix − Tx‖ → 0 for all x ∈ X ,

while the weak operator topology is given by weak convergence,
i.e.,

Ti → T ⇔ φ(Tix)→ φ(Tx) for all x ∈ X and φ ∈ X ∗.
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Note that if ||| · ||| is an equivalent norm on X , i.e., such that

Id : (X , ‖ · ‖)→ (X , ||| · |||)

is an isomorphism, then

GL(X , ‖ · ‖) = GL(X , ||| · |||)

and the three topologies remain unaltered, although the norm of
course changes.

Thus, we can talk unequivocally about GL(X ) and its topologies
without fixing the norm.
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Suppose G 6 GL(X ) is a weakly bounded subgroup, i.e., such that
for any x ∈ X and φ ∈ X ∗,

sup
T∈G
|φ(Tx)| <∞.

Then, by the uniform boundedness principle, G is actually norm
bounded, that is,

sup
T∈G
‖T‖ <∞.

So we can simply talk about bounded subgroups of GL(X ).
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Note that if G is bounded, then

|||x ||| = sup
T∈G
‖Tx‖

is an equivalent G -invariant norm on X ,

i.e.,

G 6 Isom(X , ||| · |||).

So bounded subgroups of GL(X ) are just groups of isometries for
equivalent norms on X .

In the strong operator topology, Isom(X ) is a Polish group, i.e., a
separable and complete metric topological group.

Thus, any bounded and strongly closed G 6 GL(X ) is a closed
subgroup of a Polish group and hence is itself Polish in the strong
operator topology.

Christian Rosendal, University of Illinois at Chicago On bounded representations and maximal symmetry



Note that if G is bounded, then

|||x ||| = sup
T∈G
‖Tx‖

is an equivalent G -invariant norm on X , i.e.,

G 6 Isom(X , ||| · |||).

So bounded subgroups of GL(X ) are just groups of isometries for
equivalent norms on X .

In the strong operator topology, Isom(X ) is a Polish group, i.e., a
separable and complete metric topological group.

Thus, any bounded and strongly closed G 6 GL(X ) is a closed
subgroup of a Polish group and hence is itself Polish in the strong
operator topology.

Christian Rosendal, University of Illinois at Chicago On bounded representations and maximal symmetry



Note that if G is bounded, then

|||x ||| = sup
T∈G
‖Tx‖

is an equivalent G -invariant norm on X , i.e.,

G 6 Isom(X , ||| · |||).

So bounded subgroups of GL(X ) are just groups of isometries for
equivalent norms on X .

In the strong operator topology, Isom(X ) is a Polish group, i.e., a
separable and complete metric topological group.

Thus, any bounded and strongly closed G 6 GL(X ) is a closed
subgroup of a Polish group and hence is itself Polish in the strong
operator topology.

Christian Rosendal, University of Illinois at Chicago On bounded representations and maximal symmetry



Note that if G is bounded, then

|||x ||| = sup
T∈G
‖Tx‖

is an equivalent G -invariant norm on X , i.e.,

G 6 Isom(X , ||| · |||).

So bounded subgroups of GL(X ) are just groups of isometries for
equivalent norms on X .

In the strong operator topology, Isom(X ) is a Polish group, i.e., a
separable and complete metric topological group.

Thus, any bounded and strongly closed G 6 GL(X ) is a closed
subgroup of a Polish group and hence is itself Polish in the strong
operator topology.

Christian Rosendal, University of Illinois at Chicago On bounded representations and maximal symmetry



Note that if G is bounded, then

|||x ||| = sup
T∈G
‖Tx‖

is an equivalent G -invariant norm on X , i.e.,

G 6 Isom(X , ||| · |||).

So bounded subgroups of GL(X ) are just groups of isometries for
equivalent norms on X .

In the strong operator topology, Isom(X ) is a Polish group, i.e., a
separable and complete metric topological group.

Thus, any bounded and strongly closed G 6 GL(X ) is a closed
subgroup of a Polish group and hence is itself Polish in the strong
operator topology.

Christian Rosendal, University of Illinois at Chicago On bounded representations and maximal symmetry



Mazur’s rotation problem and maximal norms

Mazur’s rotation problem from Banach’s monograph asks if every
separable space, whose isometry group acts transitively on the unit
sphere, must be isomorphic or even isometric to a Hilbert space.

In connection with this, A. Pe lczyński and S. Rolewicz (1962)
introduced the notion of a maximal norm on a Banach space.

Here a norm ‖ · ‖ on X is maximal if

Isom(X , ‖ · ‖)

is a maximal bounded subgroup of GL(X ).
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In other words, if ||| · ||| is an equivalent norm on X such that

Isom(X , ‖ · ‖) 6 Isom(X , ||| · |||),

then actually

Isom(X , ‖ · ‖) = Isom(X , ||| · |||).

Thus, if we think of Isom(X , ‖ · ‖) as the set of symmetries of X ,
then ‖ · ‖ is maximal if

(X , ‖ · ‖)

or rather the unit ball
B(X , ‖ · ‖)

is a maximally symmetric body.
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Transitive norms

What is the relationship with Mazur’s rotation problem?

Note that if Isom(X , ‖ · ‖) acts transitively on the unit sphere SX ,
then SX is a single orbit under Isom(X , ‖ · ‖).

Thus, up to multiplication by a scalar, SX and hence the norm on
X can be recovered from Isom(X , ‖ · ‖).

So, if ||| · ||| is another Isom(X , ‖ · ‖)-invariant norm, it must be a
scalar multiple of ‖ · ‖ and so

Isom(X , ‖ · ‖) = Isom(X , ||| · |||),

whence ‖ · ‖ is maximal.

In other words, any transitive norm ‖ · ‖ is maximal.
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Examples

So, in finite dimensions, the euclidean or `2 norm on Rn is
maximal, while, as we shall see, the `p norms are not.

On the other hand, in infinite dimensions, the situation is very
different.

For example, the standard norms on

`p (Rolewicz),

Lp([0, 1]) (Rolewicz),

C (K ,C) for K a compact manifold (Kalton, Wood)

are all maximal, but not on

C ([0, 1],R) (Partington).
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Convex equivariant renormings

Fix a space X and a bounded subgroup G 6 GL(X ).

There is hope that by judiciously smoothing the norm on X with
the aid of G , one eventually arrives at a maximally symmetric
G -invariant norm.

Equivalently, this would show that there is a maximal bounded
subgroup

G 6 H 6 GL(X ).

This would be analogous to the existence of maximal compact
subgroups of semisimple Lie groups.
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For example, suppose that (X , ‖ · ‖) is uniformly convex.

Then the norm ||| · ||| defined by

|||x ||| = sup
T∈G
‖Tx‖

is both G -invariant and uniformly convex, while the same
argument applied to X ∗ produces a G -invariant uniformly smooth
norm on X ∗∗ = X .

However, in this case, a Baire category argument shows that there
is a G -invariant norm on X that is simultaneously uniformly convex
and uniformly smooth (e.g., Bader, Furman, Gelander, Monod).
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A Banach space X is said to be locally uniformly convex if the
curvature is strictly positive at every point on the unit-sphere SX .

By a classical result of Kadets, every separable space admits a
locally uniformly convex renorming.

Moreover, it can be shown that if (X , ‖ · ‖) is locally uniformly
convex and G 6 GL(X ) is compact in the strong operator
topology, then the G -invariant norm

||| · ||| = sup
T∈G
‖T · ‖

is still locally uniformly convex.

However, e.g., L1 does not admit a locally uniformly convex norm
invariant under the original isometries.
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Nevertheless, refining a result of G. Lancien (1993), we have

Theorem (Lancien)

Let X be separable reflexive and G 6 GL(X ) be a bounded
subgroup. Then there is an equivalent G -invariant norm ||| · ||| on X
such that both ||| · ||| and ||| · |||∗ are locally uniformly convex.

In particular, any maximal norm on a separable reflexive space X
can be made locally uniformly convex without changing the
isometry group.

In fact, by a result of Becerra Guerrero and Rod́ıguez-Palacios, if
the norm is also convex transitive, then X is super-reflexive and
the norm uniformly convex.
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Euclidean equivariant renormings

Note that, while taking suprema is subadditive (which accounts for
the subadditivity of ||| · |||), it is not linear.

On the other hand, averaging is linear.

For example, the isometry group of a finite-dimensional Banach
space (X , ‖ · ‖) is compact.

Therefore, averaging over the Haar measure produces an
isometry-invariant inner product 〈·|·〉.

Thus, the induced Euclidean norm

‖ · ‖〈·|·〉 =
√
〈·|·〉

is a transitive and hence maximal norm on X such that

Isom(X , ‖ · ‖) 6 Isom(X , ‖ · ‖〈·|·〉).
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This was extended by Szőkefalvi-Nagy, Day, and Dixmier around
1950, who noticed that if G is a bounded subgroup of GL(H), that
is amenable in the strong operator topology, then it is unitarisable.

That is, there is an equivalent inner product on H with respect to
which G is a group of unitary operators.

To repeat the argument, suppose for simplicity that G is countable
and let µ be a finitely additive right-invariant probability measure
on G .

We set

〈x |y〉G =

∫
G
〈gx |gy〉dµ(g).

Then 〈·|·〉G is a G -invariant equivalent inner product on H and
hence G is contained in the maximal bounded subgroup

U(H, 〈·|·〉G ).
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However, Ehrenpreis and Mautner (1955) showed that SL2(R)
(later improved to F2), admits a bounded, but non-unitarisable
representation on H.

Motivated by these results, Dixmier asked the following converse:

If Γ is a countable group all of whose bounded representations
on H are unitarisable, is Γ amenable?

But there is also a question of where the unitarisability of the
Ehrenpreis–Mautner example fails, namely,

Is there a bounded copy of F2 in GL(H) not contained in a
maximal bounded subgroup?

or

Is there a non-euclidean maximal norm on H?

By the Ehrenpreis–Mautner example, one of the above must hold.
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Wood’s question

Moreover, the fundamental question of whether every space X
admits an equivalent maximal norm has remained open. In other
words:

Does GL(X ) always contain a maximal bounded subgroup?
(Wood 1982)

In fact, even more restrictive questions have been open so far:

Is every bounded subgroup contained in a maximal bounded
subgroup? (Wood 2006)

Do super-reflexive spaces admit equivalent (almost) transitive
norms? (Deville, Godefroy, Zizler 1993)
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Operator ideals and the Fredholm group

We shall now describe a strategy for an attack on Wood’s
problems by searching for spaces with few potential isometries.

Henceforth, we shall only consider separable complex spaces.

Let us first consider the isometries imposed on us.
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Any space X can isomorphically be written as a direct sum

X = Y ⊕ F ,

where F is a finite-dimensional euclidean space.

So, if we let A be an isometry of F and |λ| = 1, then

T = λIdY ⊕ A,

generates a bounded subgroup of GL(X ).

Therefore, we can renorm X so that T becomes an isometry.
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In a more general framework, if I is an ideal in the algebra of
bounded operators L(X ), we let

GLI(X ) = {Id + A ∈ GL(X )
∣∣ A ∈ I}

denote the subgroup of I-perturbations of the identity.

For example, if K denotes the ideal of compact operators, then
GLK(X ) is known as the Fredholm group on X .

The most important ideals are

F ⊆ AF = F ⊆ K ⊆ SS

of respectively finite-rank, approximately finite-rank, compact and
strictly singular operators.
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For example, it is known by work of W. T. Gowers and B. Maurey
(1992) that if X is a complex HI space, then

GL(X ) = C× × GLSS(X ),

in fact, any operator on X is of the form

T = λId + S ,

where S is strictly singular.

However, isometries are even more restrictive, namely, F. Räbiger
and W. J. Ricker (1998) showed that any isometry has the form

λId + K ,

where K is compact.
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But these results have the following generalisation.

Theorem

Let X be a Banach space. Then any bounded subgroup
G 6 GLSS(X ) is contained in GLAF (X ).

Also, with stronger assumptions,

Theorem

Let X be a Banach space without any unconditional basic
sequences (e.g., if X is HI). Then any bounded subgroup
G 6 GLSS(X ) is contained in GLF (X ).

In other words, each individual isometry of a complex HI space is
of the form

T = λId + A,

where |λ| = 1 and A has finite rank.

But what about groups of isometries?
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Nearly trivial actions

Definition

Suppose G 6 GL(X ). We say that G acts nearly trivially on X if
there is a G -invariant decomposition

X = H ⊕ F

such that F is finite-dimensional and T |H = λIdH for every T ∈ G .

In other words, G acts by scalar multiplication on the
cofinite-dimensional subspace H and thus the non-trivial part of
the action occurs on F .
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One reason for our interest in nearly trivial actions are their
relation to Wood’s problem.

Proposition

Suppose X is an infinite-dimensional Banach space and
G 6 GL(X ) is a bounded subgroup acting nearly trivially on X .
Then G is not maximal bounded in GL(X ).

The idea is that if X = H ⊕ F is the G -invariant decomposition,
where F is finite-dimensional and G acts trivially on H (i.e., by
scalar multiplication), then we can further split X as

X = H ′ ⊕ E ⊕ F

and then properly extend G to the bounded subgroup

Isom(E )× G

inside of GL(X ).
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Structure theory for small subgroups of GL(X )

It is possible to develop quite a significant structure theory for
small subgroups G 6 GL(X ), that is, bounded subgroups of
GLF (X ) or GLAF (X ), under various additional assumptions on X
and on G .

The additional assumptions can be the separability of X ∗,
reflexivity of X , or that G is norm or strongly closed in GL(X ).

We shall not go too much into this, but just mention some of the
main techniques and results with a view towards Wood’s problem.
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Weak almost periodicity and equivariant decompositions

A topic of significant interest in ergodic theory and harmonic
analysis are the decomposition theorems of weakly almost periodic
representations.

Theorem (Alaoglu – Birkhoff and Jacobs – de Leeuw – Glicksberg)

Let X be a Banach space and G 6 GL(X ) a weakly almost
periodic subgroup, i.e., such that any orbit G ·x is relatively weakly
compact in X . Then X admits a G -invariant decomposition

X = X1 ⊕ X2 ⊕ X3,

where

X1 is the set of G -invariant vectors,

any orbit on X2 is relatively norm compact,

no non-zero orbit on X3 is relatively norm compact.
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Though weakly almost periodic representations occur naturally in
ergodic theory and dynamical systems, the main reason why the
isometry group of a Banach space X should be weakly almost
periodic is that X is reflexive (and hence any bounded subset if
relatively weakly compact).

And, in fact, in the setting of separable reflexive spaces, we can
give very natural proofs of the aforementioned decomposition
theorems based on the refinement of Lancien’s renorming theorem.

The other known proofs of these are either based on
Ryll-Nardzewski’s fixed point theorem or Namioka’s joint
continuity theorem.
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Decompositions by groups of finite-dimensional isometries

Theorem

Let X be separable reflexive, G 6 GLF (X ) a bounded subgroup
and X = X1 ⊕ X2 ⊕ X3 the canonical decomposition.
Then X2 and X3 admit G -invariant Schauder decompositions

Xi = Y1 ⊕ Y2 ⊕ . . .

(possibly with finitely many summands) so that each Yi has a
(possibly finite) Schauder basis.
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Norm closed subgroups of GLF(X )

By the decomposition theorem, studying isometry groups of a
reflexive Banach space X largely reduces to studying its action
separately on X2 and X3.

Now on X2, as a consequence of the Peter-Weyl theorem, we have
the following well-known equivalence.

Proposition

Let X be a Banach space. Then the following are equivalent for a
bounded subgroup G 6 GL(X ).

every orbit G ·x is relatively norm compact,

G is relatively compact in the strong operator topology,

X is the closed linear span of its finite-dimensional G -invariant
subspaces.
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every orbit G ·x is relatively norm compact,

G is relatively compact in the strong operator topology,

X is the closed linear span of its finite-dimensional G -invariant
subspaces.
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On the other hand, of relevance to X3, we have

Theorem

Let X be a Banach space with separable dual and G 6 GLF (X ) a
bounded subgroup, norm closed in GL(X ), so that no non-zero
G -orbit is relatively norm compact.

Then G is discrete and locally finite in the norm topology.
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Strongly closed bounded subgroups of GLF(X )

Combining our various results on small subgroups, we obtain

Theorem

Suppose X is a separable, reflexive Banach space and
G 6 GLF (X ) is bounded and strongly closed in GL(X ).
Then G is an amenable Lie group and the connected component
of the identity, G0 6 G , acts nearly trivially on X .
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Quick and dirty solution to Wood’s problem and relatives

Ferenczi (1995) constructed a super-reflexive HI space W .

Also, by Enflo’s solution to the Approximation Problem and its
reinforcement by Szankowski, W must contain a subspace X
without the approximation property and hence with no
finite-dimensional decomposition.

Now, since X is HI, if X = Y ⊕ Z , then one of Y and Z is
finite-dimensional.

So, if
X = X1 ⊕ X2 ⊕ X3

is the canonical isometry-invariant decomposition, then exactly one
of the three summands is infinite-dimensional.
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Moreover, for i = 2, 3, we have a decomposition

Xi = Y1 ⊕ Y2 ⊕ . . .

(possibly with finitely many summands) so that each Yn has a
(possibly finite) Schauder basis.

Again only one of the Yi can be infinite-dimensional.

It follows that either
X = X1 ⊕ F ,

or
X = Z ⊕ F ,

where F is finite-dimensional, the isometry group acts trivially on
X1 (i.e., by scalar multiplication) and Z has a finite-dimensional
decomposition.
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Since the last option is absurd, as then also X would have a
finite-dimensional decomposition, it follows that any bounded
subgroup of GLF (X ) acts nearly trivially on X .

With a little more care in the decompositions, we obtain

Theorem

Let X be a reflexive HI space without the approximation property.
Then X admits an isometry-invariant decomposition

X = F ⊕ H,

with F finite-dimensional and where H is a closed subspace
carrying no non-trivial isometry.

Corollary

There is no maximal bounded subgroup of GL(X ) and so
X has no equivalent maximal norm.
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