Martin's Axiom and initially ω_1 -compact spaces

Alan Dow

Department of Mathematics and Statistics University of North Carolina Charlotte

October 22, 2012

Alan Dow Martin's Axiom and initially ω_1 -compact spaces

Definition

A space X is initially ω_1 -compact if every open cover of size at most ω_1 has a finite subcover. Equivalently, each $A \in [X]^{\leq \omega_1}$ has a CAP (complete accumulation point).

Definition

A space X is initially ω_1 -compact if every open cover of size at most ω_1 has a finite subcover. Equivalently, each $A \in [X]^{\leq \omega_1}$ has a CAP (complete accumulation point).

Definition

A space X has countable tightness, $t = \omega$, if for each $A \subset X$, $\overline{A} = \bigcup \{\overline{B} : B \in [A]^{\omega}\}$. For compact X, this is equivalent to having no (converging) uncountable free sequence (initial segments and final segments have disjoint closures).

What property of first-countable X is sufficient to guarantee that for any first-countable $Y \supset X$, X is C-embedded in Y?

□ ► < E ► < E ►</p>

What property of first-countable X is sufficient to guarantee that for any first-countable $Y \supset X$, X is C-embedded in Y?

Answer

X should be almost initially ω_1 -compact – meaning, given two disjoint zero sets, Z_1, Z_2 of X, at least one should be initially ω_1 -compact. But, is this just almost compact?

What property of first-countable X is sufficient to guarantee that for any first-countable $Y \supset X$, X is C-embedded in Y?

Answer

X should be almost initially ω_1 -compact – meaning, given two disjoint zero sets, Z_1, Z_2 of X, at least one should be initially ω_1 -compact. But, is this just almost compact?

• the properties $t = \omega$, \aleph_0 -bounded, plus initially ω_1 -compact implies compact,

向 ト イ ヨ ト イ

What property of first-countable X is sufficient to guarantee that for any first-countable $Y \supset X$, X is C-embedded in Y?

Answer

X should be almost initially ω_1 -compact – meaning, given two disjoint zero sets, Z_1, Z_2 of X, at least one should be initially ω_1 -compact. But, is this just almost compact?

- It he properties t = ω, ℵ₀-bounded, plus initially ω₁-compact implies compact,
- **②** hence CH implies that $t = \omega$ plus initially ω_1 -compact will be compact

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

What property of first-countable X is sufficient to guarantee that for any first-countable $Y \supset X$, X is C-embedded in Y?

Answer

X should be almost initially ω_1 -compact – meaning, given two disjoint zero sets, Z_1, Z_2 of X, at least one should be initially ω_1 -compact. But, is this just almost compact?

- the properties t = ω, ℵ₀-bounded, plus initially ω₁-compact implies compact,
- **②** hence CH implies that $t = \omega$ plus initially ω_1 -compact will be compact
- **and** if there is a counterexample, there is a separable one.

- 4 同 ト - 4 目 ト

Is it consistent to have a first-countable initially ω_1 -compact non-compact space? [let's call one "a counterexample"].

Is it consistent to have a first-countable initially ω_1 -compact non-compact space? [let's call one "a counterexample"].

Since first-countable compact spaces have cardinality \mathfrak{c} , we have a follow-up question by Arhangelskii

Is it consistent to have a first-countable initially ω_1 -compact non-compact space? [let's call one "a counterexample"].

Since first-countable compact spaces have cardinality $\mathfrak{c},$ we have a follow-up question by Arhangelskii

question

Does each first-countable initially ω_1 -compact space have cardinality at most \mathfrak{c} ?

Is it consistent to have a first-countable initially ω_1 -compact non-compact space? [let's call one "a counterexample"].

Since first-countable compact spaces have cardinality \mathfrak{c} , we have a follow-up question by Arhangelskii

question

Does each first-countable initially ω_1 -compact space have cardinality at most \mathfrak{c} ?

A remaining open problem in this area

Is it consistent to have a first-countable initially ω_1 -compact non-compact space? [let's call one "a counterexample"].

Since first-countable compact spaces have cardinality \mathfrak{c} , we have a follow-up question by Arhangelskii

question

Does each first-countable initially ω_1 -compact space have cardinality at most \mathfrak{c} ?

A remaining open problem in this area

Question [Juhasz]

Does each compact space with $t = \omega$ have a point with character at most ω_1 ?

Moore-Mrowka spaces

Alan Dow Martin's Axiom and initially ω_1 -compact spaces

Moore-Mrowka spaces

Theorem

If X is a initially ω_1 -compact, $t = \omega$ non-compact space, then βX is a Moore-Mrowka space (compact, $t = \omega$ and not sequential).

If X is a initially ω_1 -compact, $t = \omega$ non-compact space, then βX is a Moore-Mrowka space (compact, $t = \omega$ and not sequential).

Theorem (Balogh)

PFA implies there is no Moore-Mrowka space (and so there is no "counterexample").

If X is a initially ω_1 -compact, $t = \omega$ non-compact space, then βX is a Moore-Mrowka space (compact, $t = \omega$ and not sequential).

Theorem (Balogh)

PFA implies there is no Moore-Mrowka space (and so there is no "counterexample").

Proof.

Assume that K is compact, $t = \omega$ and $X \subset K$ is sequentially compact but not closed.

If X is a initially ω_1 -compact, $t = \omega$ non-compact space, then βX is a Moore-Mrowka space (compact, $t = \omega$ and not sequential).

Theorem (Balogh)

PFA implies there is no Moore-Mrowka space (and so there is no "counterexample").

Proof.

Assume that K is compact, $t = \omega$ and $X \subset K$ is sequentially compact but not closed. MA(ω_1) implies that X can be assumed to be countably compact and cardinality at most \mathfrak{c} .

If X is a initially ω_1 -compact, $t = \omega$ non-compact space, then βX is a Moore-Mrowka space (compact, $t = \omega$ and not sequential).

Theorem (Balogh)

PFA implies there is no Moore-Mrowka space (and so there is no "counterexample").

Proof.

Assume that K is compact, $t = \omega$ and $X \subset K$ is sequentially compact but not closed. MA(ω_1) implies that X can be assumed to be countably compact and cardinality at most c. Fix any \mathcal{F} – a free countably complete filter of closed subsets of X.

If X is a initially ω_1 -compact, $t = \omega$ non-compact space, then βX is a Moore-Mrowka space (compact, $t = \omega$ and not sequential).

Theorem (Balogh)

PFA implies there is no Moore-Mrowka space (and so there is no "counterexample").

Proof.

Assume that K is compact, $t = \omega$ and $X \subset K$ is sequentially compact but not closed. MA(ω_1) implies that X can be assumed to be countably compact and cardinality at most \mathfrak{c} . Fix any \mathcal{F} – a free countably complete filter of closed subsets of X. For each $x \in X$, specify $x \in W_x \subset U_x$ – open in K – with $\overline{W_x} \subset U_x$ and $X \setminus U_x \in \mathcal{F}$.

Alan Dow Martin's Axiom and initially ω_1 -compact spaces

<ロ> <部> < き> < き> <</p>

æ

• The poset \mathbb{P} is proper, where $p \in \mathbb{P}$ has the form $(\langle x_{\alpha} : \alpha \in L_p \rangle, \mathcal{M}_p = \langle M_{\alpha} : \alpha \in L_p \rangle)$ providing $L_p \in [\omega_1]^{<\omega}$, \mathcal{M}_p is an ϵ -chain of $M \prec H(\lambda)$, $M_{\alpha} \cap \omega_1 = \alpha$, and $x_{\alpha} \in \bigcap \{\overline{F \cap M_{\alpha}} : F \in \mathcal{F} \cap M_{\alpha} \}.$

• The poset \mathbb{P} is proper, where $p \in \mathbb{P}$ has the form $(\langle x_{\alpha} : \alpha \in L_p \rangle, \mathcal{M}_p = \langle M_{\alpha} : \alpha \in L_p \rangle)$ providing $L_p \in [\omega_1]^{<\omega}$, \mathcal{M}_p is an ϵ -chain of $M \prec H(\lambda)$, $M_{\alpha} \cap \omega_1 = \alpha$, and $x_{\alpha} \in \bigcap \{\overline{F \cap M_{\alpha}} : F \in \mathcal{F} \cap M_{\alpha} \}.$

a For $\alpha \in L_p$, define $W^p_{\alpha} = \bigcap \{ W_{x_{\delta}} : x_{\alpha} \in W_{x_{\delta}}, \delta \in L_p \}$

- The poset \mathbb{P} is proper, where $p \in \mathbb{P}$ has the form $(\langle x_{\alpha} : \alpha \in L_p \rangle, \mathcal{M}_p = \langle M_{\alpha} : \alpha \in L_p \rangle)$ providing $L_p \in [\omega_1]^{<\omega}$, \mathcal{M}_p is an ϵ -chain of $M \prec H(\lambda)$, $M_{\alpha} \cap \omega_1 = \alpha$, and $x_{\alpha} \in \bigcap \{\overline{F \cap M_{\alpha}} : F \in \mathcal{F} \cap M_{\alpha} \}.$
- **a** For $\alpha \in L_p$, define $W^p_{\alpha} = \bigcap \{ W_{x_{\delta}} : x_{\alpha} \in W_{x_{\delta}}, \delta \in L_p \}$
- Solution is a define p < q to require that for α ∈ L_p \ L_q and δ = min(L_q \ α) x_α ∈ W^q_δ

- The poset \mathbb{P} is proper, where $p \in \mathbb{P}$ has the form $(\langle x_{\alpha} : \alpha \in L_p \rangle, \mathcal{M}_p = \langle M_{\alpha} : \alpha \in L_p \rangle)$ providing $L_p \in [\omega_1]^{<\omega}$, \mathcal{M}_p is an ϵ -chain of $M \prec H(\lambda)$, $M_{\alpha} \cap \omega_1 = \alpha$, and $x_{\alpha} \in \bigcap \{\overline{F \cap M_{\alpha}} : F \in \mathcal{F} \cap M_{\alpha} \}.$
- Solution is a define p < q to require that for α ∈ L_p \ L_q and δ = min(L_q \ α) x_α ∈ W^q_δ
- Meeting ω_1 -sets produces an ω_1 -sequence, free in K,

- The poset \mathbb{P} is proper, where $p \in \mathbb{P}$ has the form $(\langle x_{\alpha} : \alpha \in L_p \rangle, \mathcal{M}_p = \langle M_{\alpha} : \alpha \in L_p \rangle)$ providing $L_p \in [\omega_1]^{<\omega}$, \mathcal{M}_p is an ϵ -chain of $M \prec H(\lambda)$, $M_{\alpha} \cap \omega_1 = \alpha$, and $x_{\alpha} \in \bigcap \{\overline{F \cap M_{\alpha}} : F \in \mathcal{F} \cap M_{\alpha} \}.$
- Solution is a define p < q to require that for α ∈ L_p \ L_q and δ = min(L_q \ α) x_α ∈ W^q_δ
- Meeting ω_1 -sets produces an ω_1 -sequence, free in K,

Corollary

Therefore PFA implies there is no first-countable initially ω_1 -compact non-compact space.

・ 戸 ト ・ ラ ト ・ ラ ト

- The poset \mathbb{P} is proper, where $p \in \mathbb{P}$ has the form $(\langle x_{\alpha} : \alpha \in L_p \rangle, \mathcal{M}_p = \langle M_{\alpha} : \alpha \in L_p \rangle)$ providing $L_p \in [\omega_1]^{<\omega}$, \mathcal{M}_p is an ϵ -chain of $M \prec H(\lambda)$, $M_{\alpha} \cap \omega_1 = \alpha$, and $x_{\alpha} \in \bigcap \{\overline{F \cap M_{\alpha}} : F \in \mathcal{F} \cap M_{\alpha} \}.$
- $\textbf{ Sor } \alpha \in L_p, \text{ define } W^p_\alpha = \bigcap \{ W_{x_\delta} : x_\alpha \in W_{x_\delta}, \delta \in L_p \}$
- Solution is a define p < q to require that for α ∈ L_p \ L_q and δ = min(L_q \ α) x_α ∈ W^q_δ
- Meeting ω_1 -sets produces an ω_1 -sequence, free in K,

Corollary

Therefore PFA implies there is no first-countable initially ω_1 -compact non-compact space.

What about Martin's Axiom? But we still don't know about ZFC

・ 戸 ト ・ ラ ト ・ ラ ト

Proposition

If there is a first-countable initially ω_1 -compact space X such that $|\beta X| > \mathfrak{c}$, and each $A \in [\beta X \setminus X]^{\leq \omega_1}$ has a complete accumulation point in X, then there is a first-countable initially ω_1 -compact space of cardinality greater than \mathfrak{c}

Proposition

If there is a first-countable initially ω_1 -compact space X such that $|\beta X| > \mathfrak{c}$, and each $A \in [\beta X \setminus X]^{\leq \omega_1}$ has a complete accumulation point in X, then there is a first-countable initially ω_1 -compact space of cardinality greater than \mathfrak{c}

Proof.

Take the space to have base set βX and simply declare the points of $\beta X \setminus X$ to be isolated. The points of X retain their original neighborhood bases.

This space is first-countable and large.

This space is initially ω_1 -compact simply by the hypotheses.

Definition

A minimally generating sequence for a Boolean algebra is a sequence $\{a_{\alpha} : \alpha \in L\}$ (for $L \subset \kappa$) satisfying that

Definition

A minimally generating sequence for a Boolean algebra is a sequence $\{a_{\alpha} : \alpha \in L\}$ (for $L \subset \kappa$) satisfying that

$$a \in a_{\alpha} \subset L \cap \alpha + 1,$$

Definition

A minimally generating sequence for a Boolean algebra is a sequence $\{a_{\alpha} : \alpha \in L\}$ (for $L \subset \kappa$) satisfying that

$$\ \, \mathbf{0} \ \, \alpha \in \mathbf{a}_{\alpha} \subset \mathbf{L} \cap \alpha + 1,$$

2) for
$$\alpha < \beta \, a_{lpha} \cap a_{eta} \in B_{lpha+1} = \langle a_{\gamma} : \gamma \leq lpha
angle_{BA}$$

Definition

A minimally generating sequence for a Boolean algebra is a sequence $\{a_{\alpha} : \alpha \in L\}$ (for $L \subset \kappa$) satisfying that

$$\ \, \mathbf{0} \ \, \alpha \in \mathbf{a}_{\alpha} \subset \mathbf{L} \cap \alpha + 1,$$

2) for
$$\alpha < \beta \, a_{\alpha} \cap a_{\beta} \in B_{\alpha+1} = \langle a_{\gamma} : \gamma \leq \alpha \rangle_{BA}$$

③ strongly will mean that $\langle a_{\alpha} : \alpha \in L \rangle$ generates a proper ideal.

Definition

A minimally generating sequence for a Boolean algebra is a sequence $\{a_{\alpha} : \alpha \in L\}$ (for $L \subset \kappa$) satisfying that

$$\ \, \mathbf{0} \ \, \alpha \in \mathbf{a}_{\alpha} \subset \mathbf{L} \cap \alpha + 1,$$

2) for
$$\alpha < \beta \, a_{lpha} \cap a_{eta} \in B_{lpha+1} = \langle a_{\gamma} : \gamma \leq lpha
angle_{BA}$$

③ strongly will mean that $\langle a_{\alpha} : \alpha \in L \rangle$ generates a proper ideal.

Proposition

```
Given such \langle a_{\alpha} : \alpha \in L \rangle then, for each \alpha \in L,
```

Definition

A minimally generating sequence for a Boolean algebra is a sequence $\{a_{\alpha} : \alpha \in L\}$ (for $L \subset \kappa$) satisfying that

$$\ \, \mathbf{0} \ \, \alpha \in \mathbf{a}_{\alpha} \subset \mathbf{L} \cap \alpha + 1,$$

2) for
$$lpha < eta \; \mathbf{a}_{lpha} \cap \mathbf{a}_{eta} \in \mathcal{B}_{lpha+1} = \langle \mathbf{a}_{\gamma} : \gamma \leq lpha
angle_{\mathcal{B}\mathcal{A}}$$

③ strongly will mean that $\langle a_{\alpha} : \alpha \in L \rangle$ generates a proper ideal.

Proposition

Given such $\langle a_{\alpha} : \alpha \in L \rangle$ then, for each $\alpha \in L$,

① the set $\{a_{\alpha} \setminus a_{\gamma} : \gamma \in \alpha \cap L\}$ generates an ultrafilter on *B*

Definition

A minimally generating sequence for a Boolean algebra is a sequence $\{a_{\alpha} : \alpha \in L\}$ (for $L \subset \kappa$) satisfying that

$$\ \, \mathbf{0} \ \, \alpha \in \mathbf{a}_{\alpha} \subset \mathbf{L} \cap \alpha + 1,$$

2) for
$$lpha < eta \; \mathbf{a}_{lpha} \cap \mathbf{a}_{eta} \in \mathcal{B}_{lpha+1} = \langle \mathbf{a}_{\gamma} : \gamma \leq lpha
angle_{\mathcal{B}\mathcal{A}}$$

③ strongly will mean that $\langle a_{\alpha} : \alpha \in L \rangle$ generates a proper ideal.

Proposition

Given such $\langle a_{\alpha} : \alpha \in L \rangle$ then, for each $\alpha \in L$,

- **①** the set $\{a_{\alpha} \setminus a_{\gamma} : \gamma \in \alpha \cap L\}$ generates an ultrafilter on B
- Ithe only other ultrafilter is generated by the complements.
Rabus forces a minimal Boolean algebra – solving $t = \omega$

Definition

A minimally generating sequence for a Boolean algebra is a sequence $\{a_{\alpha} : \alpha \in L\}$ (for $L \subset \kappa$) satisfying that

$$\ \, \mathbf{0} \ \, \alpha \in \mathbf{a}_{\alpha} \subset \mathbf{L} \cap \alpha + \mathbf{1},$$

2) for
$$lpha < eta \; \mathbf{a}_{lpha} \cap \mathbf{a}_{eta} \in \mathcal{B}_{lpha+1} = \langle \mathbf{a}_{\gamma} : \gamma \leq lpha
angle_{\mathcal{B}\mathcal{A}}$$

③ strongly will mean that $\langle a_{\alpha} : \alpha \in L \rangle$ generates a proper ideal.

Proposition

Given such $\langle a_{\alpha} : \alpha \in L \rangle$ then, for each $\alpha \in L$,

① the set $\{a_{\alpha} \setminus a_{\gamma} : \gamma \in \alpha \cap L\}$ generates an ultrafilter on *B*

Ithe only other ultrafilter is generated by the complements.

Proof.

the key is that $\alpha \in a_{\beta}$ implies that $\alpha \notin a_{\alpha} \setminus (a_{\alpha} \cap a_{\beta})$

Theorem (Rabus)

Adding, with σ -closed forcing, $f : [\omega_2]^2 \mapsto [\omega_2]^{\omega}$, and force with

Theorem (Rabus)

Adding, with σ -closed forcing, $f : [\omega_2]^2 \mapsto [\omega_2]^{\omega}$, and force with

Theorem (Rabus)

Adding, with σ -closed forcing, $f : [\omega_2]^2 \mapsto [\omega_2]^{\omega}$, and force with

• $q \in Q$ providing $q = \langle a_{\alpha}^{q} : \alpha \in L_{q} \in [\omega_{2}]^{<\omega} \rangle$ is strongly minimal but also

$$a < \beta \in L_q \text{ implies } a^q_\alpha \cap a^q_\beta \in B_{L_q \cap f(\alpha,\beta)}$$

Theorem (Rabus)

Adding, with σ -closed forcing, $f : [\omega_2]^2 \mapsto [\omega_2]^{\omega}$, and force with

- $q \in Q$ providing $q = \langle a_{\alpha}^{q} : \alpha \in L_{q} \in [\omega_{2}]^{<\omega} \rangle$ is strongly minimal but also
- **③** p < q requires $a^p_{\alpha} \mapsto a^p_{\alpha} \cap L_q = a^q_{\alpha}$ for $\alpha \in L_q$ is an isomorphism.

Theorem (Rabus)

Adding, with σ -closed forcing, $f : [\omega_2]^2 \mapsto [\omega_2]^{\omega}$, and force with

- $q \in Q$ providing $q = \langle a_{\alpha}^{q} : \alpha \in L_{q} \in [\omega_{2}]^{<\omega} \rangle$ is strongly minimal but also
- $a < \beta \in L_q \text{ implies } a^q_\alpha \cap a^q_\beta \in B_{L_q \cap f(\alpha,\beta)}$
- **3** p < q requires $a_{\alpha}^{p} \mapsto a_{\alpha}^{p} \cap L_{q} = a_{\alpha}^{q}$ for $\alpha \in L_{q}$ is an isomorphism.

Properties in extension by Q

If G is Q-generic, then $a_{\alpha} = \bigcup \{a^{q}_{\alpha} : q \in G\} \subset \alpha + 1$

Theorem (Rabus)

Adding, with σ -closed forcing, $f : [\omega_2]^2 \mapsto [\omega_2]^{\omega}$, and force with

- $q \in Q$ providing $q = \langle a_{\alpha}^{q} : \alpha \in L_{q} \in [\omega_{2}]^{<\omega} \rangle$ is strongly minimal but also
- **3** p < q requires $a_{\alpha}^{p} \mapsto a_{\alpha}^{p} \cap L_{q} = a_{\alpha}^{q}$ for $\alpha \in L_{q}$ is an isomorphism.

Properties in extension by Q

- If G is Q-generic, then $a_{\alpha} = \bigcup \{a^q_{\alpha} : q \in G\} \subset \alpha + 1$
 - yields a locally compact, scattered thin very-tall space on ω_2 which is $t = \omega$ and initially ω_1 -compact

Theorem (Rabus)

Adding, with σ -closed forcing, $f : [\omega_2]^2 \mapsto [\omega_2]^{\omega}$, and force with

- $q \in Q$ providing $q = \langle a_{\alpha}^{q} : \alpha \in L_{q} \in [\omega_{2}]^{<\omega} \rangle$ is strongly minimal but also
- $a < \beta \in L_q \text{ implies } a^q_\alpha \cap a^q_\beta \in B_{L_q \cap f(\alpha,\beta)}$
- **3** p < q requires $a_{\alpha}^{p} \mapsto a_{\alpha}^{p} \cap L_{q} = a_{\alpha}^{q}$ for $\alpha \in L_{q}$ is an isomorphism.

Properties in extension by Q

- If G is Q-generic, then $a_{\alpha} = \bigcup \{a^q_{\alpha} : q \in G\} \subset \alpha{+}1$
 - yields a locally compact, scattered thin very-tall space on ω_2 which is $t = \omega$ and initially ω_1 -compact
 - 2 for the α -th limit λ_{α} , $[\lambda_{\alpha}, \lambda_{\alpha} + \omega)$ is the α scattering level,

Theorem (Rabus)

Adding, with σ -closed forcing, $f : [\omega_2]^2 \mapsto [\omega_2]^{\omega}$, and force with

- $q \in Q$ providing $q = \langle a_{\alpha}^{q} : \alpha \in L_{q} \in [\omega_{2}]^{<\omega} \rangle$ is strongly minimal but also
- **3** p < q requires $a_{\alpha}^{p} \mapsto a_{\alpha}^{p} \cap L_{q} = a_{\alpha}^{q}$ for $\alpha \in L_{q}$ is an isomorphism.

Properties in extension by Q

- If G is Q-generic, then $a_{\alpha} = \bigcup \{a^q_{\alpha} : q \in G\} \subset \alpha{+}1$
 - yields a locally compact, scattered thin very-tall space on ω_2 which is $t = \omega$ and initially ω_1 -compact
 - 2) for the α -th limit λ_{α} , $[\lambda_{\alpha}, \lambda_{\alpha} + \omega)$ is the α scattering level,
 - Improve more generally, each ground model infinite set has coinitial closure

if $A \subset \omega_2$ does not have compact closure, then \overline{A} is coinitial (even a single limit for countable A was the innovative step).

if $A \subset \omega_2$ does not have compact closure, then \overline{A} is coinitial (even a single limit for countable A was the innovative step).

Definition (Koszmider)

Fix a tree $T \subset 2^{<\kappa}$ such that for all $t \in T$, $T \cap \{t0, t1\}$ is not a singleton (for $t \in 2^{\alpha+1}$, let t^{\dagger} denote its twin). A T-algebra generating sequence $\mathfrak{a}_T = \{a_t : t \in Succ(T)\}$ satisfies

if $A \subset \omega_2$ does not have compact closure, then \overline{A} is coinitial (even a single limit for countable A was the innovative step).

Definition (Koszmider)

Fix a tree $T \subset 2^{<\kappa}$ such that for all $t \in T$, $T \cap \{t0, t1\}$ is not a singleton (for $t \in 2^{\alpha+1}$, let t^{\dagger} denote its twin). A T-algebra generating sequence $\mathfrak{a}_T = \{a_t : t \in Succ(T)\}$ satisfies

$$t \in a_t \subset C_t = \{s \in Succ(T) : s \leq t\}$$

if $A \subset \omega_2$ does not have compact closure, then \overline{A} is coinitial (even a single limit for countable A was the innovative step).

Definition (Koszmider)

Fix a tree $T \subset 2^{<\kappa}$ such that for all $t \in T$, $T \cap \{t0, t1\}$ is not a singleton (for $t \in 2^{\alpha+1}$, let t^{\dagger} denote its twin). A T-algebra generating sequence $\mathfrak{a}_T = \{a_t : t \in Succ(T)\}$ satisfies

$$t \in a_t \subset C_t = \{s \in Succ(T) : s \leq t\}$$

2)
$$a_{t^\dagger} = C_{t^\dagger} \setminus a_t$$

if $A \subset \omega_2$ does not have compact closure, then \overline{A} is coinitial (even a single limit for countable A was the innovative step).

Definition (Koszmider)

Fix a tree $T \subset 2^{<\kappa}$ such that for all $t \in T$, $T \cap \{t0, t1\}$ is not a singleton (for $t \in 2^{\alpha+1}$, let t^{\dagger} denote its twin). A T-algebra generating sequence $\mathfrak{a}_T = \{a_t : t \in Succ(T)\}$ satisfies

$$\bullet \ t \in a_t \subset C_t = \{s \in Succ(T) : s \leq t\}$$

2
$$a_{t^\dagger} = C_{t^\dagger} \setminus a_t$$

• $\{a_s : s \in C_t\}$ is strongly minimal (as above)

同 ト イ ヨ ト イ ヨ ト

a topology $\mathcal{A}_{\mathcal{T}}$ on the maximal branches $b\mathcal{T}$

Definition

For each
$$t \in Succ(T)$$
, we define $A_t \in A_T$
 $A_t = \{x \in bT : (\exists \rho \in a_t) \ \rho^{\dagger} \subset x\}$

直 ト イヨト イヨト

For each
$$t \in Succ(T)$$
, we define $A_t \in \mathcal{A}_T$
 $A_t = \{x \in bT : (\exists \rho \in a_t) \ \rho^{\dagger} \subset x\}$

$$A_t$$
 is also equal to $\{x \in bT : t \notin x \text{ and } \min(C_t \setminus x) \in a_t\};$
 A_t and $A_{t^{\dagger}}$ are complements;
 $t \in A_{t^{\dagger}}.$

each point $x \in bT$ has neighborhood base generated by $\{A_{t^{\dagger}} : t \in C_x\}$. A set Y of branches accumulates to a branch x if its \dagger projection does.

A B M A B M

For each
$$t \in Succ(T)$$
, we define $A_t \in \mathcal{A}_T$
 $A_t = \{x \in bT : (\exists \rho \in a_t) \ \rho^{\dagger} \subset x\}$

 A_t is also equal to $\{x \in bT : t \notin x \text{ and } \min(C_t \setminus x) \in a_t\};$ A_t and $A_{t^{\dagger}}$ are complements; $t \in A_{t^{\dagger}}.$

each point $x \in bT$ has neighborhood base generated by $\{A_{t^{\dagger}} : t \in C_x\}$.

A set Y of branches accumulates to a branch x if its \dagger -projection does.

For Rabus' example, we let $T_R = \{t_\alpha \upharpoonright \alpha, t_\alpha \in 2^{<\omega_2} : t_\alpha(\alpha) = 0 \text{ and } t_\alpha \upharpoonright \alpha \equiv 1\}.$

For Rabus' example, we let

$$T_R = \{ t_\alpha \upharpoonright \alpha, t_\alpha \in 2^{<\omega_2} : t_\alpha(\alpha) = 0 \text{ and } t_\alpha \upharpoonright \alpha \equiv 1 \}.$$

The point $t_{\alpha} \in bT_R$ because it is maximal, and strangely, $a_{t_{\alpha}^{\dagger}}$ codes the canonical neighborhood $A_{t_{\alpha}^{\dagger}}$ of t_{α} . $a_{t_{\alpha}^{\dagger}}$ is describing a set of t_{β} which have bounded closure.

For Rabus' example, we let

$$T_R = \{ t_\alpha \upharpoonright \alpha, t_\alpha \in 2^{<\omega_2} : t_\alpha(\alpha) = 0 \text{ and } t_\alpha \upharpoonright \alpha \equiv 1 \}.$$

The point $t_{\alpha} \in bT_R$ because it is maximal, and strangely, $a_{t_{\alpha}^{\dagger}}$ codes the canonical neighborhood $A_{t_{\alpha}^{\dagger}}$ of t_{α} . $a_{t_{\alpha}^{\dagger}}$ is describing a set of t_{β} which have bounded closure.

 $X = bT_R \setminus \{\vec{1}\}$ is initially ω_1 -compact and $t = \omega$. $a_{t_{\alpha}}$ codes a set which is dense in a tail.

Theorem (P. Koszmider, TAMS 351, 1999)

Using a FS-support iteration of (Souslin-free) ccc posets, and $T_0 = 2^{<\omega_1}$, $T = 2^{<\omega_1+\omega}$, there is \mathfrak{a}_T extending \mathfrak{a}_{T_0} s.t.

Theorem (P. Koszmider, TAMS 351, 1999)

Using a FS-support iteration of (Souslin-free) ccc posets, and $T_0 = 2^{<\omega_1}$, $T = 2^{<\omega_1+\omega}$, there is \mathfrak{a}_T extending \mathfrak{a}_{T_0} s.t.

() the space bT_0 has no points of countable character

Theorem (P. Koszmider, TAMS 351, 1999)

Using a FS-support iteration of (Souslin-free) ccc posets, and $T_0 = 2^{<\omega_1}$, $T = 2^{<\omega_1+\omega}$, there is \mathfrak{a}_T extending \mathfrak{a}_{T_0} s.t.

- the space bT_0 has no points of countable character
- *the space bT is first-countable*

Theorem (P. Koszmider, TAMS 351, 1999)

Using a FS-support iteration of (Souslin-free) ccc posets, and $T_0 = 2^{<\omega_1}$, $T = 2^{<\omega_1+\omega}$, there is \mathfrak{a}_T extending \mathfrak{a}_{T_0} s.t.

- the space bT_0 has no points of countable character
- *the space bT is first-countable*

Theorem (P. Koszmider, TAMS 351, 1999)

Using a FS-support iteration of (Souslin-free) ccc posets, and $T_0 = 2^{<\omega_1}$. $T = 2^{<\omega_1+\omega}$. there is \mathfrak{a}_{τ} extending \mathfrak{a}_{τ_0} s.t.

Borrowing from the paper

Juhasz, Koszmider, and Soukup, **A first countable, initially** ω_1 -compact but non-compact space, TopAppl 156, 2009

• • = • • = •

Borrowing from the paper

Juhasz, Koszmider, and Soukup, **A first countable, initially** ω_1 -compact but non-compact space, TopAppl 156, 2009

Definition

Set

 $T_{\omega} = \{t \in 2^{<\omega_2} : t(\alpha) = 0 \text{ implies } (\exists \beta < \alpha < \beta + \omega)t \upharpoonright \beta \equiv 1\}$ each Rabus t_{α} has all possible finite extensions

伺下 イヨト イヨト

Borrowing from the paper

Juhasz, Koszmider, and Soukup, **A first countable, initially** ω_1 -compact but non-compact space, TopAppl 156, 2009

Definition

Set

$$T_{\omega} = \{t \in 2^{<\omega_2} : t(\alpha) = 0 \text{ implies } (\exists \beta < \alpha < \beta + \omega)t \upharpoonright \beta \equiv 1\}$$

each Rabus t_{α} has all possible finite extensions

Theorem

Again, forcing (using Δ -function) an $\mathfrak{a}_{T_{\omega}}$ makes $X = bT_{\omega} \setminus \{\vec{1}\}$ initially ω_1 -compact and (somewhat remarkably) first-countable.

・ 同 ト ・ ヨ ト ・ ヨ ト

References

Alan Dow Martin's Axiom and initially ω_1 -compact spaces

3

References

Itay Neeman, Forcing with sequences of models of two types, 2011 www.math.ucla.edu/~ineeman/ttms.pdf.

References

- Itay Neeman, Forcing with sequences of models of two types, 2011 www.math.ucla.edu/~ineeman/ttms.pdf.
- Boban Velickovic and Giorgio Venturi, Proper forcing remastered, 2011, www.math.cmu.edu/~eschimme/Appalachian/Index.html,

References

- Itay Neeman, Forcing with sequences of models of two types, 2011 www.math.ucla.edu/~ineeman/ttms.pdf.
- Boban Velickovic and Giorgio Venturi, Proper forcing remastered, 2011, www.math.cmu.edu/~eschimme/Appalachian/Index.html,

Definition

Assume GCH and let \trianglelefteq be a well-ordering of $H(\omega_2)$ in type ω_2 . Let $\mathcal{E}^2 = \mathcal{E}_0^2 \cup \mathcal{E}_1^2$

References

- Itay Neeman, Forcing with sequences of models of two types, 2011 www.math.ucla.edu/~ineeman/ttms.pdf.
- Boban Velickovic and Giorgio Venturi, Proper forcing remastered, 2011, www.math.cmu.edu/~eschimme/Appalachian/Index.html,

Definition

Assume GCH and let \leq be a well-ordering of $H(\omega_2)$ in type ω_2 . Let $\mathcal{E}^2 = \mathcal{E}^2_0 \cup \mathcal{E}^2_1$

• $E \in \mathcal{E}_0^2$ providing $E \prec (H(\omega_2), \trianglelefteq)$ is countable

References

- Itay Neeman, Forcing with sequences of models of two types, 2011 www.math.ucla.edu/~ineeman/ttms.pdf.
- Boban Velickovic and Giorgio Venturi, Proper forcing remastered, 2011, www.math.cmu.edu/~eschimme/Appalachian/Index.html,

Definition

Assume GCH and let \trianglelefteq be a well-ordering of $H(\omega_2)$ in type ω_2 . Let $\mathcal{E}^2 = \mathcal{E}_0^2 \cup \mathcal{E}_1^2$ **a** $E \in \mathcal{E}_0^2$ providing $E \prec (H(\omega_2), \trianglelefteq)$ is countable **a** $E \in \mathcal{E}_1^2$ providing $E = \bigcup E_\alpha$ for some continuous increasing \in -chain $\{E_\alpha : \alpha \in \omega_1\} \subset \mathcal{E}_0^2$

< 同 > < 三 > < 三 >

we can use $T = T_{\omega}$ or $T = 2^{<\omega_2}$ – cofinality of branches

Following Velickovic's lead on the Baumgartner-Shelah example:

(*) *) *) *)

we can use $T = T_{\omega}$ or $T = 2^{<\omega_2}$ – cofinality of branches

Following Velickovic's lead on the Baumgartner-Shelah example:

Definition

A condition $p \in \mathbb{P}_T$ if $p = (\mathfrak{a}_p = \{a_t : t \in H_p \cap Succ(T)\}, \mathcal{M}_p)$ where

• • = • • = •
Following Velickovic's lead on the Baumgartner-Shelah example:

Definition

A condition $p \in \mathbb{P}_T$ if $p = (\mathfrak{a}_p = \{a_t : t \in H_p \cap Succ(T)\}, \mathcal{M}_p)$ where

• $H_p \in [T]^{<\omega}$ is closed under \cap , \dagger and Y's (i.e. $t < s_0, s_1 \in H_p$ with $t = s_0 \cap s_1$, then $\{t0, t1\} \subset H_p$)

Following Velickovic's lead on the Baumgartner-Shelah example:

Definition

A condition $p \in \mathbb{P}_T$ if $p = (\mathfrak{a}_p = \{a_t : t \in H_p \cap Succ(T)\}, \mathcal{M}_p)$ where

- $H_p \in [T]^{<\omega}$ is closed under \cap , \dagger and Y's (i.e. $t < s_0, s_1 \in H_p$ with $t = s_0 \cap s_1$, then $\{t0, t1\} \subset H_p$)
- ② $E \in \mathcal{M}_p$, $t \subset s$ both in $H_p \cap Succ(T) \cap E$ implies $a_t \cap a_s \in \langle a_r : r \in C_t \cap H_p \cap E \rangle_{BA}$ (same as Rabus)

Following Velickovic's lead on the Baumgartner-Shelah example:

Definition

A condition $p \in \mathbb{P}_T$ if $p = (\mathfrak{a}_p = \{a_t : t \in H_p \cap Succ(T)\}, \mathcal{M}_p)$ where

- $H_p \in [T]^{<\omega}$ is closed under \cap , \dagger and Y's (i.e. $t < s_0, s_1 \in H_p$ with $t = s_0 \cap s_1$, then $\{t0, t1\} \subset H_p$)
- ② $E \in \mathcal{M}_p$, $t \subset s$ both in $H_p \cap Succ(T) \cap E$ implies $a_t \cap a_s \in \langle a_r : r \in C_t \cap H_p \cap E \rangle_{BA}$ (same as Rabus)

$$old a_{t^\dagger} = C_{t^\dagger} \setminus a_t$$
 for $\{t,t^\dagger\} \subset H_p$

伺 ト く ヨ ト く ヨ ト

Following Velickovic's lead on the Baumgartner-Shelah example:

Definition

A condition $p \in \mathbb{P}_T$ if $p = (\mathfrak{a}_p = \{a_t : t \in H_p \cap Succ(T)\}, \mathcal{M}_p)$ where

- $H_p \in [T]^{<\omega}$ is closed under \cap , \dagger and Y's (i.e. $t < s_0, s_1 \in H_p$ with $t = s_0 \cap s_1$, then $\{t0, t1\} \subset H_p$)

3)
$$a_{t^{\dagger}}=C_{t^{\dagger}}\setminus a_t$$
 for $\{t,t^{\dagger}\}\subset H_p$

• and p < q if $\mathcal{M}_p \supset \mathcal{M}_q$, $H_p \supset H_q$, and \mathfrak{a}_q canonically embeds in \mathfrak{a}_p .

・吊 ・・ ティー・・

Lemma

Lemma

Suppose that \mathbb{P}_T , $p \in M^* \prec H(\theta)$, $M = M^* \cap H(\omega_2) \in \mathcal{M}_r$, r < pand $r \in D$ for some dense $D \in M^*$; prepare H_r , then

• Then there is $q \in D \cap M$ such that $H_q \setminus H_r$ and $\mathcal{M}_q \setminus \mathcal{M}_r$ are each disjoint from E for all $E \in \mathcal{M}_r \cap M^* \cap \mathcal{E}_0^2$;

Lemma

- Then there is $q \in D \cap M$ such that $H_q \setminus H_r$ and $\mathcal{M}_q \setminus \mathcal{M}_r$ are each disjoint from E for all $E \in \mathcal{M}_r \cap M^* \cap \mathcal{E}_0^2$;
- Output: It is that the smallest set containing M_q ∪ M_r closed under finite intersections, and H_q = H_q ∪ H_r (this takes some work),

Lemma

- Then there is $q \in D \cap M$ such that $H_q \setminus H_r$ and $\mathcal{M}_q \setminus \mathcal{M}_r$ are each disjoint from E for all $E \in \mathcal{M}_r \cap M^* \cap \mathcal{E}_0^2$;
- Output: It is that the smallest set containing M_q ∪ M_r closed under finite intersections, and H_q = H_q ∪ H_r (this takes some work),
- for each $t \in H_q \setminus H_r$, we have $t^{\dagger} \in H_q \setminus H_r$ and (we designate t as primary if) t^{\dagger} has no extension in H_r (one of them has this property)

Lemma

- Then there is $q \in D \cap M$ such that $H_q \setminus H_r$ and $\mathcal{M}_q \setminus \mathcal{M}_r$ are each disjoint from E for all $E \in \mathcal{M}_r \cap M^* \cap \mathcal{E}_0^2$;
- Output: It is that the smallest set containing M_q ∪ M_r closed under finite intersections, and H_q = H_q ∪ H_r (this takes some work),
- for each $t \in H_q \setminus H_r$, we have $t^{\dagger} \in H_q \setminus H_r$ and (we designate t as primary if) t^{\dagger} has no extension in H_r (one of them has this property)
- for $t \in H_r \setminus H_q$ (which may have extensions in H_q !) we designate it primary if t^{\dagger} has no extension in H_q

Lemma

- Then there is $q \in D \cap M$ such that $H_q \setminus H_r$ and $\mathcal{M}_q \setminus \mathcal{M}_r$ are each disjoint from E for all $E \in \mathcal{M}_r \cap M^* \cap \mathcal{E}_0^2$;
- Output: The second second
- for each $t \in H_q \setminus H_r$, we have $t^{\dagger} \in H_q \setminus H_r$ and (we designate t as primary if) t^{\dagger} has no extension in H_r (one of them has this property)
- for $t \in H_r \setminus H_q$ (which may have extensions in H_q !) we designate it primary if t^{\dagger} has no extension in H_q
- for $t \in H_q \cup H_r$, we define $a_t^{\overline{q}}$ from \mathfrak{a}_q and \mathfrak{a}_r and we let $a_{t^{\dagger}}^{\overline{q}}$ be equal $(H_q \cup H_r) \cap C_{t^{\dagger}} \setminus a_t^{\overline{q}}$.

We define the values for $a_t^{\bar{q}}$ by recursion on primary t – choose minimal $P_t \in \mathcal{M}_{\bar{q}}$ with $t \in P_t$ (for $t \in H_q$, same as $P_t \in \mathcal{M}_q$)

We define the values for $a_t^{\bar{q}}$ by recursion on primary t – choose minimal $P_t \in \mathcal{M}_{\bar{q}}$ with $t \in P_t$ (for $t \in H_q$, same as $P_t \in \mathcal{M}_q$)

• if
$$t \in H_q \cap H_r$$
, then $a_t^{\overline{q}} = a_t^q \cup a_t^r$

We define the values for $a_t^{\bar{q}}$ by recursion on primary t – choose minimal $P_t \in \mathcal{M}_{\bar{q}}$ with $t \in P_t$ (for $t \in H_q$, same as $P_t \in \mathcal{M}_q$)

() if
$$t \in H_q \cap H_r$$
, then $a_t^{ar{q}} = a_t^q \cup a_t^r$

We define the values for $a_t^{\bar{q}}$ by recursion on primary t – choose minimal $P_t \in \mathcal{M}_{\bar{q}}$ with $t \in P_t$ (for $t \in H_q$, same as $P_t \in \mathcal{M}_q$)

(1) if
$$t \in H_q \cap H_r$$
, then $a_t^{ar{q}} = a_t^q \cup a_t^r$

for t ∈ H_q \ H_r a[¯]_t equals a^q_t union of all sets of the form
 $\bigcap_{s \in L_0} a^{¯}_s \setminus \bigcup_{u \in L_1} a^{¯}_u \text{ where } L_0 \cup L_1 \subset P_t \cap C_t \cap H_q \text{ satisfies} \\ \bigcap_{s \in L_0} a^q_s \setminus \bigcup_{u \in L_1} a^q_u \subset a^q_t$

• symmetric definition for $t \in H_r \setminus H_q$

We define the values for $a_t^{\bar{q}}$ by recursion on primary t – choose minimal $P_t \in \mathcal{M}_{\bar{q}}$ with $t \in P_t$ (for $t \in H_q$, same as $P_t \in \mathcal{M}_q$)

• if
$$t \in H_q \cap H_r$$
, then $a_t^{\bar{q}} = a_t^q \cup a_t^r$

- for t ∈ H_q \ H_r a[¯]_t equals a^q_t union of all sets of the form
 $\bigcap_{s \in L_0} a^{¯}_s \setminus \bigcup_{u \in L_1} a^{¯}_u \text{ where } L_0 \cup L_1 \subset P_t \cap C_t \cap H_q \text{ satisfies} \\ \bigcap_{s \in L_0} a^q_s \setminus \bigcup_{u \in L_1} a^q_u \subset a^q_t$
- symmetric definition for $t \in H_r \setminus H_q$
- we note that for $t \in H_r \setminus H_q$ primary, $a_t^{\bar{q}}$ is minimum possible hence $a_{t^{\dagger}}^{\bar{q}}$ is pretty big

We define the values for $a_t^{\bar{q}}$ by recursion on primary t – choose minimal $P_t \in \mathcal{M}_{\bar{q}}$ with $t \in P_t$ (for $t \in H_q$, same as $P_t \in \mathcal{M}_q$)

$$oldsymbol{0}$$
 if $t\in H_q\cap H_r$, then $a_t^{ar{q}}=a_t^q\cup a_t^r$

- So for $t \in H_q \setminus H_r$ $a_t^{\bar{q}}$ equals a_t^q union of all sets of the form $\bigcap_{s \in L_0} a_s^{\bar{q}} \setminus \bigcup_{u \in L_1} a_u^{\bar{q}}$ where $L_0 \cup L_1 \subset P_t \cap C_t \cap H_q$ satisfies $\bigcap_{s \in L_0} a_s^q \setminus \bigcup_{u \in L_1} a_u^q \subset a_t^q$
- symmetric definition for $t \in H_r \setminus H_q$
- we note that for $t \in H_r \setminus H_q$ primary, $a_t^{\bar{q}}$ is minimum possible hence $a_{r^{\dagger}}^{\bar{q}}$ is pretty big

Lemma

Forcing with \mathbb{P}_T adds many new branches to bT, but none with uncountable cofinality. Thus $bT \setminus (2^{\omega_2})^V$ consists of countable cofinality branches.

Let $x \in 2^{\omega_2}$, $x \supset \{t_{\alpha} : \alpha \in Succ(\omega_2)\}$. If p forces that A is an uncountable set of successor ordinals, $p, A \in M_1 \prec H(\theta)$, $E = M_1 \cap H(\omega_2) \in \mathcal{E}_1^2$, and p forces uncountable $\{\alpha \in A : t_{\alpha} \notin \bigcup \{\dot{a}_{t_{\beta}} : \beta \in L\}\}$ for any finite $L \in [\lambda]^{<\omega}$,

Let $x \in 2^{\omega_2}$, $x \supset \{t_{\alpha} : \alpha \in Succ(\omega_2)\}$. If p forces that A is an uncountable set of successor ordinals, $p, A \in M_1 \prec H(\theta)$, $E = M_1 \cap H(\omega_2) \in \mathcal{E}_1^2$, and p forces uncountable $\{\alpha \in A : t_{\alpha} \notin \bigcup \{\dot{a}_{t_{\beta}} : \beta \in L\}\}$ for any finite $L \in [\lambda]^{<\omega}$,

• then for each n, p forces that $\dot{a}_{t_{\lambda}+n} \setminus \bigcup_{k \leq n} \dot{a}_{t_{\lambda}+k}$ contains uncountably many members of $\{t_{\alpha} : \alpha \in A\}$.

Let $x \in 2^{\omega_2}$, $x \supset \{t_{\alpha} : \alpha \in Succ(\omega_2)\}$. If p forces that A is an uncountable set of successor ordinals, $p, A \in M_1 \prec H(\theta)$, $E = M_1 \cap H(\omega_2) \in \mathcal{E}_1^2$, and p forces uncountable $\{\alpha \in A : t_{\alpha} \notin \bigcup \{\dot{a}_{t_{\beta}} : \beta \in L\}\}$ for any finite $L \in [\lambda]^{<\omega}$,

- then for each n, p forces that $\dot{a}_{t_{\lambda}+n} \setminus \bigcup_{k \leq n} \dot{a}_{t_{\lambda}+k}$ contains uncountably many members of $\{t_{\alpha} : \alpha \in A\}$.
- and so if Y ⊂ bT is any set that projects onto {t_α : α ∈ A} then the closure of Y contains the entire set bT ∩ {x ⊃ t_λ} for some λ ∈ ω₂.

Let $x \in 2^{\omega_2}$, $x \supset \{t_{\alpha} : \alpha \in Succ(\omega_2)\}$. If p forces that A is an uncountable set of successor ordinals, $p, A \in M_1 \prec H(\theta)$, $E = M_1 \cap H(\omega_2) \in \mathcal{E}_1^2$, and p forces uncountable $\{\alpha \in A : t_{\alpha} \notin \bigcup \{\dot{a}_{t_{\beta}} : \beta \in L\}\}$ for any finite $L \in [\lambda]^{<\omega}$,

- then for each n, p forces that $\dot{a}_{t_{\lambda}+n} \setminus \bigcup_{k \leq n} \dot{a}_{t_{\lambda}+k}$ contains uncountably many members of $\{t_{\alpha} : \alpha \in A\}$.
- and so if Y ⊂ bT is any set that projects onto {t_α : α ∈ A} then the closure of Y contains the entire set bT ∩ {x ⊃ t_λ} for some λ ∈ ω₂.

Proof.

We can work inside of *E* to decide members of *A* and designate each $t_{\lambda+k}$ (k < n) as primary.

Let $G \subset \mathbb{P}_T$ be generic. Let Q be a Souslin-free ccc poset of cardinality at most ω_1 . What are the properties of $X = bT \cap 2^{<\omega_2}$ in this extension?

 bT acquires only new branches of countable cofinality, and all such points will have countable character

- bT acquires only new branches of countable cofinality, and all such points will have countable character
- each countable subset of X which does not have compact closure, still contains a set of the form bT ∩ {x ⊃ t} for some t ∈ T

- bT acquires only new branches of countable cofinality, and all such points will have countable character
- each countable subset of X which does not have compact closure, still contains a set of the form bT ∩ {x ⊃ t} for some t ∈ T
- each ω_1 -sized subset of X does the same

- bT acquires only new branches of countable cofinality, and all such points will have countable character
- each countable subset of X which does not have compact closure, still contains a set of the form bT ∩ {x ⊃ t} for some t ∈ T
- each ω_1 -sized subset of X does the same
- therefore X is still first-countable and initially ω₁-compact in the forcing extension by Q.

Corollary

It is consistent with $MA + c = \omega_2$ that there is a first-countable initially ω_1 -compact space which is not compact.

Corollary

It is consistent with $MA + c = \omega_2$ that there is a first-countable initially ω_1 -compact space which is not compact.

Corollary

It is consistent with $MA + c = \omega_2$ that there is a Moore-Mrowka space.

Corollary

It is consistent with $MA + c = \omega_2$ that there is a first-countable initially ω_1 -compact space which is not compact.

Corollary

It is consistent with $MA + c = \omega_2$ that there is a Moore-Mrowka space.

Corollary

Our bT is βX and it has the desired property that every $Y \in [bT \cap 2^{\omega_2}]^{\leq \omega_1}$ accumulates to points in X, thus there is a first-countable initially ω_1 -compact space of cardinality greater than c.

Proof.

We skip the proof of part 1.

To prove parts 2 and 3, we note that the space we get from $\mathfrak{a}_{T_{\alpha}}$ maps perfectly onto the space we get from \mathfrak{a}_{T_R} . I.e. our only points are the t_{α} with neighborhoods given by $A_{t^{\dagger}}$. It suffices to show that this space remains initially ω_1 -compact. We just consider countably compact. Assume that $A = \{\xi_n : n \in \omega\}$ is a Q-name of an infinite set of successor ordinals. Assume that for all $q \in Q$, and all finite $L \subset Succ(\omega_2)$, there is q' < q and an *n* such that $q' \Vdash t_{\dot{\mathcal{E}}_n} \in A_{t_\beta}$ for each $\beta \in L$ (a typical neighborhood of the point 1). For each uncountable limit λ , choose finite $F_{\lambda} \subset \lambda$, n_{λ} , and $q_{\lambda} \in Q$, so that for $n \ge n_{\lambda}$, if $q_{\lambda} \Vdash \dot{x}_n \in A_{t^{\dagger}}$ then $q_{\lambda} \Vdash \dot{x}_n \in A_{t^{\dagger}}$ for some $\beta \in F_{\lambda}$. But now, there is a stationary S and fixed \bar{q}, \bar{n}, F so that $(q_{\lambda}, n_{\lambda}, F_{\lambda}) = (\bar{q}, \bar{n}, F)$ for all $\lambda \in S$. However, it now follows that $Y = \{t_{\xi} : (\exists q' < \bar{q}) \xi \in A\}$ must have

compact closure, since its closure misses $\{t_{\lambda+1} : \lambda \in S\}$.