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1. Introduction



1.1 weak square

Def. (Schimmerling)
For an uncountable cardinal λ and a cardinal µ ≤ λ,

�λ,µ ≡ There exists 〈Cα | α < λ+〉 s.t.

(i) Cα is a family of club subsets of α of o.t. ≤ λ,

(ii) 1 ≤ |Cα| ≤ µ,

(iii) c ∈ Cα & β ∈ Lim(c) ⇒ c ∩ β ∈ Cβ.

�λ,<µ ≡ the statement obtained by replacing (ii) with

(iv) 1 ≤ |Cα| < µ.

• �λ,1 ⇔ �λ.

• �λ,λ ⇔ �∗λ ⇔ “There is a λ+-special Aronszajn tree.”

• λ<λ = λ ⇒ �λ,λ.



1.2 Martin’s Maximum and weak square

Thm. (Cummings-Magidor)

Assume MM. Then we have the following:

(1) �ω1,ω1 fails.

(2) If cof(λ) = ω, then �λ,λ fails.

(3) If cof(λ) = ω1 < λ, then �λ,<λ fails.

(4) If cof(λ) > ω1, then �λ,<cof(λ) fails.

Thm. (Cummings-Magidor)

“MM + (1) + (2)” is consistent:

(1) �λ,λ holds for all λ with cof(λ) = ω1 < λ.

(2) �λ,cof(λ) holds for all λ with cof(λ) > ω1.



1.3 consequences of MM

MM

←− ←−

SRP MA+(σ-closed)

←− ←− ←− ←−

Sat. of NSω1 WRP FRP

←
−

←
−

←
−

Presat. of NSω1 ←− (†) −→ ORP
←
−

Chang’s Conjecture



• WRP (Weak Reflection Principle)

≡ For any λ ≥ ω2 and any stationary X ⊆ [λ]ω

there is R ⊆ λ s.t. |R| = ω1 ⊆ R and X ∩ [R]ω is stationary.

• (†) ≡ Every ω1-stationary preserving poset is semi-proper.

• Chang’s Conjecture

≡ For any structure M = 〈ω2; . . .〉
there is M ≺M s.t. |M | = ω1 and |M ∩ ω1| = ω.

• ORP (Ordinal Reflection Principle)

≡ For any regular λ ≥ ω2 and any stationary S ⊆ Eλ
ω

there is α ∈ Eλ
ω1

s.t. S ∩ α is stationary.

(Eλ
µ = {α < λ | cof(α) = µ})



• FRP (Fodor-type Reflection Principle)

≡ For any regular λ ≥ ω2, any stationary S ⊆ Eλ
ω

and any function f on S with f(α) ∈ [α]ω

there is α ∈ Eλ
ω1

s.t.

{x ∈ [α]ω | supx ∈ S ∧ f(supx) ⊆ x}

is stationary in [α]ω.

Fact (Fuchino-Juhász-Soukup-S.-Szentmiklóssy-Usuba)

The following are equivalent:

(1) FRP

(2) For every locally countably compact space X, if all subspaces

of X of size ≤ ℵ1 are metrizable, then X is metrizable.

(3) For every graph G, if all subgraphs of G of size ≤ ℵ1 have

ctble. coloring number, then coloring number of G is ctble.



We discuss how weak square principles are denied

by these consequences of MM.



MM

←− ←−

SRP MA+(σ-closed)

←− ←− ←− ←−

Sat. of NSω1 WRP FRP

←
−

←
−

←
−

Presat. of NSω1 ←− (†) −→ ORP

←
−
Chang’s Conjecture

• Saturation of NSω1 is consistent with �λ for any unctble. λ.

• We discuss with partitioning the other principles into 3 groups.
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2. (†) and stronger principles



Thm. (S., Todorčević-Torres)

Assume (†). Then we have the following:

(1) �ω1,ω fails. If CH fails in addition, then �ω1,ω1 fails.

(2) If cof(λ) = ω, then �λ,λ fails.

(3) If cof(λ) = ω1 < λ, then �λ,<λ fails.

(4) If cof(λ) > ω1, then �λ,<cof(λ) fails.

• The same as MM except for (1). (So (2)–(4) are optimal.)

• (1) is optimal because CH implies �ω1,ω1,

and (†) is consistent with CH.

• WRP and MA+(σ-closed) deny the same weak square as (†).

• SRP denies the same weak square as MM

because SRP implies ¬CH.



Outline of (1): (†)⇒ ¬�ω1,<2ω

• WRP(ω2) ≡ For any stationary X ⊆ [ω2]
ω there is α ∈ ω2 \ ω1

s.t. X ∩ [α]ω is stationary.

Fact (Todorčević) (†) implies WRP(ω2).

We prove that �ω1,<2ω denies WRP(ω2).

Let 〈Cα | α < ω2〉 be �ω1,<2ω-sequence, and let

X := {x ∈ [ω2]
ω | ∀c ∈ Csupx, c 6⊆ x} .

We show that X is non-reflecting stationary subset of [ω2]
ω.



X = {x ∈ [ω2]
ω | ∀c ∈ Csupx, c 6⊆ x} is non-reflecting.

Suppose α ∈ ω2 \ ω1.

If cof(α) = ω, or α is successor, then pick any c ∈ Cα, and let

Y := {x ∈ [α]ω | supx = α ∧ c ⊆ x}.

Then Y is club in [α]ω, and Y ∩X = ∅.

If cof(α) = ω1, then choose c ∈ Cα, and let

Z := {x ∈ [α]ω | supx ∈ Lim(c) ∧ c ∩ supx ⊆ x}.

Then Z is club in [α]ω.

Moreover Z ∩X = ∅ because c ∩ supx ∈ Csupx if supx ∈ Lim(c).



X = {x ∈ [ω2]
ω | ∀c ∈ Csupx, c 6⊆ x} is stationary.

Fix a club gessing sequence 〈dα | α ∈ E
ω2
ω 〉.

For each x ∈ [ω2]
ω with supx limit let

pat(x) := {n ∈ ω | x ∩ [δn, δn+1) 6= ∅} ∈ [ω]ω,

where 〈δn | n < ω〉 is the increasing enumeration of dsupx.

Fact (Foreman-Todorčević)
For any seq. ~p = 〈pα | α ∈ E

ω2
ω 〉 of elements of [ω]ω, the set

X~p := {x ∈ [ω2]
ω | pat(x) = psupx}

is stationary in [ω2]
ω.

For each α ∈ E
ω2
ω , take pα ∈ [ω]ω so that

pat(c) 6⊆ pα for any c ∈ Cα.

(We can take pα because |Cα| < 2ω.) Then X~p ⊆ X. �



• Relevant fact and question:

We proved that WRP(ω2) + ¬CH implies ¬�ω1,ω1.

Here recall that

¬�ω1,ω1 ⇔ there is no ω2-special Aronszajn tree.

Fact (Veličković)

WRP(ω2) + MAℵ1 implies there are no ω2-Aronszajn tree.

Question

WRP(ω2) + ¬CH implies there are no ω2-Aronszajn tree ?



3. ORP and FRP



3.1 ORP

ORP ≡ For any regular λ ≥ ω2 and any stationary S ⊆ Eλ
ω

there is α ∈ Eλ
ω1

s.t. S ∩ α is stationary.

Thm. (Foreman-Magidor, Schimmerling)
Assume ORP. Then we have the following:

(1) �ω1,ω fails.

(2) �λ,<ω fails for all λ ≥ ω2. If λω = λ, then �λ,ω fails.

Proof of the first statement of (2)

Suppose there is a �λ,<ω-sequence 〈Cα | α < λ+〉.
Let f : Eλ+

ω → [λ]<ω be s.t. f(α) = {otp(c) | c ∈ Cα}.
There is x ∈ [λ]<ω s.t. S := {α | f(α) = x} is stationary.
For each α < λ+ of cof. ω1, taking c ∈ Cα, we have

|Lim(c) ∩ S| ≤ |x| < ω.

So S ∩ α is non-stat. for each α < λ+ of cof. ω1. �



Thm. (Cummings-Foreman-Magidor)
ORP is consistent with �λ,cof(λ) for any λ.

Outline of Con(ORP + �λ,cof(λ)) for singular λ

From a model of MM, first add a “nice” �λ,cof(λ)-sequence.

Then, by an iteration of club shootings, destroy all non-reflecting
stationary subsets of Eλ+

ω . �

• Different from MM at singular cardinals of cof. ω and ω1:

- MM denies �λ,λ for singlar cardinals λ of cof. ω.
- MM denies �λ,<λ for singlar cardinals λ of cof. ω1.

• ORP + MAℵ1 is consistent with �ω1,ω1

because both ORP and �ω1,ω1 are preserved by c.c.c. forcings.

Question
Does ORP (+λω1 = λ) deny �λ,ω1

for λ of cof. > ω1 ?



3.2 FRP

• FRP ≡ For any regular λ ≥ ω2, any stationary S ⊆ Eλ
ω

and any function f on S with f(α) ∈ [α]ω

there is α ∈ Eλ
ω1

s.t.

{x ∈ [α]ω | supx ∈ S ∧ f(supx) ⊆ x}

is stationary in [α]ω.

Thm. (Fuchino-Juhász-Soukup-Szentmiklóssy-Usuba)

Assume FRP. Then we have the following:

(1) �λ,ω fails for all λ.

(2) If cof(λ) = ω, then �λ,λ fails.

Thm. (S.)

FRP is consistent with �λ,cof(λ) for any λ with cof(λ) > ω.



• The same as MM at singular cardinals of cof. ω,

but different at singular cardinals of cof. ω1.

• FRP + MAℵ1 is consistent with �ω1,ω1

because both FRP and �ω1,ω1 are preserved by c.c.c. forcings.

Question

Does FRP deny �λ,ω1
for λ of cof. > ω1 ?



4. Chang’s Conjecture



Thm. (Todorčvić)

Chang’s Conjecture implies the failure of �ω1.

Thm. (S.)

Chang’s Conjecture is consistent with �ω1,2.

• Chang’s Conjecture + MAℵ1 is consistent with �ω1,2

because c.c.c. forcings preserve Chang’s Conjecture and �ω1,2.



Outline of Con(Chang’s Conjecture + �ω1,2)

Let κ be a measurable cardinal. We prove

Col(ω1,<κ)∗Ṗ “Chang’s Conjecture + �ω1,2 ”,

where P is the poset adding a �ω1,2-seq. by initial segments:

- P consists of all p = 〈Cα | α ≤ δ〉 (δ < ω2)

which is an approximation of a �ω1,2-seq.

- p ≤ q iff p is an end-extension of q.

(P is <ω2-distributive and forces �ω1,2.)

We must prove Col(ω1, <κ) ∗ Ṗ forces Chang’s Conjecture.



In V Col(ω1,<κ) suppose

p ∈ P,

Ṁ is a P-name for a structure on ω2,

N := 〈Hθ,∈, p,Ṁ〉.

It suffices to prove that in V Col(ω1,<κ) there is p∗ ≤ p and N∗ ≺ N
s.t

- p∗ is N∗-generic,

- |N∗ ∩ ω2| = ω1 & |N∗ ∩ ω1| = ω.

(p∗ forces that N∗ ∩ ω2 witnesses Chang’s Conjecture for Ṁ.)



We construct a ⊆-increasing seq. 〈Nξ | ξ < ω1〉 of ctble. elem. sub-

models of N and a descending seq. 〈pξ | ξ < ω1〉 in P below p s.t.

- N0 ∩ ω1 = N1 ∩ ω1 = · · · = Nξ ∩ ω1 = · · ·,

- pξ is Nξ-generic, and pξ ∈ Nξ+1,

- {pξ | ξ < ω1} has a lower bound,

using some modification of the Strong Chang’s Conjecture.

Then N∗ :=
∪

ξ<ω1
Nξ and a lower bound p∗ of {pξ | ξ < ω1} are

as desired.



Modification of the Strong Chang’s Conjecture:

Lem. (In V Col(ω1,<κ))

If N ≺ N is ctble. and 〈qn | n < ω〉 is an (N, P)-generic seq., then

∀c ⊆ sup(N ∩ ω2): club, threads
∪

n<ω qn

∃d ⊆ sup(N ∩ ω2): club, threads
∪

n<ω qn

∃q∗ ≤
∪

n<ω qnˆ〈{c, d}〉 s.t.

skN (N ∪ {q∗}) ∩ ω1 = N ∩ ω1.

�



We used a measurable cardinal to construct a model of Chang’s

Conjecture and �ω1,2. On the other hand, recall:

Fact (Silver, Donder)

Con (ZFC + Chang’s Conjecture)

⇔ Con (ZFC + ∃ω1-Erdös cardinal).

Question

What is the consistency strength of

“Chang’s Conjecture + �ω1,2” ?



5. Summary



MM

←− ←−

SRP MA+(σ-closed)

←− ←− ←− ←−

Sat. of NSω1 WRP FRP

←
−

←
−

←
−

Presat. of NSω1 ←− (†) −→ ORP

←
−

Chang’s Conjecture

• Saturation of NSω1 is consistent with �λ for all unctble. λ.



• (†) and stronger principles:

Almost the same as MM. With ¬CH the same as MM.

• ORP:

Different from MM at singular cardinals of cof. ω and ω1.

FRP:

Different from MM at singular cardinals of cof. ω1.

• Chang’s Conjecture:

Consistent with �ω1,2.



6. Consequences of PFA



Thm. (Magidor, Todorčević)

PFA denies �λ,ω1
for all λ.

Thm. (Magidor)

PFA is consistent with �λ,ω2
for all λ.

Thm. (Magidor)

PDFA denies �λ,ω for all λ.

Thm. (Magidor)

PDFA is consistent with �λ,ω1
for all λ.

Thm. (Strullu)

(1) MRP denies �λ,ω for all λ.

(2) MRP + MAℵ1 denies �λ,ω1
for all λ.



Thm. (Raghavan)

(1) PID denies �λ,ω for all λ.

(2) PID + MAℵ1 denies �λ,ω1
for all λ with cof(λ) > ω1.

Question

Does PID + MAℵ1 deny �λ,ω1
for all λ ?

In particular, does it deny �ω1,ω1 ?


