Consequences of Martin's Maximum and weak square

Hiroshi Sakai Kobe University

Workshop on Forcing Axioms and their Applications October 24, 2012

1. Introduction

1.1 weak square

Def. (Schimmerling)

For an uncountable cardinal λ and a cardinal $\mu \leq \lambda,$

$$\Box_{\lambda,\mu} \equiv \text{There exists } \langle \mathcal{C}_{\alpha} \mid \alpha < \lambda^{+} \rangle \text{ s.t.}$$
(i) \mathcal{C}_{α} is a family of club subsets of α of o.t. $\leq \lambda$,
(ii) $1 \leq |\mathcal{C}_{\alpha}| \leq \mu$,
(iii) $c \in \mathcal{C}_{\alpha} \& \beta \in \text{Lim}(c) \Rightarrow c \cap \beta \in \mathcal{C}_{\beta}$.

$$\Box_{\lambda,<\mu} \equiv \text{the statement obtained by replacing (ii) with}$$
(iv) $1 \leq |\mathcal{C}_{\alpha}| < \mu$.

- $\square_{\lambda,1} \Leftrightarrow \square_{\lambda}$.
- $\Box_{\lambda,\lambda} \Leftrightarrow \Box_{\lambda}^* \Leftrightarrow$ "There is a λ^+ -special Aronszajn tree."
- $\lambda^{<\lambda} = \lambda \Rightarrow \Box_{\lambda,\lambda}.$

1.2 Martin's Maximum and weak square

Thm. (Cummings-Magidor)

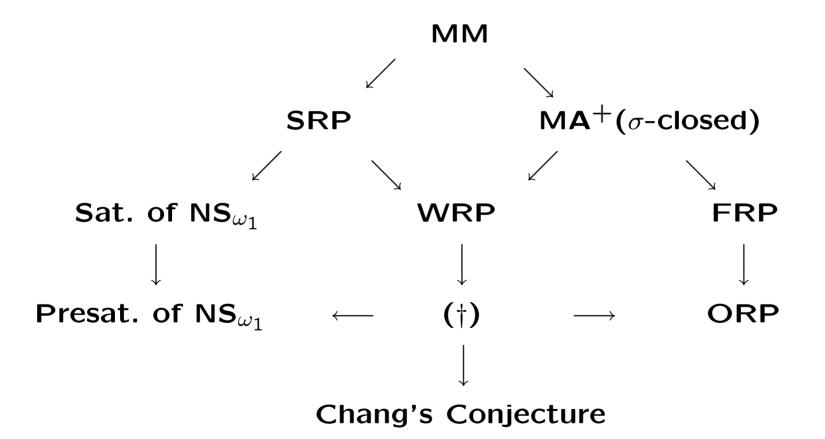
Assume MM. Then we have the following:

- (1) $\square_{\omega_1,\omega_1}$ fails.
- (2) If $cof(\lambda) = \omega$, then $\Box_{\lambda,\lambda}$ fails.
- (3) If $cof(\lambda) = \omega_1 < \lambda$, then $\Box_{\lambda,<\lambda}$ fails.
- (4) If $cof(\lambda) > \omega_1$, then $\Box_{\lambda, < cof(\lambda)}$ fails.

<u>Thm.</u> (Cummings-Magidor) "MM + (1) + (2)" is consistent:

(1)
$$\Box_{\lambda,\lambda}$$
 holds for all λ with $\operatorname{cof}(\lambda) = \omega_1 < \lambda$.
(2) $\Box_{\lambda,\operatorname{cof}(\lambda)}$ holds for all λ with $\operatorname{cof}(\lambda) > \omega_1$.

1.3 consequences of MM



- WRP (Weak Reflection Principle)
 ≡ For any λ ≥ ω₂ and any stationary X ⊆ [λ]^ω
 there is R ⊆ λ s.t. |R| = ω₁ ⊆ R and X ∩ [R]^ω is stationary.
- (†) \equiv Every ω_1 -stationary preserving poset is semi-proper.
- Chang's Conjecture
 - = For any structure $\mathcal{M} = \langle \omega_2; \ldots \rangle$ there is $M \prec \mathcal{M}$ s.t. $|M| = \omega_1$ and $|M \cap \omega_1| = \omega$.
- ORP (Ordinal Reflection Principle)
 - $= \text{ For any regular } \lambda \geq \omega_2 \text{ and any stationary } S \subseteq E_{\omega}^{\lambda}$ there is $\alpha \in E_{\omega_1}^{\lambda}$ s.t. $S \cap \alpha$ is stationary.

$$(E^{\lambda}_{\mu} = \{ \alpha < \lambda \mid \mathsf{cof}(\alpha) = \mu \})$$

• FRP (Fodor-type Reflection Principle)

 $= \text{ For any regular } \lambda \geq \omega_2, \text{ any stationary } S \subseteq E_{\omega}^{\lambda}$ and any function f on S with $f(\alpha) \in [\alpha]^{\omega}$ there is $\alpha \in E_{\omega_1}^{\lambda}$ s.t.

 $\{x \in [\alpha]^{\omega} \mid \sup x \in S \land f(\sup x) \subseteq x\}$

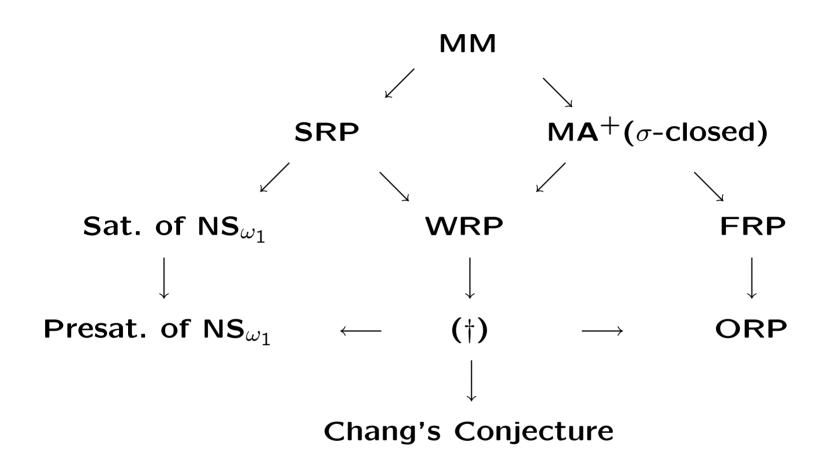
is stationary in $[\alpha]^{\omega}$.

<u>Fact</u> (Fuchino-Juhász-Soukup-S.-Szentmiklóssy-Usuba) The following are equivalent:

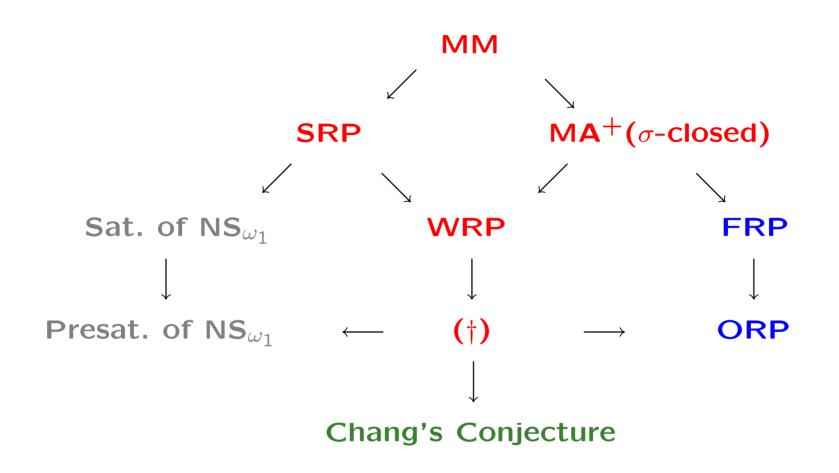
(1) FRP

- (2) For every locally countably compact space X, if all subspaces of X of size $\leq \aleph_1$ are metrizable, then X is metrizable.
- (3) For every graph G, if all subgraphs of G of size $\leq \aleph_1$ have ctble. coloring number, then coloring number of G is ctble.

We discuss how weak square principles are denied by these consequences of MM.



- Saturation of NS_{ω_1} is consistent with \Box_{λ} for any unctble. λ .
- We discuss with partitioning the other principles into 3 groups.



- Saturation of NS_{ω_1} is consistent with \Box_{λ} for any unctble. λ .
- We discuss with partitioning the other principles into 3 groups.

2. (†) and stronger principles

Thm. (S., Todorčević-Torres)

Assume (†). Then we have the following:

(1)
$$\Box_{\omega_1,\omega}$$
 fails. If CH fails in addition, then \Box_{ω_1,ω_1} fails.

(2) If
$$cof(\lambda) = \omega$$
, then $\Box_{\lambda,\lambda}$ fails.

(3) If $cof(\lambda) = \omega_1 < \lambda$, then $\Box_{\lambda, <\lambda}$ fails.

(4) If
$$cof(\lambda) > \omega_1$$
, then $\Box_{\lambda, < cof(\lambda)}$ fails.

- The same as MM except for (1). (So (2)-(4) are optimal.)
- (1) is optimal because CH implies \Box_{ω_1,ω_1} , and (†) is consistent with CH.
- WRP and MA⁺(σ -closed) deny the same weak square as (†).
- SRP denies the same weak square as MM because SRP implies ¬CH.

Outline of (1): $(\dagger) \Rightarrow \neg \Box_{\omega_1, < 2^{\omega}}$

• WRP(ω_2) \equiv For any stationary $X \subseteq [\omega_2]^{\omega}$ there is $\alpha \in \omega_2 \setminus \omega_1$ s.t. $X \cap [\alpha]^{\omega}$ is stationary.

<u>Fact</u> (Todorčević) (†) implies WRP(ω_2).

We prove that $\Box_{\omega_1,<2^{\omega}}$ denies WRP(ω_2). Let $\langle C_{\alpha} \mid \alpha < \omega_2 \rangle$ be $\Box_{\omega_1,<2^{\omega}}$ -sequence, and let

 $X := \{ x \in [\omega_2]^{\omega} \mid \forall c \in \mathcal{C}_{\sup x}, \ c \not\subseteq x \} .$

We show that X is non-reflecting stationary subset of $[\omega_2]^{\omega}$.

$X = \{x \in [\omega_2]^{\omega} \mid \forall c \in \mathcal{C}_{\sup x}, \ c \not\subseteq x\} \text{ is non-reflecting.}$

Suppose $\alpha \in \omega_2 \setminus \omega_1$.

If $cof(\alpha) = \omega$, or α is successor, then pick any $c \in C_{\alpha}$, and let $Y := \{x \in [\alpha]^{\omega} \mid \sup x = \alpha \land c \subseteq x\}.$

Then Y is club in $[\alpha]^{\omega}$, and $Y \cap X = \emptyset$.

If $cof(\alpha) = \omega_1$, then choose $c \in C_{\alpha}$, and let

 $Z := \{ x \in [\alpha]^{\omega} \mid \sup x \in \operatorname{Lim}(c) \land c \cap \sup x \subseteq x \}.$

Then Z is club in $[\alpha]^{\omega}$.

Moreover $Z \cap X = \emptyset$ because $c \cap \sup x \in \mathcal{C}_{\sup x}$ if $\sup x \in \operatorname{Lim}(c)$.

 $X = \{x \in [\omega_2]^{\omega} \mid \forall c \in \mathcal{C}_{\sup x}, \ c \not\subseteq x\} \text{ is stationary.}$

Fix a club gessing sequence $\langle d_{\alpha} \mid \alpha \in E_{\omega}^{\omega_2} \rangle$. For each $x \in [\omega_2]^{\omega}$ with sup x limit let

$$\mathsf{pat}(x) := \{ n \in \omega \mid x \cap [\delta_n, \delta_{n+1}) \neq \emptyset \} \in [\omega]^{\omega},$$

where $\langle \delta_n \mid n < \omega \rangle$ is the increasing enumeration of $d_{\sup x}$.

<u>Fact</u> (Foreman-Todorčević) For any seq. $\vec{p} = \langle p_{\alpha} \mid \alpha \in E_{\omega}^{\omega_2} \rangle$ of elements of $[\omega]^{\omega}$, the set $X_{\vec{p}} := \{x \in [\omega_2]^{\omega} \mid \text{pat}(x) = p_{\sup x}\}$ is stationary in $[\omega_2]^{\omega}$.

For each $\alpha \in E_{\omega}^{\omega_2}$, take $p_{\alpha} \in [\omega]^{\omega}$ so that

 $\mathsf{pat}(c) \not\subseteq p_{\alpha}$ for any $c \in \mathcal{C}_{\alpha}$.

(We can take p_{α} because $|\mathcal{C}_{\alpha}| < 2^{\omega}$.) Then $X_{\vec{p}} \subseteq X$.

• Relevant fact and question:

We proved that WRP(ω_2) + \neg CH implies $\neg \Box_{\omega_1,\omega_1}$. Here recall that

 $\neg \Box_{\omega_1,\omega_1} \Leftrightarrow$ there is no ω_2 -special Aronszajn tree.

<u>Fact</u> (Veličković) WRP(ω_2) + MA_{\aleph_1} implies there are no ω_2 -Aronszajn tree.

Question

WRP(ω_2) + \neg CH implies there are no ω_2 -Aronszajn tree ?

3. ORP and FRP

3.1 ORP

<u>**Thm.</u></u> (Foreman-Magidor, Schimmerling) Assume ORP. Then we have the following:</u>**

(1)
$$\Box_{\omega_1,\omega}$$
 fails.
(2) $\Box_{\lambda,<\omega}$ fails for all $\lambda \ge \omega_2$. If $\lambda^{\omega} = \lambda$, then $\Box_{\lambda,\omega}$ fails.

Proof of the first statement of (2) Suppose there is a $\Box_{\lambda,<\omega}$ -sequence $\langle \mathcal{C}_{\alpha} \mid \alpha < \lambda^{+} \rangle$. Let $f : E_{\omega}^{\lambda^{+}} \to [\lambda]^{<\omega}$ be s.t. $f(\alpha) = \{ \operatorname{otp}(c) \mid c \in \mathcal{C}_{\alpha} \}$. There is $x \in [\lambda]^{<\omega}$ s.t. $S := \{ \alpha \mid f(\alpha) = x \}$ is stationary. For each $\alpha < \lambda^{+}$ of cof. ω_{1} , taking $c \in \mathcal{C}_{\alpha}$, we have $|\operatorname{Lim}(c) \cap S| < |x| < \omega$.

So $S \cap \alpha$ is non-stat. for each $\alpha < \lambda^+$ of cof. ω_1 .

<u>Thm.</u> (Cummings-Foreman-Magidor) ORP is consistent with $\Box_{\lambda,cof(\lambda)}$ for any λ .

Outline of $Con(ORP + \Box_{\lambda, cof(\lambda)})$ for singular λ

From a model of MM, first add a "nice" $\Box_{\lambda,cof(\lambda)}$ -sequence. Then, by an iteration of club shootings, destroy all non-reflecting stationary subsets of $E_{\omega}^{\lambda^+}$.

- Different from MM at singular cardinals of cof. ω and ω_1 :
 - MM denies $\Box_{\lambda,\lambda}$ for singlar cardinals λ of cof. ω .
 - MM denies $\Box_{\lambda,<\lambda}$ for singlar cardinals λ of cof. ω_1 .
- ORP + MA_{\aleph_1} is consistent with \Box_{ω_1,ω_1} because both ORP and \Box_{ω_1,ω_1} are preserved by c.c.c. forcings.

Question

Does ORP $(+\lambda^{\omega_1} = \lambda)$ deny \Box_{λ,ω_1} for λ of cof. $> \omega_1$?

3.2 FRP

• FRP \equiv For any regular $\lambda \ge \omega_2$, any stationary $S \subseteq E_{\omega}^{\lambda}$ and any function f on S with $f(\alpha) \in [\alpha]^{\omega}$ there is $\alpha \in E_{\omega_1}^{\lambda}$ s.t. $\{x \in [\alpha]^{\omega} \mid \sup x \in S \land f(\sup x) \subseteq x\}$ is stationary in $[\alpha]^{\omega}$.

<u>Thm.</u> (Fuchino-Juhász-Soukup-Szentmiklóssy-Usuba) Assume FRP. Then we have the following:

(1) $\square_{\lambda,\omega}$ fails for all λ .

(2) If $cof(\lambda) = \omega$, then $\Box_{\lambda,\lambda}$ fails.

<u>**Thm.</u></u> (S.) FRP is consistent with \Box_{\lambda, cof(\lambda)} for any \lambda with cof(\lambda) > \omega.</u>**

- The same as MM at singular cardinals of cof. ω , but different at singular cardinals of cof. ω_1 .
- FRP + MA_{\aleph_1} is consistent with \Box_{ω_1,ω_1} because both FRP and \Box_{ω_1,ω_1} are preserved by c.c.c. forcings.

Question

Does FRP deny \Box_{λ,ω_1} for λ of cof. $> \omega_1$?

4. Chang's Conjecture

<u>Thm.</u> (Todorčvić) Chang's Conjecture implies the failure of \Box_{ω_1} .

<u>Thm.</u> (S.) Chang's Conjecture is consistent with $\Box_{\omega_1,2}$.

• Chang's Conjecture + MA_{\aleph_1} is consistent with $\Box_{\omega_1,2}$ because c.c.c. forcings preserve Chang's Conjecture and $\Box_{\omega_1,2}$.

Outline of Con(Chang's Conjecture + $\Box_{\omega_1,2}$)

Let κ be a measurable cardinal. We prove

$$\Vdash_{\operatorname{Col}(\omega_1,<\kappa)*\dot{\mathbb{P}}}$$
 "Chang's Conjecture + $\Box_{\omega_1,2}$ ",

where \mathbb{P} is the poset adding a $\Box_{\omega_1,2}$ -seq. by initial segments:

- \mathbb{P} consists of all $p = \langle C_{\alpha} \mid \alpha \leq \delta \rangle$ ($\delta < \omega_2$) which is an approximation of a $\Box_{\omega_1,2}$ -seq.
- $p \leq q$ iff p is an end-extension of q.

(\mathbb{P} is $< \omega_2$ -distributive and forces $\Box_{\omega_1,2}$.)

We must prove $Col(\omega_1, < \kappa) * \dot{\mathbb{P}}$ forces Chang's Conjecture.

In $V^{\mathsf{Col}(\omega_1, <\kappa)}$ suppose

$$p \in \mathbb{P}$$
,
 $\dot{\mathcal{M}}$ is a \mathbb{P} -name for a structure on ω_2 ,
 $\mathcal{N} := \langle \mathcal{H}_{\theta}, \in, p, \dot{\mathcal{M}} \rangle.$

It suffices to prove that in $V^{\mathsf{Col}(\omega_1,<\kappa)}$ there is $p^*\leq p$ and $N^*\prec\mathcal{N}$ s.t

-
$$p^{st}$$
 is N^{st} -generic,

- $|N^* \cap \omega_2| = \omega_1 \& |N^* \cap \omega_1| = \omega.$

 $(p^* \text{ forces that } N^* \cap \omega_2 \text{ witnesses Chang's Conjecture for } \dot{\mathcal{M}}.)$

We construct a \subseteq -increasing seq. $\langle N_{\xi} | \xi < \omega_1 \rangle$ of ctble. elem. submodels of \mathcal{N} and a descending seq. $\langle p_{\xi} | \xi < \omega_1 \rangle$ in \mathbb{P} below p s.t.

-
$$N_0 \cap \omega_1 = N_1 \cap \omega_1 = \cdots = N_{\xi} \cap \omega_1 = \cdots$$
,

-
$$p_{\xi}$$
 is N_{ξ} -generic, and $p_{\xi} \in N_{\xi+1}$,

-
$$\{p_{\xi} \mid \xi < \omega_1\}$$
 has a lower bound,

using some modification of the Strong Chang's Conjecture.

Then $N^* := \bigcup_{\xi < \omega_1} N_{\xi}$ and a lower bound p^* of $\{p_{\xi} \mid \xi < \omega_1\}$ are as desired.

Modification of the Strong Chang's Conjecture:

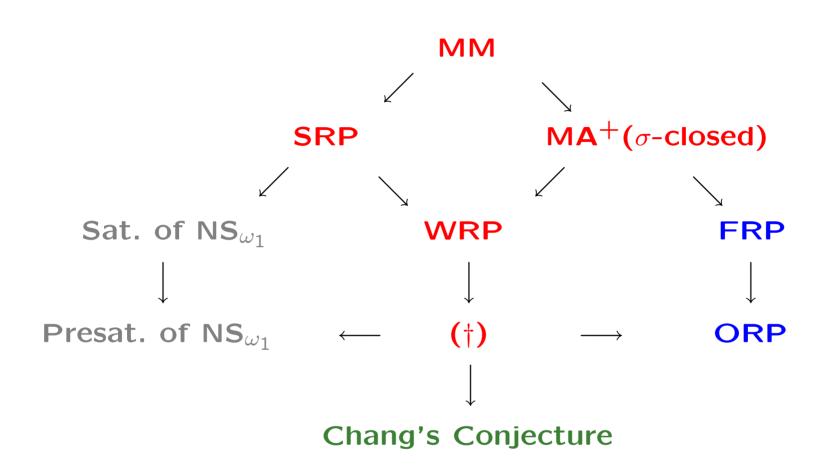
Lem. (In $V^{\text{Col}(\omega_1, <\kappa)}$) If $N \prec \mathcal{N}$ is ctble. and $\langle q_n \mid n < \omega \rangle$ is an (N, \mathbb{P}) -generic seq., then $\forall c \subseteq \sup(N \cap \omega_2)$: club, threads $\bigcup_{n < \omega} q_n$ $\exists d \subseteq \sup(N \cap \omega_2)$: club, threads $\bigcup_{n < \omega} q_n$ $\exists q^* \leq \bigcup_{n < \omega} q_n \land \langle \{c, d\} \rangle$ s.t. $\mathsf{sk}^{\mathcal{N}}(N \cup \{q^*\}) \cap \omega_1 = N \cap \omega_1$. We used a measurable cardinal to construct a model of Chang's Conjecture and $\Box_{\omega_1,2}$. On the other hand, recall:

<u>Fact</u> (Silver, Donder) Con (ZFC + Chang's Conjecture) \Leftrightarrow Con (ZFC + ∃ ω_1 -Erdös cardinal).

Question

What is the consistency strength of "Chang's Conjecture + $\Box_{\omega_1,2}$ "?

5. Summary



• Saturation of NS_{ω_1} is consistent with \Box_{λ} for all unctble. λ .

• (†) and stronger principles:

Almost the same as MM. With \neg CH the same as MM.

• ORP:

Different from MM at singular cardinals of cof. ω and ω_1 . FRP:

Different from MM at singular cardinals of cof. ω_1 .

• Chang's Conjecture:

Consistent with $\Box_{\omega_1,2}$.

6. Consequences of PFA

```
<u>Thm.</u> (Magidor, Todorčević)
PFA denies \Box_{\lambda,\omega_1} for all \lambda.</u>
```

<u>**Thm.</u>** (Magidor) PFA is consistent with \Box_{λ,ω_2} for all λ .</u>

<u>Thm.</u> (Magidor) PDFA denies $\Box_{\lambda,\omega}$ for all λ .

<u>Thm.</u> (Magidor) PDFA is consistent with \Box_{λ,ω_1} for all λ .

Thm. (Strullu)

(1) MRP denies $\Box_{\lambda,\omega}$ for all λ .

(2) MRP + MA_{\aleph_1} denies \Box_{λ,ω_1} for all λ .

 $\begin{array}{l} \underline{\text{Thm.}} \ (\text{Raghavan}) \\ (1) \ \text{PID denies } \Box_{\lambda,\omega} \ \text{for all } \lambda. \\ (2) \ \text{PID} + \text{MA}_{\aleph_1} \ \text{denies } \Box_{\lambda,\omega_1} \ \text{for all } \lambda \ \text{with } \operatorname{cof}(\lambda) > \omega_1. \end{array}$

Question

Does PID + MA_{\aleph_1} deny \Box_{λ,ω_1} for all λ ? In particular, does it deny \Box_{ω_1,ω_1} ?