# Universality in classes of Banach spaces and compact spaces

Piotr Koszmider

Polish Academy of Sciences

Piotr Koszmider (Polish Academy of Sciences

Universality and Forcing

Toronto, 12 1 / 26

DQR

4 All b. 4.

∃ ► < ∃ ►</p>

900

イロト イロト イモト イモト

### Outline A. Abstract nonsense

Piotr Koszmider (Polish Academy of Sciences

990

<ロト < 回ト < 回ト < ヨト < ヨト

- A. Abstract nonsense
  - Types of universality

DQC

#### A. Abstract nonsense

- 1 Types of universality
- Mappings 2

DQC

#### A. Abstract nonsense

- 1 Types of universality
- Mappings 2
- 3 **Dualities**

DQC

#### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces

伺下 イヨト イヨト

#### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- **5** Examples of classes of compact and Banach spaces

#### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- 5 Examples of classes of compact and Banach spaces

Sar

#### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- Examples of classes of compact and Banach spaces
- B. The existence and non-existence of universal spaces

#### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- Examples of classes of compact and Banach spaces

### B. The existence and non-existence of universal spaces



#### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- 5 Examples of classes of compact and Banach spaces

### B. The existence and non-existence of universal spaces

1 .... 2 ....

#### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- 5 Examples of classes of compact and Banach spaces

### B. The existence and non-existence of universal spaces



#### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- 5 Examples of classes of compact and Banach spaces

### B. The existence and non-existence of universal spaces



#### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- 5 Examples of classes of compact and Banach spaces

### B. The existence and non-existence of universal spaces



#### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- 5 Examples of classes of compact and Banach spaces

### B. The existence and non-existence of universal spaces



### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- 5 Examples of classes of compact and Banach spaces

### B. The existence and non-existence of universal spaces



- - ∃ →

### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- 5 Examples of classes of compact and Banach spaces

### B. The existence and non-existence of universal spaces



- - ∃ →

### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- 5 Examples of classes of compact and Banach spaces

### B. The existence and non-existence of universal spaces



### A. Abstract nonsense

- Types of universality
- 2 Mappings
- ③ Dualities
- Associations between classes of compact spaces and classes of Banach spaces
- 5 Examples of classes of compact and Banach spaces

### B. The existence and non-existence of universal spaces



Piotr Koszmider (Polish Academy of Sciences

Piotr Koszmider (Polish Academy of Sciences

DQC

イロト イロト イモト イモン

 Consider a class of structures C and two classes of mappings, some injections called embeddings and some surjections called quotient maps

- E

- Consider a class of structures C and two classes of mappings, some injections called embeddings and some surjections called quotient maps
- A structure  $X \in C$  is called injectively universal iff for every  $Y \in C$  there is an embedding  $f : Y \to X$

- Consider a class of structures C and two classes of mappings, some injections called embeddings and some surjections called quotient maps
- A structure X ∈ C is called injectively universal iff for every Y ∈ C there is an embedding f : Y → X
- A structure  $X \in C$  is called surjectively universal iff for every  $Y \in C$  there is a quotient map  $f : X \to Y$

伺下 イヨト イヨト

- Consider a class of structures C and two classes of mappings, some injections called embeddings and some surjections called quotient maps
- A structure X ∈ C is called injectively universal iff for every Y ∈ C there is an embedding f : Y → X
- A structure X ∈ C is called surjectively universal iff for every Y ∈ C there is a quotient map f : X → Y
- A structure X ∈ C is called weakly universal iff for every Y ∈ C there is Z ∈ C and an embedding f : X → Z and a quotient g : Y → Z

イロト イポト イヨト イヨト 二日

- Consider a class of structures C and two classes of mappings, some injections called embeddings and some surjections called quotient maps
- A structure X ∈ C is called injectively universal iff for every Y ∈ C there is an embedding f : Y → X
- A structure X ∈ C is called surjectively universal iff for every Y ∈ C there is a quotient map f : X → Y
- A structure X ∈ C is called weakly universal iff for every Y ∈ C there is Z ∈ C and an embedding f : X → Z and a quotient g : Y → Z

イロト イポト イヨト イヨト

- Consider a class of structures C and two classes of mappings, some injections called embeddings and some surjections called quotient maps
- A structure X ∈ C is called injectively universal iff for every Y ∈ C there is an embedding f : Y → X
- A structure X ∈ C is called surjectively universal iff for every Y ∈ C there is a quotient map f : X → Y
- A structure X ∈ C is called weakly universal iff for every Y ∈ C there is Z ∈ C and an embedding f : X → Z and a quotient g : Y → Z

イロト イポト イヨト イヨト

Piotr Koszmider (Polish Academy of Sciences

900

< ロト < 回 ト < 三 ト < 三 ト</p>

For classes of Boolean algebras

DQC

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms

Sac

イロト イポト イヨト イヨト

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms

く 伊 ト く ヨ ト く ヨ ト

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings

#### For classes of Banach spaces

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package

- ( E ) -

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package
    - \* embeddings = injective linear continuous mappings

一日 トイヨト イヨト

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package
    - \* embeddings = injective linear continuous mappings
    - quotients = surjective linear continuous mappings

一日 トイヨト イヨト

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package
    - \* embeddings = injective linear continuous mappings
    - ★ quotients = surjective linear continuous mappings
  - Isometric package

伺下 イヨト イヨト

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package
    - ★ embeddings = injective linear continuous mappings
    - ★ quotients = surjective linear continuous mappings
  - Isometric package
    - \* embeddings = linear isometries (norm preserving mappings)

・ 同 ト ・ ヨ ト ・ ヨ ト

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package
    - ★ embeddings = injective linear continuous mappings
    - ★ quotients = surjective linear continuous mappings
  - Isometric package
    - ★ embeddings = linear isometries (norm preserving mappings)
    - \* quotients = compositions of the quotient maps with isometries

・ 同 ト ・ ヨ ト ・ ヨ ト

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package
    - ★ embeddings = injective linear continuous mappings
    - ★ quotients = surjective linear continuous mappings
  - Isometric package
    - ★ embeddings = linear isometries (norm preserving mappings)
    - ★ quotients = compositions of the quotient maps with isometries

#### Terminology

・ 同 ト ・ ヨ ト ・ ヨ ト

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package
    - ★ embeddings = injective linear continuous mappings
    - ★ quotients = surjective linear continuous mappings
  - Isometric package
    - ★ embeddings = linear isometries (norm preserving mappings)
    - ★ quotients = compositions of the quotient maps with isometries
- Terminology
  - For Boolean algebras and Banach spaces: universal = injectively universal

くぼう イヨト イヨト

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package
    - ★ embeddings = injective linear continuous mappings
    - ★ quotients = surjective linear continuous mappings
  - Isometric package
    - ★ embeddings = linear isometries (norm preserving mappings)
    - ★ quotients = compositions of the quotient maps with isometries
- Terminology
  - For Boolean algebras and Banach spaces: universal = injectively universal
  - ► For compact spaces: universal = surjectively universal

Sar

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package
    - ★ embeddings = injective linear continuous mappings
    - ★ quotients = surjective linear continuous mappings
  - Isometric package
    - ★ embeddings = linear isometries (norm preserving mappings)
    - ★ quotients = compositions of the quotient maps with isometries
- Terminology
  - For Boolean algebras and Banach spaces: universal = injectively universal
  - For compact spaces: universal = surjectively universal

< ∃ >

- For classes of Boolean algebras
  - embeddings = injective Boolean homomorphisms
  - quotients = surjective Boolean homomorphisms
- For classes of compact spaces
  - embeddings = injective continuous mappings
  - quotients = surjective continuous mappings
- For classes of Banach spaces
  - Isomorphic package
    - ★ embeddings = injective linear continuous mappings
    - ★ quotients = surjective linear continuous mappings
  - Isometric package
    - ★ embeddings = linear isometries (norm preserving mappings)
    - ★ quotients = compositions of the quotient maps with isometries
- Terminology
  - For Boolean algebras and Banach spaces: universal = injectively universal
  - For compact spaces: universal = surjectively universal

< ∃ >

Piotr Koszmider (Polish Academy of Sciences

900

イロト イロト イモト イモト

#### • The Stone duality

990

The Stone duality

 $\blacktriangleright \ K \quad \rightarrow \quad \{f \in C(K) | \quad f : K \rightarrow \{0,1\}\} = Clop(K)$ 

590

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

The Stone duality

$$\blacktriangleright K \rightarrow \{f \in C(K) | f : K \rightarrow \{0,1\}\} = Clop(K)$$

► 
$$\mathcal{A} \rightarrow \{h \in hom(\mathcal{A}) | h : \mathcal{A} \rightarrow \{0, 1\}\} = Stone(\mathcal{A})$$

$$[a] = \{h \in K_{\mathcal{A}} : h(a) = 1\}$$

990

The Stone duality

$$\blacktriangleright K \rightarrow \{f \in C(K) | f : K \rightarrow \{0,1\}\} = Clop(K)$$

$$\blacktriangleright \mathcal{A} \rightarrow \{h \in hom(\mathcal{A}) | h : \mathcal{A} \rightarrow \{0, 1\}\} = Stone(\mathcal{A})$$

$$[a] = \{h \in K_{\mathcal{A}} : h(a) = 1\}$$

• 
$$Clop(Stone(A)) \equiv A$$
,  $Stone(Clop(K)) \equiv K$ 

990

The Stone duality

$$\succ K \rightarrow \{f \in C(K) | f: K \rightarrow \{0, 1\}\} = Clop(K)$$

► 
$$\mathcal{A} \rightarrow \{h \in hom(\mathcal{A}) | h : \mathcal{A} \rightarrow \{0, 1\}\} = Stone(\mathcal{A})$$

$$[a] = \{h \in K_{\mathcal{A}} : h(a) = 1\}$$

• 
$$Clop(Stone(A)) \equiv A$$
,  $Stone(Clop(K)) \equiv K$ 

#### A similar construction

990

The Stone duality

$$K \rightarrow \{f \in C(K) | f: K \rightarrow \{0, 1\}\} = Clop(K)$$

► 
$$\mathcal{A} \rightarrow \{h \in hom(\mathcal{A}) | h : \mathcal{A} \rightarrow \{0, 1\}\} = Stone(\mathcal{A})$$

$$[a] = \{h \in K_{\mathcal{A}} : h(a) = 1\}$$

• 
$$Clop(Stone(A)) \equiv A$$
,  $Stone(Clop(K)) \equiv K$ 

A similar construction

• 
$$K \rightarrow \{f \in C(K) | f : K \rightarrow \mathbb{R}\} = C(K)$$

990

The Stone duality

$$K \rightarrow \{f \in C(K) | f: K \rightarrow \{0, 1\}\} = Clop(K)$$

► 
$$\mathcal{A} \rightarrow \{h \in hom(\mathcal{A}) | h : \mathcal{A} \rightarrow \{0, 1\}\} = Stone(\mathcal{A})$$

$$[a] = \{h \in K_{\mathcal{A}} : h(a) = 1\}$$

• 
$$Clop(Stone(A)) \equiv A$$
,  $Stone(Clop(K)) \equiv K$ 

A similar construction

$$\begin{array}{rcl} \blacktriangleright & \mathcal{K} & \rightarrow & \{f \in \mathcal{C}(\mathcal{K}) | & f : \mathcal{K} \rightarrow \mathbb{R}\} = \mathcal{C}(\mathcal{K}) \\ \blacktriangleright & \mathcal{X} & \rightarrow & \{h \in X^* | & h : \mathcal{X} \rightarrow \mathbb{R}, ||h|| \leq 1\} = B_{X^*} \end{array}$$

$$[f, r, \varepsilon] = \{h \in B_{X^*} : h(f) \in (r - \varepsilon, r + \varepsilon)\}$$

Piotr Koszmider (Polish Academy of Sciences

990

<ロト < 回ト < 回ト < ヨト < ヨト

The Stone duality

$$K \rightarrow \{f \in C(K) \mid f: K \rightarrow \{0, 1\}\} = Clop(K)$$

► 
$$\mathcal{A} \rightarrow \{h \in hom(\mathcal{A}) | h : \mathcal{A} \rightarrow \{0, 1\}\} = Stone(\mathcal{A})$$

$$[a] = \{h \in K_{\mathcal{A}} : h(a) = 1\}$$

• 
$$Clop(Stone(A)) \equiv A$$
,  $Stone(Clop(K)) \equiv K$ 

A similar construction

$$\begin{array}{rcl} \blacktriangleright & K & \rightarrow & \{f \in C(K) | & f : K \rightarrow \mathbb{R}\} = C(K) \\ \blacktriangleright & X & \rightarrow & \{h \in X^* | & h : X \rightarrow \mathbb{R}, ||h|| \le 1\} = B_{X^*} \end{array}$$

$$[f, r, \varepsilon] = \{h \in B_{X^*} : h(f) \in (r - \varepsilon, r + \varepsilon)\}$$

• Semidualities:  $C(B_{X^*}) \supseteq X$ ,  $B_{C(K)^*} \supseteq K$ 

Sac

The Stone duality

$$K \rightarrow \{f \in C(K) \mid f: K \rightarrow \{0,1\}\} = Clop(K)$$

► 
$$\mathcal{A} \rightarrow \{h \in hom(\mathcal{A}) | h : \mathcal{A} \rightarrow \{0, 1\}\} = Stone(\mathcal{A})$$

$$[a] = \{h \in K_{\mathcal{A}} : h(a) = 1\}$$

• 
$$Clop(Stone(A)) \equiv A$$
,  $Stone(Clop(K)) \equiv K$ 

A similar construction

$$\begin{array}{rcl} \blacktriangleright & \mathcal{K} & \rightarrow & \{f \in \mathcal{C}(\mathcal{K}) | & f : \mathcal{K} \rightarrow \mathbb{R}\} = \mathcal{C}(\mathcal{K}) \\ \blacktriangleright & \mathcal{X} & \rightarrow & \{h \in \mathcal{X}^* | & h : \mathcal{X} \rightarrow \mathbb{R}, ||h|| \leq 1\} = B_{\mathcal{X}^*} \end{array}$$

$$[f, r, \varepsilon] = \{h \in B_{X^*} : h(f) \in (r - \varepsilon, r + \varepsilon)\}$$

• Semidualities:  $C(B_{X^*}) \supseteq X, B_{C(K)^*} \supseteq K$ 

Piotr Koszmider (Polish Academy of Sciences

Sac

イロト イポト イヨト イヨト

The Stone duality

$$K \rightarrow \{f \in C(K) \mid f: K \rightarrow \{0,1\}\} = Clop(K)$$

► 
$$\mathcal{A} \rightarrow \{h \in hom(\mathcal{A}) | h : \mathcal{A} \rightarrow \{0, 1\}\} = Stone(\mathcal{A})$$

$$[a] = \{h \in K_{\mathcal{A}} : h(a) = 1\}$$

• 
$$Clop(Stone(A)) \equiv A$$
,  $Stone(Clop(K)) \equiv K$ 

A similar construction

$$\begin{array}{rcl} \blacktriangleright & \mathcal{K} & \rightarrow & \{f \in \mathcal{C}(\mathcal{K}) | & f : \mathcal{K} \rightarrow \mathbb{R}\} = \mathcal{C}(\mathcal{K}) \\ \blacktriangleright & \mathcal{X} & \rightarrow & \{h \in \mathcal{X}^* | & h : \mathcal{X} \rightarrow \mathbb{R}, ||h|| \leq 1\} = B_{\mathcal{X}^*} \end{array}$$

$$[f, r, \varepsilon] = \{h \in B_{X^*} : h(f) \in (r - \varepsilon, r + \varepsilon)\}$$

• Semidualities:  $C(B_{X^*}) \supseteq X$ ,  $B_{C(K)^*} \supseteq K$ 

Piotr Koszmider (Polish Academy of Sciences

Sac

イロト イポト イヨト イヨト

Piotr Koszmider (Polish Academy of Sciences

990

イロト イロト イヨト イヨト

• Suppose  $\mathcal{K}$  is a class of compact spaces and  $\mathcal{B}$  is a class of Banach spaces. We say that they are associated iff

く 伊 ト く ヨ ト く ヨ ト

• Suppose  $\mathcal{K}$  is a class of compact spaces and  $\mathcal{B}$  is a class of Banach spaces. We say that they are associated iff

• 
$$K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$$

A 1

• Suppose  $\mathcal{K}$  is a class of compact spaces and  $\mathcal{B}$  is a class of Banach spaces. We say that they are associated iff

• 
$$K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$$

• 
$$X \in \mathcal{B} \Rightarrow B_{X^*} \in \mathcal{K}$$

• Suppose  $\mathcal{K}$  is a class of compact spaces and  $\mathcal{B}$  is a class of Banach spaces. We say that they are associated iff

• 
$$K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$$

• 
$$X \in \mathcal{B} \Rightarrow B_{X^*} \in \mathcal{K}$$

• If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are *K*-associated.

200

• Suppose  $\mathcal{K}$  is a class of compact spaces and  $\mathcal{B}$  is a class of Banach spaces. We say that they are associated iff

• 
$$K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$$

$$\bullet \ X \in \mathcal{B} \quad \Rightarrow \quad B_{X^*} \in \mathcal{K}$$

- If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are *K*-associated.
- Suppose that  $\mathcal{K}$  and  $\mathcal{B}$  as above are associated.

• Suppose  $\mathcal{K}$  is a class of compact spaces and  $\mathcal{B}$  is a class of Banach spaces. We say that they are associated iff

• 
$$K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$$

$$\bullet \ X \in \mathcal{B} \quad \Rightarrow \quad B_{X^*} \in \mathcal{K}$$

- If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are *K*-associated.
- Suppose that  $\mathcal{K}$  and  $\mathcal{B}$  as above are associated.
  - ▶ If *K* is universal for  $\mathcal{K}$ , then  $C(\mathcal{K})$  is isometrically universal for  $\mathcal{B}$

200

• Suppose  $\mathcal{K}$  is a class of compact spaces and  $\mathcal{B}$  is a class of Banach spaces. We say that they are associated iff

• 
$$K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$$

$$\bullet \ X \in \mathcal{B} \quad \Rightarrow \quad B_{X^*} \in \mathcal{K}$$

- If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are *K*-associated.
- Suppose that  $\mathcal{K}$  and  $\mathcal{B}$  as above are associated.
  - If K is universal for  $\mathcal{K}$ , then C(K) is isometrically universal for  $\mathcal{B}$
  - ► If there is a universal Banach space X for  $\mathcal{B}$ , then  $C(B_{X^*})$  is universal for  $\mathcal{B}$  as well.

200

伺下 イヨト イヨト

• Suppose  $\mathcal{K}$  is a class of compact spaces and  $\mathcal{B}$  is a class of Banach spaces. We say that they are associated iff

• 
$$K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$$

$$\bullet \ X \in \mathcal{B} \quad \Rightarrow \quad B_{X^*} \in \mathcal{K}$$

- If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are *K*-associated.
- Suppose that  $\mathcal{K}$  and  $\mathcal{B}$  as above are associated.
  - If K is universal for  $\mathcal{K}$ , then C(K) is isometrically universal for  $\mathcal{B}$
  - If there is a universal Banach space X for B, then C(B<sub>X\*</sub>) is universal for B as well.
  - If X is weakly universal for  $\mathcal{B}$ , then  $B_{X^*}$  is weakly universal for  $\mathcal{K}$

200

くぼと くきとくきょ

• Suppose  $\mathcal{K}$  is a class of compact spaces and  $\mathcal{B}$  is a class of Banach spaces. We say that they are associated iff

• 
$$K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$$

$$\bullet \ X \in \mathcal{B} \quad \Rightarrow \quad B_{X^*} \in \mathcal{K}$$

- If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are *K*-associated.
- Suppose that  $\mathcal{K}$  and  $\mathcal{B}$  as above are associated.
  - If K is universal for  $\mathcal{K}$ , then C(K) is isometrically universal for  $\mathcal{B}$
  - If there is a universal Banach space X for B, then C(B<sub>X\*</sub>) is universal for B as well.
  - If X is weakly universal for  $\mathcal{B}$ , then  $B_{X^*}$  is weakly universal for  $\mathcal{K}$

200

く 伊 ト く ヨ ト く ヨ ト

• Suppose  $\mathcal{K}$  is a class of compact spaces and  $\mathcal{B}$  is a class of Banach spaces. We say that they are associated iff

• 
$$K \in \mathcal{K} \Rightarrow C(K) \in \mathcal{B}$$

$$\bullet \ X \in \mathcal{B} \quad \Rightarrow \quad B_{X^*} \in \mathcal{K}$$

- If we have equivalences we say that the classes are strongly associated. If we have equivalence only in the first line, we say that the classes are *K*-associated.
- Suppose that  $\mathcal{K}$  and  $\mathcal{B}$  as above are associated.
  - If K is universal for  $\mathcal{K}$ , then C(K) is isometrically universal for  $\mathcal{B}$
  - If there is a universal Banach space X for B, then C(B<sub>X\*</sub>) is universal for B as well.
  - If X is weakly universal for  $\mathcal{B}$ , then  $B_{X^*}$  is weakly universal for  $\mathcal{K}$

200

く 伊 ト く ヨ ト く ヨ ト

Examples of associated classes

UE<sub>κ</sub> and H
<sub>κ</sub> are K-associated and are not strongly associated.

∃ ► < ∃ ►</p>

4 6 1 1 4

## Examples of associated classes

- $\mathbb{UE}_{\kappa}$  and  $\overline{\mathcal{H}}_{\kappa}$  are *K*-associated and are not strongly associated.
- E<sub>κ</sub> and WCG<sub>κ</sub>, are K-associated and are not strongly associated.

∃ ⊳

## Examples of associated classes

- $\mathbb{UE}_{\kappa}$  and  $\overline{\mathcal{H}}_{\kappa}$  are *K*-associated and are not strongly associated.
- $\mathbb{E}_{\kappa}$  and  $\mathcal{WCG}_{\kappa}$ , are *K*-associated and are not strongly associated.

200

- $\mathbb{UE}_{\kappa}$  and  $\overline{\mathcal{H}}_{\kappa}$  are *K*-associated and are not strongly associated.
- $\mathbb{E}_{\kappa}$  and  $\mathcal{WCG}_{\kappa}$ , are *K*-associated and are not strongly associated.
- Assuming MA+¬CH the classes C<sub>κ</sub> and WLD<sub>κ</sub> are strongly associated for any uncountable cardinal κ.

200

- $\mathbb{UE}_{\kappa}$  and  $\overline{\mathcal{H}}_{\kappa}$  are *K*-associated and are not strongly associated.
- $\mathbb{E}_{\kappa}$  and  $\mathcal{WCG}_{\kappa}$ , are *K*-associated and are not strongly associated.
- Assuming MA+¬CH the classes C<sub>κ</sub> and WLD<sub>κ</sub> are strongly associated for any uncountable cardinal κ.
- $\mathbb{K}_{\kappa}$  and  $\mathcal{B}_{\kappa}$  are strongly associated.

- $\mathbb{UE}_{\kappa}$  and  $\overline{\mathcal{H}}_{\kappa}$  are *K*-associated and are not strongly associated.
- $\mathbb{E}_{\kappa}$  and  $\mathcal{WCG}_{\kappa}$ , are *K*-associated and are not strongly associated.
- Assuming MA+¬CH the classes C<sub>κ</sub> and WLD<sub>κ</sub> are strongly associated for any uncountable cardinal κ.
- $\mathbb{K}_{\kappa}$  and  $\mathcal{B}_{\kappa}$  are strongly associated.

- $\mathbb{UE}_{\kappa}$  and  $\overline{\mathcal{H}}_{\kappa}$  are *K*-associated and are not strongly associated.
- $\mathbb{E}_{\kappa}$  and  $\mathcal{WCG}_{\kappa}$ , are *K*-associated and are not strongly associated.
- Assuming MA+¬CH the classes C<sub>κ</sub> and WLD<sub>κ</sub> are strongly associated for any uncountable cardinal κ.
- $\mathbb{K}_{\kappa}$  and  $\mathcal{B}_{\kappa}$  are strongly associated.

Sar

 (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in K<sub>κ</sub> for each cardinal number κ and so there is isometrically universal Banach space in each B<sub>κ</sub>.

(日本) (日本) (日本)

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in  $\mathbb{K}_{\kappa}$  for each cardinal number  $\kappa$  and so there is isometrically universal Banach space in each  $\mathcal{B}_{\kappa}$ .
- (Parovichenko; 1963) Assume CH. Then  $\mathbb{N}^*$  is universal in  $\mathbb{K}_{2^{\omega}}$ and so  $l_{\infty}/c_0 \equiv C(\mathbb{N}^*)$  is isometrically universal in  $\mathcal{B}_{2^{\omega}}$ .

くぼう くヨト くヨトー

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in K<sub>κ</sub> for each cardinal number κ and so there is isometrically universal Banach space in each B<sub>κ</sub>.
- (Parovichenko; 1963) Assume CH. Then N<sup>\*</sup> is universal in K<sub>2<sup>ω</sup></sub> and so I<sub>∞</sub>/c<sub>0</sub> ≡ C(N<sup>\*</sup>) is isometrically universal in B<sub>2<sup>ω</sup></sub>.
- Let κ be a cardinal. [0, 1]<sup>κ</sup> is injectively universal in K<sub>2<sup>ω</sup></sub>. In particular, any space that maps onto [0, 1]<sup>2<sup>ω</sup></sup>, and so, N\*, is weakly universal in K<sub>2<sup>ω</sup></sub>. In particular ℓ<sub>∞</sub>/c<sub>0</sub> is isometrically weakly universal for B<sub>2<sup>ω</sup></sub>.

・ロト ・ 同ト ・ ヨト ・ ヨト

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in  $\mathbb{K}_{\kappa}$  for each cardinal number  $\kappa$  and so there is isometrically universal Banach space in each  $\mathcal{B}_{\kappa}$ .
- (Parovichenko; 1963) Assume CH. Then N<sup>\*</sup> is universal in K<sub>2<sup>ω</sup></sub> and so I<sub>∞</sub>/c<sub>0</sub> ≡ C(N<sup>\*</sup>) is isometrically universal in B<sub>2<sup>ω</sup></sub>.
- Let κ be a cardinal. [0, 1]<sup>κ</sup> is injectively universal in K<sub>2<sup>ω</sup></sub>. In particular, any space that maps onto [0, 1]<sup>2<sup>ω</sup></sup>, and so, N<sup>\*</sup>, is weakly universal in K<sub>2<sup>ω</sup></sub>. In particular ℓ<sub>∞</sub>/c<sub>0</sub> is isometrically weakly universal for B<sub>2<sup>ω</sup></sub>.
- (Dow, Hart; 2001) It is consistent that there is no universal compact space for K<sub>2</sub>.

不得下 イヨト イヨト 二日

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in  $\mathbb{K}_{\kappa}$  for each cardinal number  $\kappa$  and so there is isometrically universal Banach space in each  $\mathcal{B}_{\kappa}$ .
- (Parovichenko; 1963) Assume CH. Then N<sup>\*</sup> is universal in K<sub>2<sup>ω</sup></sub> and so I<sub>∞</sub>/c<sub>0</sub> ≡ C(N<sup>\*</sup>) is isometrically universal in B<sub>2<sup>ω</sup></sub>.
- Let κ be a cardinal. [0, 1]<sup>κ</sup> is injectively universal in K<sub>2<sup>ω</sup></sub>. In particular, any space that maps onto [0, 1]<sup>2<sup>ω</sup></sup>, and so, N<sup>\*</sup>, is weakly universal in K<sub>2<sup>ω</sup></sub>. In particular ℓ<sub>∞</sub>/c<sub>0</sub> is isometrically weakly universal for B<sub>2<sup>ω</sup></sub>.
- (Dow, Hart; 2001) It is consistent that there is no universal compact space for K<sub>2<sup>ω</sup></sub>.
- (Shelah, Usvyatsov; 2006) It is consistent that there is no isometrically universal Banach space in  $\mathcal{B}_{2^{\omega}}$  or in  $\mathcal{B}_{\omega_1}$

- (Esenin-Volpin; 1949) Assume GCH. Then there is a universal compact space in  $\mathbb{K}_{\kappa}$  for each cardinal number  $\kappa$  and so there is isometrically universal Banach space in each  $\mathcal{B}_{\kappa}$ .
- (Parovichenko; 1963) Assume CH. Then  $\mathbb{N}^*$  is universal in  $\mathbb{K}_{2^{\omega}}$ and so  $I_{\infty}/c_0 \equiv C(\mathbb{N}^*)$  is isometrically universal in  $\mathcal{B}_{2^{\omega}}$ .
- Let κ be a cardinal. [0, 1]<sup>κ</sup> is injectively universal in K<sub>2<sup>ω</sup></sub>. In particular, any space that maps onto [0, 1]<sup>2<sup>ω</sup></sup>, and so, N\*, is weakly universal in K<sub>2<sup>ω</sup></sub>. In particular ℓ<sub>∞</sub>/c<sub>0</sub> is isometrically weakly universal for B<sub>2<sup>ω</sup></sub>.
- (Dow, Hart; 2001) It is consistent that there is no universal compact space for K<sub>2<sup>ω</sup></sub>.
- (Shelah, Usvyatsov; 2006) It is consistent that there is no isometrically universal Banach space in B<sub>2<sup>ω</sup></sub> or in B<sub>ω1</sub>
- (Brech, Koszmider; 2012) It is consistent that there is no isomorphically universal Banach space in B<sub>2<sup>ω</sup>/2</sub> or in B<sub>ω1</sub>

Piotr Koszmider (Polish Academy of Sciences

900

< ロト < 回 ト < 三 ト < 三 ト</p>

• Are any of the statements below equivalent in ZFC:

DQC

- Are any of the statements below equivalent in ZFC:
  - ▶ there is a universal Banach space of density  $\leq 2^{\omega}$ ,

- Are any of the statements below equivalent in ZFC:
  - there is a universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is an isometrically universal Banach space of density  $\leq 2^{\omega}$ ,

• Are any of the statements below equivalent in ZFC:

- there is a universal Banach space of density  $\leq 2^{\omega}$ ,
- there is an isometrically universal Banach space of density  $\leq 2^{\omega}$ ,
- ► there is a universal compact space of weight ≤ 2<sup>ω</sup>?

- Are any of the statements below equivalent in ZFC:
  - there is a universal Banach space of density  $\leq 2^{\omega}$ ,
  - there is an isometrically universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is a universal compact space of weight ≤ 2<sup>ω</sup>?
- Is every universal Banach space of density ≤ 2<sup>ω</sup> isomorphic to an isometrically universal Banach space of density ≤ 2<sup>ω</sup>? Is it isometrically universal itself?

200

- Are any of the statements below equivalent in ZFC:
  - there is a universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is an isometrically universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is a universal compact space of weight ≤ 2<sup>ω</sup>?
- Is every universal Banach space of density ≤ 2<sup>ω</sup> isomorphic to an isometrically universal Banach space of density ≤ 2<sup>ω</sup>? Is it isometrically universal itself?
- Is there a property *P* of norms such that:

200

周レイヨレイヨレ

- Are any of the statements below equivalent in ZFC:
  - there is a universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is an isometrically universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is a universal compact space of weight ≤ 2<sup>ω</sup>?
- Is every universal Banach space of density ≤ 2<sup>ω</sup> isomorphic to an isometrically universal Banach space of density ≤ 2<sup>ω</sup>? Is it isometrically universal itself?
- Is there a property *P* of norms such that:
  - If (X, ||||) has P and Y is a closed subspace of X, then (Y, |||| ↾ Y) has P as well

\* 伊 ト \* ヨ ト \* ヨ ト

- Are any of the statements below equivalent in ZFC:
  - there is a universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is an isometrically universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is a universal compact space of weight ≤ 2<sup>ω</sup>?
- Is every universal Banach space of density ≤ 2<sup>ω</sup> isomorphic to an isometrically universal Banach space of density ≤ 2<sup>ω</sup>? Is it isometrically universal itself?
- Is there a property *P* of norms such that:
  - If (X, ||||) has P and Y is a closed subspace of X, then (Y, |||| ↾ Y) has P as well
  - ▶ Not all norms on Banach spaces of density  $\leq 2^{\omega}$  have P

- Are any of the statements below equivalent in ZFC:
  - there is a universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is an isometrically universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is a universal compact space of weight ≤ 2<sup>ω</sup>?
- Is every universal Banach space of density ≤ 2<sup>ω</sup> isomorphic to an isometrically universal Banach space of density ≤ 2<sup>ω</sup>? Is it isometrically universal itself?
- Is there a property *P* of norms such that:
  - If (X, ||||) has P and Y is a closed subspace of X, then (Y, |||| ↾ Y) has P as well
  - ► Not all norms on Banach spaces of density  $\leq 2^{\omega}$  have *P*
  - ► C(K) spaces have equivalent norm with property P

- Are any of the statements below equivalent in ZFC:
  - there is a universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is an isometrically universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is a universal compact space of weight ≤ 2<sup>ω</sup>?
- Is every universal Banach space of density ≤ 2<sup>ω</sup> isomorphic to an isometrically universal Banach space of density ≤ 2<sup>ω</sup>? Is it isometrically universal itself?
- Is there a property *P* of norms such that:
  - If (X, ||||) has P and Y is a closed subspace of X, then (Y, |||| ↾ Y) has P as well
  - ► Not all norms on Banach spaces of density  $\leq 2^{\omega}$  have *P*
  - C(K) spaces have equivalent norm with property P

・ロト ・ 同ト ・ 三ト ・ 三ト

- Are any of the statements below equivalent in ZFC:
  - there is a universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is an isometrically universal Banach space of density  $\leq 2^{\omega}$ ,
  - ► there is a universal compact space of weight ≤ 2<sup>ω</sup>?
- Is every universal Banach space of density ≤ 2<sup>ω</sup> isomorphic to an isometrically universal Banach space of density ≤ 2<sup>ω</sup>? Is it isometrically universal itself?
- Is there a property *P* of norms such that:
  - If (X, ||||) has P and Y is a closed subspace of X, then (Y, |||| ↾ Y) has P as well
  - ► Not all norms on Banach spaces of density  $\leq 2^{\omega}$  have *P*
  - C(K) spaces have equivalent norm with property P

・ロト ・ 同ト ・ 三ト ・ 三ト

Piotr Koszmider (Polish Academy of Sciences

Universality and Forcing

3 Toronto, 12 10/26

DQC

• The following spaces are always continuous images of N\*:

• The following spaces are always continuous images of N\*:

separable spaces

• The following spaces are always continuous images of N\*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω<sub>1</sub>

∃ > ∢

• The following spaces are always continuous images of N\*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω<sub>1</sub>
- ► ....

• The following spaces are always continuous images of N\*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω<sub>1</sub>
- ▶ ....
- ▶ (Bell, Shapiro, Simon; 1996) polyadic spaces of weight  $\leq 2^{\omega}$

• The following spaces are always continuous images of N\*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω<sub>1</sub>
- ▶ ....
- (Bell, Shapiro, Simon; 1996) polyadic spaces of weight  $\leq 2^{\omega}$

#### • The following spaces always isometrically embed into $\ell_\infty/c_0$ :

・ロト ・ 同ト ・ ヨト ・ ヨト

• The following spaces are always continuous images of N\*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω<sub>1</sub>
- ▶ ....
- (Bell, Shapiro, Simon; 1996) polyadic spaces of weight  $\leq 2^{\omega}$
- The following spaces always isometrically embed into  $\ell_\infty/c_0$ :
  - Banach spaces with weakly\* separable dual ball, in particular, all HI spaces

• The following spaces are always continuous images of N\*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω<sub>1</sub>
- ▶ ....
- ▶ (Bell, Shapiro, Simon; 1996) polyadic spaces of weight  $\leq 2^{\omega}$
- The following spaces always isometrically embed into  $\ell_\infty/c_0$ :
  - Banach spaces with weakly\* separable dual ball, in particular, all HI spaces
  - Banach spaces of density  $\omega_1$

• The following spaces are always continuous images of N\*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω<sub>1</sub>
- ▶ ....
- ▶ (Bell, Shapiro, Simon; 1996) polyadic spaces of weight  $\leq 2^{\omega}$
- The following spaces always isometrically embed into  $\ell_\infty/c_0$ :
  - Banach spaces with weakly\* separable dual ball, in particular, all HI spaces
  - Banach spaces of density ω<sub>1</sub>

• The following spaces are always continuous images of N\*:

- separable spaces
- (Parovichenko; 1963) spaces of weight ω<sub>1</sub>
- ▶ ....
- ▶ (Bell, Shapiro, Simon; 1996) polyadic spaces of weight  $\leq 2^{\omega}$
- The following spaces always isometrically embed into  $\ell_\infty/c_0$ :
  - Banach spaces with weakly\* separable dual ball, in particular, all HI spaces
  - Banach spaces of density ω<sub>1</sub>

#### Universality and non-universality of $\ell_{\infty}/c_0 \equiv C(N^*)$

Piotr Koszmider (Polish Academy of Sciences

Universality and Forcing

3 Toronto, 12 11/26

DQC

Universality and non-universality of  $\ell_{\infty}/c_0 \equiv C(N^*)$ 

• The following spaces may not be continuous images of N<sup>\*</sup>

Piotr Koszmider (Polish Academy of Sciences

Sar

- The following spaces may not be continuous images of N<sup>\*</sup>
  - Kunen; 1968) [0, ω₂]

Sac

- The following spaces may not be continuous images of N<sup>\*</sup>
  - (Kunen; 1968)  $[0, \omega_2]$
  - ▶ ....

Sac

- The following spaces may not be continuous images of N\*
  - (Kunen; 1968) [0, ω<sub>2</sub>]
  - ▶ ....
  - ► (Dow, Hart 2000) Stone space of the measure algebra.

- The following spaces may not be continuous images of N\*
  - (Kunen; 1968) [0, ω<sub>2</sub>]
  - ▶ ....
  - ► (Dow, Hart 2000) Stone space of the measure algebra.
- The following spaces may not isomorphically embed into  $\ell_\infty/c_0$

- The following spaces may not be continuous images of N\*
  - (Kunen; 1968) [0, ω<sub>2</sub>]
  - ▶ ....
  - ► (Dow, Hart 2000) Stone space of the measure algebra.
- The following spaces may not isomorphically embed into  $\ell_\infty/c_0$ 
  - ► (Brech, Koszmider; 2012) C([0, 2<sup>ω</sup>])

- The following spaces may not be continuous images of N\*
  - (Kunen; 1968) [0, ω<sub>2</sub>]
  - ▶ ....
  - ► (Dow, Hart 2000) Stone space of the measure algebra.
- The following spaces may not isomorphically embed into  $\ell_\infty/c_0$ 
  - ▶ (Brech, Koszmider; 2012) *C*([0, 2<sup>ω</sup>])
  - ▶ (Todorcevic; 2011) some first countable and some Corson compacta of weight  $\leq 2^{\omega}$

イボト イヨト イヨト

- The following spaces may not be continuous images of N\*
  - (Kunen; 1968) [0, ω<sub>2</sub>]
  - ▶ ....
  - ► (Dow, Hart 2000) Stone space of the measure algebra.
- The following spaces may not isomorphically embed into  $\ell_\infty/c_0$ 
  - ► (Brech, Koszmider; 2012) *C*([0, 2<sup>ω</sup>])
  - ► (Todorcevic; 2011) some first countable and some Corson compacta of weight ≤ 2<sup>ω</sup>
  - ▶ (Krupski, Marciszewski, 201?) Some uniform Eberlein compactum of weight  $\leq 2^{\omega}$

\* 同 ト \* ヨ ト \* ヨ ト - -

- The following spaces may not be continuous images of N\*
  - (Kunen; 1968) [0, ω<sub>2</sub>]
  - ▶ ....
  - ► (Dow, Hart 2000) Stone space of the measure algebra.
- The following spaces may not isomorphically embed into  $\ell_\infty/c_0$ 
  - ► (Brech, Koszmider; 2012) *C*([0, 2<sup>ω</sup>])
  - ► (Todorcevic; 2011) some first countable and some Corson compacta of weight ≤ 2<sup>ω</sup>
  - Krupski, Marciszewski, 201?) Some uniform Eberlein compactum of weight ≤ 2<sup>ω</sup>
- (Brech, P.K.; 2012) It is consistent that there exist universal Banach spaces for  $\mathcal{B}_{2^{\omega}}$  but  $l_{\infty}/c_0$  is not among them.

- The following spaces may not be continuous images of N\*
  - (Kunen; 1968) [0, ω<sub>2</sub>]
  - ▶ ....
  - ► (Dow, Hart 2000) Stone space of the measure algebra.
- The following spaces may not isomorphically embed into  $\ell_\infty/c_0$ 
  - ► (Brech, Koszmider; 2012) *C*([0, 2<sup>ω</sup>])
  - ► (Todorcevic; 2011) some first countable and some Corson compacta of weight ≤ 2<sup>ω</sup>
  - ► (Krupski, Marciszewski, 201?) Some uniform Eberlein compactum of weight ≤ 2<sup>ω</sup>
- (Brech, P.K.; 2012) It is consistent that there exist universal Banach spaces for  $\mathcal{B}_{2^{\omega}}$  but  $l_{\infty}/c_0$  is not among them.
- (Krupski, Marciszewski, 201?) It is consistent that a Banach space isomorphically embeds in  $l_{\infty}/c_0$  but it does not embed isometrically.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

- The following spaces may not be continuous images of N\*
  - (Kunen; 1968) [0, ω<sub>2</sub>]
  - ▶ ....
  - ► (Dow, Hart 2000) Stone space of the measure algebra.
- The following spaces may not isomorphically embed into  $\ell_\infty/c_0$ 
  - ► (Brech, Koszmider; 2012) *C*([0, 2<sup>ω</sup>])
  - ► (Todorcevic; 2011) some first countable and some Corson compacta of weight ≤ 2<sup>ω</sup>
  - ► (Krupski, Marciszewski, 201?) Some uniform Eberlein compactum of weight ≤ 2<sup>ω</sup>
- (Brech, P.K.; 2012) It is consistent that there exist universal Banach spaces for  $\mathcal{B}_{2^{\omega}}$  but  $l_{\infty}/c_0$  is not among them.
- (Krupski, Marciszewski, 201?) It is consistent that a Banach space isomorphically embeds in  $I_{\infty}/c_0$  but it does not embed isometrically.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

- The following spaces may not be continuous images of N\*
  - (Kunen; 1968) [0, ω<sub>2</sub>]
  - ▶ ....
  - ► (Dow, Hart 2000) Stone space of the measure algebra.
- The following spaces may not isomorphically embed into  $\ell_\infty/c_0$ 
  - ► (Brech, Koszmider; 2012) *C*([0, 2<sup>ω</sup>])
  - ► (Todorcevic; 2011) some first countable and some Corson compacta of weight ≤ 2<sup>ω</sup>
  - ► (Krupski, Marciszewski, 201?) Some uniform Eberlein compactum of weight ≤ 2<sup>ω</sup>
- (Brech, P.K.; 2012) It is consistent that there exist universal Banach spaces for  $\mathcal{B}_{2^{\omega}}$  but  $l_{\infty}/c_0$  is not among them.
- (Krupski, Marciszewski, 201?) It is consistent that a Banach space isomorphically embeds in  $I_{\infty}/c_0$  but it does not embed isometrically.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Piotr Koszmider (Polish Academy of Sciences

990

Is it consistent that [0, 2<sup>ω</sup>] is not a continuous image of N<sup>\*</sup> but C([0, 2<sup>ω</sup>]) isomorphically embeds in ℓ<sub>∞</sub>/c<sub>0</sub>?

- Is it consistent that  $[0, 2^{\omega}]$  is not a continuous image of  $\mathbb{N}^*$  but  $C([0, 2^{\omega}])$  isomorphically embeds in  $\ell_{\infty}/c_0$ ?
- Suppose that K is the Stone space of the measure algebra (Borel sets of [0, 1] divided by Lebesgue measure sets zero). Is it consistent that C(K) does not isometrically embed into  $\ell_{\infty}/c_0$ ?

- Is it consistent that  $[0, 2^{\omega}]$  is not a continuous image of  $\mathbb{N}^*$  but  $C([0, 2^{\omega}])$  isomorphically embeds in  $\ell_{\infty}/c_0$ ?
- Suppose that K is the Stone space of the measure algebra (Borel sets of [0, 1] divided by Lebesgue measure sets zero). Is it consistent that C(K) does not isometrically embed into ℓ<sub>∞</sub>/c<sub>0</sub>?
- Is it consistent that N<sup>\*</sup> is not universal for K<sub>2<sup>ω</sup></sub> but ℓ<sub>∞</sub>/c<sub>0</sub> is universal for B<sub>2<sup>ω</sup></sub>?

- Is it consistent that  $[0, 2^{\omega}]$  is not a continuous image of  $\mathbb{N}^*$  but  $C([0, 2^{\omega}])$  isomorphically embeds in  $\ell_{\infty}/c_0$ ?
- Suppose that K is the Stone space of the measure algebra (Borel sets of [0, 1] divided by Lebesgue measure sets zero). Is it consistent that C(K) does not isometrically embed into ℓ<sub>∞</sub>/c<sub>0</sub>?
- Is it consistent that N<sup>\*</sup> is not universal for K<sub>2<sup>ω</sup></sub> but ℓ<sub>∞</sub>/c<sub>0</sub> is universal for B<sub>2<sup>ω</sup></sub>?

- Is it consistent that  $[0, 2^{\omega}]$  is not a continuous image of  $\mathbb{N}^*$  but  $C([0, 2^{\omega}])$  isomorphically embeds in  $\ell_{\infty}/c_0$ ?
- Suppose that K is the Stone space of the measure algebra (Borel sets of [0, 1] divided by Lebesgue measure sets zero). Is it consistent that C(K) does not isometrically embed into ℓ<sub>∞</sub>/c<sub>0</sub>?
- Is it consistent that N<sup>\*</sup> is not universal for K<sub>2<sup>ω</sup></sub> but ℓ<sub>∞</sub>/c<sub>0</sub> is universal for B<sub>2<sup>ω</sup></sub>?

Piotr Koszmider (Polish Academy of Sciences

Sac

 K is a uniform Eberlein compactum iff K is homeomorphic to a compact subspace of a Hilbert space with the weak topology

- *K* is a uniform Eberlein compactum iff *K* is homeomorphic to a compact subspace of a Hilbert space with the weak topology
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator T : H → X with a dense range.

く 伊 ト く ヨ ト く ヨ ト

- *K* is a uniform Eberlein compactum iff *K* is homeomorphic to a compact subspace of a Hilbert space with the weak topology
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator  $T : H \to X$  with a dense range.
- (Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001)
   UE<sub>κ</sub> and H
  <sub>κ</sub> are K-associated and are not strongly associated.

∃ ► < ∃ ►</p>

- *K* is a uniform Eberlein compactum iff *K* is homeomorphic to a compact subspace of a Hilbert space with the weak topology
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator  $T : H \to X$  with a dense range.
- (Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) UE<sub>κ</sub> and H
  <sub>κ</sub> are K-associated and are not strongly associated.
- $B_{l_2(\kappa)}$  is injectively universal for  $\mathbb{UE}_{\kappa}$ . In particular  $C(B_{l_2(\kappa)})$  is weakly universal for  $\overline{\mathcal{H}}_{\kappa}$ .

く 伊 ト く ヨ ト く ヨ ト

- *K* is a uniform Eberlein compactum iff *K* is homeomorphic to a compact subspace of a Hilbert space with the weak topology
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator  $T : H \to X$  with a dense range.
- (Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) UE<sub>κ</sub> and H
  <sub>κ</sub> are K-associated and are not strongly associated.
- B<sub>l<sub>2</sub>(κ)</sub> is injectively universal for UE<sub>κ</sub>. In particular C(B<sub>l<sub>2</sub>(κ)</sub>) is weakly universal for H
  <sub>κ</sub>.
- (Benyamini, Rudin, Wage; 1977)  $A(\kappa)^{\mathbb{N}}$  is weakly universal in  $\mathbb{UE}_{\kappa}$ . In particular  $C(A(\kappa)^{\mathbb{N}})$  is weakly universal for  $\overline{\mathcal{H}}_{\kappa}$ .

- *K* is a uniform Eberlein compactum iff *K* is homeomorphic to a compact subspace of a Hilbert space with the weak topology
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator  $T : H \to X$  with a dense range.
- (Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) UE<sub>κ</sub> and H
  <sub>κ</sub> are K-associated and are not strongly associated.
- B<sub>l<sub>2</sub>(κ)</sub> is injectively universal for UE<sub>κ</sub>. In particular C(B<sub>l<sub>2</sub>(κ)</sub>) is weakly universal for H
  <sub>κ</sub>.
- (Benyamini, Rudin, Wage; 1977) A(κ)<sup>N</sup> is weakly universal in UE<sub>κ</sub>. In particular C(A(κ)<sup>N</sup>) is weakly universal for H
  <sub>κ</sub>.
- (M. Bell; 2002) There is a compact K ∈ UE<sub>ω1</sub> which is not a continuous image of any space A(κ)<sup>N</sup>. In particular the space A(κ)<sup>N</sup> is not universal in UE<sub>κ</sub> for an uncountable κ.

- *K* is a uniform Eberlein compactum iff *K* is homeomorphic to a compact subspace of a Hilbert space with the weak topology
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator  $T : H \to X$  with a dense range.
- (Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) UE<sub>κ</sub> and H
  <sub>κ</sub> are K-associated and are not strongly associated.
- B<sub>l<sub>2</sub>(κ)</sub> is injectively universal for UE<sub>κ</sub>. In particular C(B<sub>l<sub>2</sub>(κ)</sub>) is weakly universal for H
  <sub>κ</sub>.
- (Benyamini, Rudin, Wage; 1977) A(κ)<sup>N</sup> is weakly universal in UE<sub>κ</sub>. In particular C(A(κ)<sup>N</sup>) is weakly universal for H
  <sub>κ</sub>.
- (M. Bell; 2002) There is a compact K ∈ UE<sub>ω1</sub> which is not a continuous image of any space A(κ)<sup>N</sup>. In particular the space A(κ)<sup>N</sup> is not universal in UE<sub>κ</sub> for an uncountable κ.

- *K* is a uniform Eberlein compactum iff *K* is homeomorphic to a compact subspace of a Hilbert space with the weak topology
- X is a Hilbert generated Banach space iff there is a Hilbert space H and a bounded linear operator  $T : H \to X$  with a dense range.
- (Benyamini, Starbird; 1976; Fabian, Godefroy, Zizler; 2001) UE<sub>κ</sub> and H
  <sub>κ</sub> are K-associated and are not strongly associated.
- B<sub>l<sub>2</sub>(κ)</sub> is injectively universal for UE<sub>κ</sub>. In particular C(B<sub>l<sub>2</sub>(κ)</sub>) is weakly universal for H
  <sub>κ</sub>.
- (Benyamini, Rudin, Wage; 1977) A(κ)<sup>N</sup> is weakly universal in UE<sub>κ</sub>. In particular C(A(κ)<sup>N</sup>) is weakly universal for H
  <sub>κ</sub>.
- (M. Bell; 2002) There is a compact K ∈ UE<sub>ω1</sub> which is not a continuous image of any space A(κ)<sup>N</sup>. In particular the space A(κ)<sup>N</sup> is not universal in UE<sub>κ</sub> for an uncountable κ.

Piotr Koszmider (Polish Academy of Sciences

Sar

 $\exists \rightarrow \neg$ TH 10

 (M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight ω<sub>1</sub>

- (M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight  $\omega_1$
- (M. Bell; 2000) Assume  $\kappa = 2^{<\kappa}$ . Then, there is a universal uniform Eberlein compact space  $UE_{\kappa}$  in  $\mathbb{UE}_{\kappa}$  and so  $C(UE_{\kappa})$  is isometrically universal Banach space for  $\overline{\mathcal{H}}_{\kappa}$ . In particular, the above results hold for  $\kappa = 2^{\omega} = \omega_1$  if we assume the continuum hypothesis.

何ト イヨト イヨト

- (M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight  $\omega_1$
- (M. Bell; 2000) Assume  $\kappa = 2^{<\kappa}$ . Then, there is a universal uniform Eberlein compact space  $UE_{\kappa}$  in  $\mathbb{UE}_{\kappa}$  and so  $C(UE_{\kappa})$  is isometrically universal Banach space for  $\overline{\mathcal{H}}_{\kappa}$ . In particular, the above results hold for  $\kappa = 2^{\omega} = \omega_1$  if we assume the continuum hypothesis.
- (C. Brech, P.K.; To appear in PAMS) It is consistent that there is no Banach space of density  $2^{\omega}$  or  $\omega_1$  which contains isomorphic copies of all Banach spaces from  $\mathbb{UE}_{2^{\omega}}$  or from  $\mathbb{UE}_{\omega_1}$  respectively. In particular, it is consistent that there is no universal Banach space neither in  $\overline{\mathcal{H}}_{\omega_1}$  nor in  $\overline{\mathcal{H}}_{2^{\omega}}$

ヘロト ヘ戸ト ヘヨト ヘヨト

- (M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight  $\omega_1$
- (M. Bell; 2000) Assume  $\kappa = 2^{<\kappa}$ . Then, there is a universal uniform Eberlein compact space  $UE_{\kappa}$  in  $\mathbb{UE}_{\kappa}$  and so  $C(UE_{\kappa})$  is isometrically universal Banach space for  $\overline{\mathcal{H}}_{\kappa}$ . In particular, the above results hold for  $\kappa = 2^{\omega} = \omega_1$  if we assume the continuum hypothesis.
- (C. Brech, P.K.; To appear in PAMS) It is consistent that there is no Banach space of density  $2^{\omega}$  or  $\omega_1$  which contains isomorphic copies of all Banach spaces from  $\mathbb{U}\mathbb{E}_{2^{\omega}}$  or from  $\mathbb{U}\mathbb{E}_{\omega_1}$  respectively. In particular, it is consistent that there is no universal Banach space neither in  $\overline{\mathcal{H}}_{\omega_1}$  nor in  $\overline{\mathcal{H}}_{2^{\omega}}$

- (M. Bell; 2000) It is consistent that there is no universal uniform Eberlein compact space of weight  $\omega_1$
- (M. Bell; 2000) Assume  $\kappa = 2^{<\kappa}$ . Then, there is a universal uniform Eberlein compact space  $UE_{\kappa}$  in  $\mathbb{UE}_{\kappa}$  and so  $C(UE_{\kappa})$  is isometrically universal Banach space for  $\overline{\mathcal{H}}_{\kappa}$ . In particular, the above results hold for  $\kappa = 2^{\omega} = \omega_1$  if we assume the continuum hypothesis.
- (C. Brech, P.K.; To appear in PAMS) It is consistent that there is no Banach space of density  $2^{\omega}$  or  $\omega_1$  which contains isomorphic copies of all Banach spaces from  $\mathbb{U}\mathbb{E}_{2^{\omega}}$  or from  $\mathbb{U}\mathbb{E}_{\omega_1}$  respectively. In particular, it is consistent that there is no universal Banach space neither in  $\overline{\mathcal{H}}_{\omega_1}$  nor in  $\overline{\mathcal{H}}_{2^{\omega}}$

Piotr Koszmider (Polish Academy of Sciences

990

• Is it consistent that there is a universal graph of size  $\omega_1$  (2<sup> $\omega$ </sup>) but there is no universal Banach space for  $\mathcal{B}_{\omega_1}$  ( $\mathcal{B}_{2^{\omega}}$ )? Or any other class we consider here?

#### Scattered compact space and Asplund Banach spaces

Piotr Koszmider (Polish Academy of Sciences

Universality and Forcing

Toronto, 12 16 / 26

590

-

Scattered compact space and Asplund Banach spaces

 A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable

Sar

- A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable
- A compact K is scattered iff C(K) is Asplund

∃ ► < ∃ ►</p>

- A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable
- A compact K is scattered iff C(K) is Asplund
- (Mazurkiewicz, Sierpiński; 1920) There is no universal scattered space of a given weight.

くぼう くほう くほう

- A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable
- A compact K is scattered iff C(K) is Asplund
- (Mazurkiewicz, Sierpiński; 1920) There is no universal scattered space of a given weight.
- *d* : *K* × *K* → ℝ<sub>+</sub> ∪ {0} fragments *K* iff for every *F* ⊆ *K*, for every *ε* > 0 there is an open *U* ⊆ *K* such that *U* ∩ *F* ≠ Ø and

 $diam_d(U \cap F) < \varepsilon.$ 

イロト イポト イヨト イヨト 二日

- A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable
- A compact K is scattered iff C(K) is Asplund
- (Mazurkiewicz, Sierpiński; 1920) There is no universal scattered space of a given weight.
- $d : K \times K \to \mathbb{R}_+ \cup \{0\}$  fragments *K* iff for every  $F \subseteq K$ , for every  $\varepsilon > 0$  there is an open  $U \subseteq K$  such that  $U \cap F \neq \emptyset$  and

 $diam_d(U \cap F) < \varepsilon.$ 

 (Namioka, Phelps, Jayne, Rogers) the dual norm fragments compact subsets of B<sub>X\*</sub> iff X is Asplund

- A Banach space is called Asplund if dual spaces to separable subspaces are (norm) separable
- A compact K is scattered iff C(K) is Asplund
- (Mazurkiewicz, Sierpiński; 1920) There is no universal scattered space of a given weight.
- $d: K \times K \to \mathbb{R}_+ \cup \{0\}$  fragments *K* iff for every  $F \subseteq K$ , for every  $\varepsilon > 0$  there is an open  $U \subseteq K$  such that  $U \cap F \neq \emptyset$  and

 $diam_d(U \cap F) < \varepsilon.$ 

- (Namioka, Phelps, Jayne, Rogers) the dual norm fragments compact subsets of B<sub>X\*</sub> iff X is Asplund
- (Szlenk 1968, Wojtaszczyk 1970, Hajek, Lancien, Montesinos 2007) For any cardinal  $\kappa$  there is no universal reflexive or Asplund Banach space of density  $\leq \kappa$

- ロ ト - 4 日 ト - 4 日 ト - 日 ト

Sar

イロト イポト イヨト イヨト

 A compact space is called Radon-Nikodým compact iff there is a l.s.c. metric on it which fragments it.

∃ ► < ∃ ►</p>

- A compact space is called Radon-Nikodým compact iff there is a l.s.c. metric on it which fragments it.
- $d : K \times K \rightarrow \mathbb{R}_+ \cup \{0\}$  is l.s.c. iff  $\{(x, y) \in K^2 : d(x, y) \ge r\}$  is closed for every  $r \in \mathbb{R}_+ \cup \{0\}$

イボト イヨト イヨト

- A compact space is called Radon-Nikodým compact iff there is a l.s.c. metric on it which fragments it.
- *d* : *K* × *K* → ℝ<sub>+</sub> ∪ {0} is l.s.c. iff {(*x*, *y*) ∈ *K*<sup>2</sup> : *d*(*x*, *y*) ≥ *r*} is closed for every *r* ∈ ℝ<sub>+</sub> ∪ {0}
- A Banach space X is said to be Asplund generated iff there is an Asplund space A and a bounded linear operator T : A → X with dense range.

イロト イ理ト イヨト イヨト

- A compact space is called Radon-Nikodým compact iff there is a l.s.c. metric on it which fragments it.
- *d* : *K* × *K* → ℝ<sub>+</sub> ∪ {0} is l.s.c. iff {(*x*, *y*) ∈ *K*<sup>2</sup> : *d*(*x*, *y*) ≥ *r*} is closed for every *r* ∈ ℝ<sub>+</sub> ∪ {0}
- A Banach space X is said to be Asplund generated iff there is an Asplund space A and a bounded linear operator  $T : A \rightarrow X$  with dense range.
- (I. Namioka; 1987)  $\mathbb{RN}_{\kappa}$  and  $\overline{\mathcal{A}}_{\kappa}$  are *K*-associated,

イロト イポト イヨト イヨト 二日

- A compact space is called Radon-Nikodým compact iff there is a l.s.c. metric on it which fragments it.
- $d : K \times K \rightarrow \mathbb{R}_+ \cup \{0\}$  is l.s.c. iff  $\{(x, y) \in K^2 : d(x, y) \ge r\}$  is closed for every  $r \in \mathbb{R}_+ \cup \{0\}$
- A Banach space X is said to be Asplund generated iff there is an Asplund space A and a bounded linear operator  $T : A \rightarrow X$  with dense range.
- (I. Namioka; 1987)  $\mathbb{RN}_{\kappa}$  and  $\overline{\mathcal{A}}_{\kappa}$  are *K*-associated,
- (A. Avilés; 2005) strongly associated if κ < b and not strongly associated if κ ≥ b;</li>

・ロト (過) (日) (日) (日)

Piotr Koszmider (Polish Academy of Sciences

990

イロト イロト イヨト イヨト

Is it consistent that there are universal spaces in one of the classes  $\mathbb{RN}_{2^{\omega}}$ ,  $\mathbb{RN}_{\omega_1}$ ?

Sac

- Is it consistent that there are universal spaces in one of the classes RN<sub>2<sup>ω</sup></sub>, RN<sub>ω1</sub>?
- Is it consistent that there are universal spaces in one of the classes *A*<sub>2<sup>ω</sup></sub>, *A*<sub>ω1</sub>?

・ 戸 ト ・ 三 ト ・

- Is it consistent that there are universal spaces in one of the classes RN<sub>2<sup>ω</sup></sub>, RN<sub>ω1</sub>?
- Is it consistent that there are universal spaces in one of the classes *A*<sub>2<sup>ω</sup></sub>, *A*<sub>ω1</sub>?
- Is it possible to associate to each Radon-Nikodým compact K an ordinal index *i*(K) having the following properties:

伺下 イヨト イヨト

- Is it consistent that there are universal spaces in one of the classes RN<sub>2<sup>ω</sup></sub>, RN<sub>ω1</sub>?
- Is it consistent that there are universal spaces in one of the classes *A*<sub>2<sup>ω</sup></sub>, *A*<sub>ω1</sub>?
- Is it possible to associate to each Radon-Nikodým compact K an ordinal index i(K) having the following properties:
  - |i(K)| is not bigger than the weight of K,

200

伺下 イヨト イヨト

- Is it consistent that there are universal spaces in one of the classes RN<sub>2<sup>ω</sup></sub>, RN<sub>ω1</sub>?
- Is it consistent that there are universal spaces in one of the classes *A*<sub>2<sup>ω</sup></sub>, *A*<sub>ω1</sub>?
- Is it possible to associate to each Radon-Nikodým compact K an ordinal index i(K) having the following properties:
  - |i(K)| is not bigger than the weight of K,
  - If L is a closed subset of K or if L is a continuous image of K, then i(L) ≤ i(K),

200

\* 伊 ト \* ヨ ト \* ヨ ト

- Is it consistent that there are universal spaces in one of the classes RN<sub>2<sup>ω</sup></sub>, RN<sub>ω1</sub>?
- Is it consistent that there are universal spaces in one of the classes *A*<sub>2<sup>ω</sup></sub>, *A*<sub>ω1</sub>?
- Is it possible to associate to each Radon-Nikodým compact K an ordinal index i(K) having the following properties:
  - |i(K)| is not bigger than the weight of K,
  - ► If *L* is a closed subset of *K* or if *L* is a continuous image of *K*, then  $i(L) \leq i(K)$ ,
  - For every α < κ<sup>+</sup> there is a Radon-Nikodým compactum K of weight κ such that i(K) > α.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

- Is it consistent that there are universal spaces in one of the classes RN<sub>2<sup>ω</sup></sub>, RN<sub>ω1</sub>?
- Is it consistent that there are universal spaces in one of the classes *A*<sub>2<sup>ω</sup></sub>, *A*<sub>ω1</sub>?
- Is it possible to associate to each Radon-Nikodým compact K an ordinal index i(K) having the following properties:
  - |i(K)| is not bigger than the weight of K,
  - If *L* is a closed subset of *K* or if *L* is a continuous image of *K*, then  $i(L) \le i(K)$ ,
  - For every α < κ<sup>+</sup> there is a Radon-Nikodým compactum K of weight κ such that i(K) > α.

(日本) (日本) (日本) 日

- Is it consistent that there are universal spaces in one of the classes RN<sub>2<sup>ω</sup></sub>, RN<sub>ω1</sub>?
- Is it consistent that there are universal spaces in one of the classes *A*<sub>2<sup>ω</sup></sub>, *A*<sub>ω1</sub>?
- Is it possible to associate to each Radon-Nikodým compact K an ordinal index i(K) having the following properties:
  - |i(K)| is not bigger than the weight of K,
  - If *L* is a closed subset of *K* or if *L* is a continuous image of *K*, then  $i(L) \le i(K)$ ,
  - For every α < κ<sup>+</sup> there is a Radon-Nikodým compactum K of weight κ such that i(K) > α.

(日本) (日本) (日本) 日

Sar

< 61 b

 A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology

- A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology
- A Banach space X is called WCG iff there is  $K \subseteq X$  such that

- A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology
- A Banach space X is called WCG iff there is K ⊆ X such that
   M is compact w. r. t. the weak topology of X

- A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology
- A Banach space X is called WCG iff there is  $K \subseteq X$  such that
  - (1) K is compact w. r. t. the weak topology of X
  - Iin(K) is norm dense in X

・ 同 ト ・ ヨ ト ・ ヨ ト

- A compact space is called an Eberlein compactum iff it is homeomorphic to a compact subset of a Banach space with the weak topology
- A Banach space X is called WCG iff there is K ⊆ X such that
  1 K is compact w. r. t. the weak topology of X
  2 lin(K) is norm dense in X
- (Amir, Lindenstrauss; 1968; Rosenthal; 1974) E<sub>κ</sub> and WCG<sub>κ</sub>, are K-associated and are not strongly associated.

イボト イヨト イヨト

Sar

(Argyros, Benyamini; 1987) If κ<sup>ω</sup> = κ or κ = ω<sub>1</sub> then there is no weakly universal Eberlein compact of weight κ nor a universal WCG Banach space of density κ. If κ is a strong limit cardinal of countable cofinality, then there is a universal Eberlein compact of weight κ, and so, there is a universal WCG Banach space of density κ.

イボト イヨト イヨト

Piotr Koszmider (Polish Academy of Sciences

900

イロト イロト イヨト イヨト

• Is it consistent that there is no universal space in  $\mathbb{E}_{\omega_{\alpha}}$ , in  $\mathcal{WCG}_{\omega_{\omega}}$ ?

DQC

イロト イロト イヨト イヨト

- Is it consistent that there is no universal space in  $\mathbb{E}_{\omega_{\omega}}$ , in  $\mathcal{WCG}_{\omega_{\omega}}$ ?
- Is it consistent that there is a universal space in  $\mathbb{E}_{\omega_2}$ , in  $\mathcal{WCG}_{\omega_2}$ ?

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Is it consistent that there is no universal space in  $\mathbb{E}_{\omega_{\omega}}$ , in  $\mathcal{WCG}_{\omega_{\omega}}$ ?
- Is it consistent that there is a universal space in  $\mathbb{E}_{\omega_2}$ , in  $\mathcal{WCG}_{\omega_2}$ ?

- Is it consistent that there is no universal space in  $\mathbb{E}_{\omega_{\omega}}$ , in  $\mathcal{WCG}_{\omega_{\omega}}$ ?
- Is it consistent that there is a universal space in  $\mathbb{E}_{\omega_2}$ , in  $\mathcal{WCG}_{\omega_2}$ ?

Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces I

4 A 1

Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces I

 A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals

200

# Corson compacta and weakly Lindelöf determined and weakly Lindelöf Banach spaces I

- A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals
- A Banach space is called weakly Lindelöf iff it is Lindelöf in the weak topology

- A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals
- A Banach space is called weakly Lindelöf iff it is Lindelöf in the weak topology
- Every WCG space is weakly Lindelöf

- A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals
- A Banach space is called weakly Lindelöf iff it is Lindelöf in the weak topology
- Every WCG space is weakly Lindelöf
- Every Eberlein compact space is Corson compact

A B < A B <</p>

- A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals
- A Banach space is called weakly Lindelöf iff it is Lindelöf in the weak topology
- Every WCG space is weakly Lindelöf
- Every Eberlein compact space is Corson compact
- Corson compact space has property M iff every Radon measure on it has separable support

イボト イヨト イヨト

- A compact space is called a Corson compactum iff it is homeomorphic to compact subspace of the Σ-product of the unit intervals
- A Banach space is called weakly Lindelöf iff it is Lindelöf in the weak topology
- Every WCG space is weakly Lindelöf
- Every Eberlein compact space is Corson compact
- Corson compact space has property M iff every Radon measure on it has separable support
- a Banach space X is called WLD iff X with the weak topology is a continuous image of a closed subset of  $L^{\omega}_{\kappa}$

・ロト ・ 同ト ・ ヨト ・ ヨト

4 A 1

 (Argyros, Mercourakis; 1993) K ∈ CM<sub>κ</sub> if and only if C(K) ∈ WLD<sub>κ</sub>

- (Argyros, Mercourakis; 1993)  $K \in \mathbb{CM}_{\kappa}$  if and only if  $C(K) \in \mathcal{WLD}_{\kappa}$
- (Argyros, Mercourakis; 1993)  $X \in WLD_{\kappa}$  if and only if  $B_{X^*} \in \mathbb{C}_{\kappa}$ ,

(日本) (日本) (日本)

- (Argyros, Mercourakis; 1993)  $K \in \mathbb{CM}_{\kappa}$  if and only if  $C(K) \in \mathcal{WLD}_{\kappa}$
- (Argyros, Mercourakis; 1993)  $X \in WLD_{\kappa}$  if and only if  $B_{X^*} \in \mathbb{C}_{\kappa}$ ,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming  $MA+\neg CH$  the classes  $\mathbb{C}_{\kappa} = \mathbb{CM}_{\kappa}$  and  $\mathcal{WLD}_{\kappa}$  are strongly associated for any uncountable cardinal  $\kappa$ .

\* 伊 ト \* ヨ ト \* ヨ ト

- (Argyros, Mercourakis; 1993)  $K \in \mathbb{CM}_{\kappa}$  if and only if  $C(K) \in \mathcal{WLD}_{\kappa}$
- (Argyros, Mercourakis; 1993)  $X \in \mathcal{WLD}_{\kappa}$  if and only if  $B_{X^*} \in \mathbb{C}_{\kappa}$ ,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming MA+ $\neg$ CH the classes  $\mathbb{C}_{\kappa} = \mathbb{CM}_{\kappa}$  and  $\mathcal{WLD}_{\kappa}$  are strongly associated for any uncountable cardinal  $\kappa$ .
- Assuming CH

\* 伊 ト \* ヨ ト \* ヨ ト

- (Argyros, Mercourakis; 1993)  $K \in \mathbb{CM}_{\kappa}$  if and only if  $C(K) \in \mathcal{WLD}_{\kappa}$
- (Argyros, Mercourakis; 1993)  $X \in \mathcal{WLD}_{\kappa}$  if and only if  $B_{X^*} \in \mathbb{C}_{\kappa}$ ,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming MA+ $\neg$ CH the classes  $\mathbb{C}_{\kappa} = \mathbb{CM}_{\kappa}$  and  $\mathcal{WLD}_{\kappa}$  are strongly associated for any uncountable cardinal  $\kappa$ .
- Assuming CH
  - (Argyros, Mercourakis, Negrepontis; 1988) C<sub>2<sup>∞</sup></sub> is not associated with any class of Banach spaces

(日本) (日本) (日本)

- (Argyros, Mercourakis; 1993)  $K \in \mathbb{CM}_{\kappa}$  if and only if  $C(K) \in \mathcal{WLD}_{\kappa}$
- (Argyros, Mercourakis; 1993)  $X \in WLD_{\kappa}$  if and only if  $B_{X^*} \in \mathbb{C}_{\kappa}$ ,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming MA+ $\neg$ CH the classes  $\mathbb{C}_{\kappa} = \mathbb{CM}_{\kappa}$  and  $\mathcal{WLD}_{\kappa}$  are strongly associated for any uncountable cardinal  $\kappa$ .
- Assuming CH
  - (Argyros, Mercourakis, Negrepontis; 1988) C<sub>2<sup>∞</sup></sub> is not associated with any class of Banach spaces
  - (Kalenda, Plebanek; 2002) WLD<sub>2</sub> is not associated with any class of compact spaces

・ 同 ト ・ ヨ ト ・ ヨ ト

- (Argyros, Mercourakis; 1993)  $K \in \mathbb{CM}_{\kappa}$  if and only if  $C(K) \in \mathcal{WLD}_{\kappa}$
- (Argyros, Mercourakis; 1993)  $X \in \mathcal{WLD}_{\kappa}$  if and only if  $B_{X^*} \in \mathbb{C}_{\kappa}$ ,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming MA+ $\neg$ CH the classes  $\mathbb{C}_{\kappa} = \mathbb{CM}_{\kappa}$  and  $\mathcal{WLD}_{\kappa}$  are strongly associated for any uncountable cardinal  $\kappa$ .
- Assuming CH
  - (Argyros, Mercourakis, Negrepontis; 1988) C<sub>2<sup>∞</sup></sub> is not associated with any class of Banach spaces
  - (Kalenda, Plebanek; 2002) WLD<sub>2</sub> is not associated with any class of compact spaces
  - (Kalenda, Plebanek; 2002)  $\mathcal{L}_{2^{\omega}}$  is not associated with any class of compact spaces

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

- (Argyros, Mercourakis; 1993)  $K \in \mathbb{CM}_{\kappa}$  if and only if  $C(K) \in \mathcal{WLD}_{\kappa}$
- (Argyros, Mercourakis; 1993)  $X \in WLD_{\kappa}$  if and only if  $B_{X^*} \in \mathbb{C}_{\kappa}$ ,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming MA+ $\neg$ CH the classes  $\mathbb{C}_{\kappa} = \mathbb{CM}_{\kappa}$  and  $\mathcal{WLD}_{\kappa}$  are strongly associated for any uncountable cardinal  $\kappa$ .
- Assuming CH
  - (Argyros, Mercourakis, Negrepontis; 1988) C<sub>2∞</sub> is not associated with any class of Banach spaces
  - (Kalenda, Plebanek; 2002) WLD<sub>2</sub><sup>w</sup> is not associated with any class of compact spaces
  - (Kalenda, Plebanek; 2002)  $\mathcal{L}_{2^{\omega}}$  is not associated with any class of compact spaces

## (Plebanek, 2002) CM<sub>κ</sub> is associated with a class of Banach spaces for any uncountable cardinal κ;

Piotr Koszmider (Polish Academy of Sciences

- (Argyros, Mercourakis; 1993)  $K \in \mathbb{CM}_{\kappa}$  if and only if  $C(K) \in \mathcal{WLD}_{\kappa}$
- (Argyros, Mercourakis; 1993)  $X \in WLD_{\kappa}$  if and only if  $B_{X^*} \in \mathbb{C}_{\kappa}$ ,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming MA+ $\neg$ CH the classes  $\mathbb{C}_{\kappa} = \mathbb{CM}_{\kappa}$  and  $\mathcal{WLD}_{\kappa}$  are strongly associated for any uncountable cardinal  $\kappa$ .
- Assuming CH
  - (Argyros, Mercourakis, Negrepontis; 1988) C<sub>2<sup>∞</sup></sub> is not associated with any class of Banach spaces
  - (Kalenda, Plebanek; 2002) WLD<sub>2</sub><sup>w</sup> is not associated with any class of compact spaces
  - (Kalenda, Plebanek; 2002)  $\mathcal{L}_{2^{\omega}}$  is not associated with any class of compact spaces
- (Plebanek, 2002) CM<sub>κ</sub> is associated with a class of Banach spaces for any uncountable cardinal κ;

- (Argyros, Mercourakis; 1993)  $K \in \mathbb{CM}_{\kappa}$  if and only if  $C(K) \in \mathcal{WLD}_{\kappa}$
- (Argyros, Mercourakis; 1993)  $X \in WLD_{\kappa}$  if and only if  $B_{X^*} \in \mathbb{C}_{\kappa}$ ,
- (Argyros, Mercourakis, Negrepontis; 1988) Assuming MA+ $\neg$ CH the classes  $\mathbb{C}_{\kappa} = \mathbb{CM}_{\kappa}$  and  $\mathcal{WLD}_{\kappa}$  are strongly associated for any uncountable cardinal  $\kappa$ .
- Assuming CH
  - (Argyros, Mercourakis, Negrepontis; 1988) C<sub>2<sup>∞</sup></sub> is not associated with any class of Banach spaces
  - (Kalenda, Plebanek; 2002) WLD<sub>2</sub><sup>w</sup> is not associated with any class of compact spaces
  - (Kalenda, Plebanek; 2002)  $\mathcal{L}_{2^{\omega}}$  is not associated with any class of compact spaces
- (Plebanek, 2002) CM<sub>κ</sub> is associated with a class of Banach spaces for any uncountable cardinal κ;

4 A 1

**H** 5

• (Todorcevic; 1995) For every countably tight compact space K of weight  $\leq 2^{\omega}$  there is a Corson compact K' of weight  $\leq 2^{\omega}$  where all Radon measures have separable supports and which is not a continuous image of any closed set of K. In particular there is no universal weakly Lindelöf determined Banach spaces in  $\mathcal{WLD}_{2^{\omega}}$ .

- (Todorcevic; 1995) For every countably tight compact space K of weight ≤ 2<sup>ω</sup> there is a Corson compact K' of weight ≤ 2<sup>ω</sup> where all Radon measures have separable supports and which is not a continuous image of any closed set of K. In particular there is no universal weakly Lindelöf determined Banach spaces in WLD<sub>2<sup>ω</sup></sub>.
- There is no universal weakly Lindelöf Banach space of density 2<sup>ω</sup>.

200

不同 トイモトイモト

Piotr Koszmider (Polish Academy of Sciences

990

イロト イロト イヨト イヨト

 Is it consistent that the class L<sub>κ</sub> of Lindelöf Banach spaces in the weak topology of density ≤ κ is associated with a class of compact spaces for an uncountable κ?

くぼと くきとくきょ

- Is it consistent that the class L<sub>κ</sub> of Lindelöf Banach spaces in the weak topology of density ≤ κ is associated with a class of compact spaces for an uncountable κ?
- Are there (consistently) universal Banach spaces in WLD<sub>κ</sub> for κ ≠ 2<sup>ω</sup>, for example consistently for κ = ω<sub>1</sub>?

- Is it consistent that the class L<sub>κ</sub> of Lindelöf Banach spaces in the weak topology of density ≤ κ is associated with a class of compact spaces for an uncountable κ?
- Are there (consistently) universal Banach spaces in  $WLD_{\kappa}$  for  $\kappa \neq 2^{\omega}$ , for example consistently for  $\kappa = \omega_1$ ?
- Are there (consistently) universal Corson compact spaces (where all Radon measures have separable supports) spaces of weight  $\leq \kappa$  for  $\kappa \neq 2^{\omega}$ , for example consistently for  $\kappa = \omega_1$ ?

- Is it consistent that the class  $\mathcal{L}_{\kappa}$  of Lindelöf Banach spaces in the weak topology of density  $\leq \kappa$  is associated with a class of compact spaces for an uncountable  $\kappa$ ?
- Are there (consistently) universal Banach spaces in  $\mathcal{WLD}_{\kappa}$  for  $\kappa \neq 2^{\omega}$ , for example consistently for  $\kappa = \omega_1$ ?
- Are there (consistently) universal Corson compact spaces (where all Radon measures have separable supports) spaces of weight <  $\kappa$  for  $\kappa \neq 2^{\omega}$ , for example consistently for  $\kappa = \omega_1$ ?
- Are there (consistently) universal Banach spaces in  $L_{\kappa}$  for  $\kappa \neq 2^{\omega}$ , for example consistently for  $\kappa = \omega_1$ ?

200

\* 伊 ト \* ヨ ト \* ヨ ト

#### P. Koszmider, Universal objects and associations between classes of Banach spaces and classes of compact spaces

http://arxiv.org/abs/1209.4294

Piotr Koszmider (Polish Academy of Sciences

Sar

P. Koszmider, Universal objects and associations between classes of Banach spaces and classes of compact spaces

http://arxiv.org/abs/1209.4294

Piotr Koszmider; Some topological invariants and biorthogonal systems in Banach spaces, Extracta Math. 26(2) (2011), 271-294

http://arxiv.org/abs/1209.4332

P. Koszmider, Universal objects and associations between classes of Banach spaces and classes of compact spaces

http://arxiv.org/abs/1209.4294

Piotr Koszmider; Some topological invariants and biorthogonal systems in Banach spaces, Extracta Math. 26(2) (2011), 271-294

http://arxiv.org/abs/1209.4332