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Setting

• Let Ω ⊂ R2 be an analytic, bounded planar domain with boundary
∂Ω and H ⊂ Ω̊ be a real-analytic interior curve (ie. H ⊂ Ω̊).

• We consider Neumann (or Dirichlet) eigenfunctions φλ on real
analytic plain domains Ω ⊂ R2 with{

−∆φλ = λ2φλ in Ω
∂νφλ = 0 on ∂Ω.

}
.

• The nodal set of ϕλ is by definition

Nφλ
= {x ∈ Ω : φλ(x) = 0}.

• QUESTION: As λ → ∞, how many nodal lines (components of the
nodal set) intersect a fixed interior real analytic curve H?
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Probability density plot of an eigenstate of a Bunimovich stadium (courtesy
of M.F. Andersen, A. Kaplan, T. Grünzweig and N. Davidson)



Known result

• Define
n(λ,H) = #{Nφλ

∩ H}.
• A curve H is said to be good if for all λ ≥ λ0,∫

H
|ϕλ|2dσ ≥ e−Cλ (1)

for some constant C > 0.

Theorem
Theorem (Zelditch-T (2009)) Let H be a real analytic interior curve that is
good.Then, there is a constant CΩ,H > 0 such that for all Neumann
eigenfunctions ϕλ,

n(λ,H) ≤ CΩ,Hλ.

When H = ∂Ω,
n(λ, ∂Ω) ≤ CΩλ.
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Checking goodness condition

• The domain boundary H = ∂Ω is good by interior unique
continuation.

• For interior H′s, the goodness condition is not easy to verify for all
eigenfunctions.

• Easy to see that not all interior curves are good. For example, the
Neumann eigenfunctions for the disc in polar variables
(r, θ) ∈ (0, 1]× [0, 2π] are

ϕm,n(r, θ) = Cm,n cosmθJm(j
′
m,nr) (Cm,n sinmθJm(j

′
m,nr)).

Here, Jm is the m-th integral Bessel function and j′m,n is the m-th
critical point of Jm. The eigenvalues are λ2

m,n = (j′m,n)
2.



Checking goodness condition

• The domain boundary H = ∂Ω is good by interior unique
continuation.

• For interior H′s, the goodness condition is not easy to verify for all
eigenfunctions.

• Easy to see that not all interior curves are good. For example, the
Neumann eigenfunctions for the disc in polar variables
(r, θ) ∈ (0, 1]× [0, 2π] are

ϕm,n(r, θ) = Cm,n cosmθJm(j
′
m,nr) (Cm,n sinmθJm(j

′
m,nr)).

Here, Jm is the m-th integral Bessel function and j′m,n is the m-th
critical point of Jm. The eigenvalues are λ2

m,n = (j′m,n)
2.



Checking goodness condition

• The domain boundary H = ∂Ω is good by interior unique
continuation.

• For interior H′s, the goodness condition is not easy to verify for all
eigenfunctions.

• Easy to see that not all interior curves are good. For example, the
Neumann eigenfunctions for the disc in polar variables
(r, θ) ∈ (0, 1]× [0, 2π] are

ϕm,n(r, θ) = Cm,n cosmθJm(j
′
m,nr) (Cm,n sinmθJm(j

′
m,nr)).

Here, Jm is the m-th integral Bessel function and j′m,n is the m-th
critical point of Jm. The eigenvalues are λ2

m,n = (j′m,n)
2.



Positive results known

• Fix m ∈ Z+ and consider

Hm = {(r, θ); θ =
2πk
m

; k = 0, ...,m− 1}.

Then, clearly for all n, ϕm,n|Hm = 0, and so Hm is not good.

• When (Mn, g) is a flat torus with n = 2, 3, and H ⊂ M has strictly
positive curvature (Bourgain-Rudnick(2010))∫

H
|ϕλ|2dσ ≈ 1.

• Closed horocycles H in finite-volume hyperbolic surfaces are good
(Jung(2011)) and so the OH(λ) intersection bound holds.



Positive results known

• Fix m ∈ Z+ and consider

Hm = {(r, θ); θ =
2πk
m

; k = 0, ...,m− 1}.

Then, clearly for all n, ϕm,n|Hm = 0, and so Hm is not good.

• When (Mn, g) is a flat torus with n = 2, 3, and H ⊂ M has strictly
positive curvature (Bourgain-Rudnick(2010))∫

H
|ϕλ|2dσ ≈ 1.

• Closed horocycles H in finite-volume hyperbolic surfaces are good
(Jung(2011)) and so the OH(λ) intersection bound holds.



Positive results known

• Fix m ∈ Z+ and consider

Hm = {(r, θ); θ =
2πk
m

; k = 0, ...,m− 1}.

Then, clearly for all n, ϕm,n|Hm = 0, and so Hm is not good.

• When (Mn, g) is a flat torus with n = 2, 3, and H ⊂ M has strictly
positive curvature (Bourgain-Rudnick(2010))∫

H
|ϕλ|2dσ ≈ 1.

• Closed horocycles H in finite-volume hyperbolic surfaces are good
(Jung(2011)) and so the OH(λ) intersection bound holds.



Theorem 1 [El-Hajj - T (2012)]

Theorem
Let Ω be a bounded, piecewise-analytic domain and H ⊂ Ω̊ an interior, Cω

curve with restriction map γH : C0(Ω) → C0(H).

Let HC
ϵ0 denote the complex radius ϵ0 > 0 Grauert tube containing H as its

totally real submanifold and (γHϕλ)
C be the holomorphic continuation of

γHϕλ to HC
ϵ0 .

Suppose the curve H satisfies the revised goodness condition

sup
z∈HC

ϵ0

|(γHϕλ)
C(z)| ≥ e−C0λ for some C0 > 0. (∗)

Then, there is a constant CΩ,H > 0 such that for all λ ≤ λ0,

n(λ,H) ≤ CΩ,Hλ.
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Key tool: potential layer

• An important point is that (∗) can be verified using T∗T-type
operator bounds for the holomorphic continuation to HC

ϵ0 of the
potential layer operator N(λ) : C∞(∂Ω) → C∞(H)

N(λ)(x, y) =
∫
∂Ω

∂νyG0(x, y, λ) dσ(y),

where,

G0(x, y, λ) =
i
4
Ha(1)0 (λ|x− y|).



Theorem 2 [El-Hajj - T (2012)]

By a slight abuse of notation, we denote the Neumann (or Dirichlet)
eigenfunctions ϕλ by ϕh, and write n(h,H) := n(λ,H).

Theorem
Let Ω be a bounded, piecewise-smooth convex domain with ergodic billiard
flow and H be a closed Cω interior curve with strictly positive geodesic
curvature.

Let (ϕhjk
)∞k=1 be a quantum ergodic sequence of Neumann or Dirichlet

eigenfunctions in Ω.

Then,
n(hjk ,H) = OH,Ω(h

−1
jk

).
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Theorem 3 [Canzani-T(2012)]

Theorem
Let (M2, g) be a compact, real-analytic surface with ∂M = ∅ and ergodic
geodesic flow Gt : S∗M → S∗M. Let H ⊂ M2 be a real-analytic closed curve
with strictly-positive geodesic curvature.

Let (ϕhjk
)∞k=1 be a quantum ergodic sequence of Laplace eigenfunctions.

Then,
n(hjk ,H) = OM,H(h

−1
jk

).

• When (M2, g) is quantum uniquely ergodic (QUE), the intersection
bound in Theorem 3 holds for all eigenfunctions. For example, this
is the case when M = Γ/H is arithmetic (Lindenstrauss (2006)).

• One can formulate a more general version of Theorem 2 in terms
of defect measures which need not be ergodic (examples?)
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Outline of the proof of Theorem 1

• We want to show that n(h,H) = O(h−1) under the assumption
that supz∈HC

ϵ0
|ϕH,C

h (z)| ≥ e−C/h for some C > 0.

• Let q : [−π, π] → H be a Cω-parametrization of a closed curve H
with |q′(t)| ̸= 0 and q(t+ 2π) = q(t).

• Consider the eigenfunction restriction,

uHh (t) = ϕh(q(t)), t ∈ [−π, π]

and complexify uHh to a holomorphic function uH,Ch (t) with t ∈ S2ϵ0
where

S2ϵ0 = {t ∈ C; |ℑt| < 2ϵ0}.

• Let Cϵ0 ⊂ S2ϵ0 be a simply-connected domain with Cω boundary
∂Cϵ0 containing the interval [−π, π].
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Outline of the proof of Theorem 1

• Assuming uH,Ch (t) ̸= 0 for all t ∈ Cϵ0 , frequency function method of
Han-Lin gives the upper bound

n(h,H) ≤ C1

∥∂TuH,Ch ∥L2ϵ0
∥uH,Ch ∥L2ϵ0

 . (2)

• In (2), L2ϵ0 := L2(∂Cϵ0 , dσ(t)) and ∂T is the unit tangential derivative
along ∂Cϵ0 .
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Outline of the proof of Theorem 1

• We h-microlocally decompose the right hand side in (2). Let
χR ∈ C∞

0 (T∗∂Cϵ0) with χR(s, σ) = 1 for |σ| ≤ R+ 1 and χR(s, σ) = 0
for |σ| ≥ R+ 2 with R > 1 sufficiently large.

Clearly,

∥∂TuH,Ch ∥L2ϵ0 ≤ ∥∂TOph(χR)u
H,C
h ∥L2ϵ0 + ∥∂T(1− Oph(χR))u

H,C
h ∥L2ϵ0 .

(3)

• Since h∂TOph(χR) ∈ Oph(S
0,0(T∗∂Cϵ0)), by L

2-boundedness one
estimates the first term on RHS of (3):

∥∂TOph(χR)u
H,C
h ∥L2ϵ0

∥uH,Ch ∥L2ϵ0
= h−1

∥h∂TOph(χR)u
H,C
h ∥L2ϵ0

∥uH,Ch ∥L2ϵ0
= O(h−1). (4)
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Outline of the proof of Theorem 1

• To estimate the right hand side of (3), we use potential layer
formulas combined with a complex contour deformation
argument to show that

∥h∂T(1− Oph(χR))u
H,C
h ∥L2ϵ0 = O(e−CR/h).

Here, CR ≫ R as R → ∞.

• Choose the strip Sϵ0,π = {t ∈ C;−π ≤ ℜt ≤ π, |ℑt| < ϵ0} with
Sϵ0,π ⊂ Int(Cϵ0). By Cauchy integral formula, Cauchy-Schwarz and
the goodness condition (∗),

∥uH,Ch ∥L2ϵ0 ≥ C · sup
t∈Sϵ0,π

|uH,Ch (t)| ≥ e−C0/h.
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• Choose the strip Sϵ0,π = {t ∈ C;−π ≤ ℜt ≤ π, |ℑt| < ϵ0} with
Sϵ0,π ⊂ Int(Cϵ0). By Cauchy integral formula, Cauchy-Schwarz and
the goodness condition (∗),

∥uH,Ch ∥L2ϵ0 ≥ C · sup
t∈Sϵ0,π

|uH,Ch (t)| ≥ e−C0/h.



Outline of the proof of Theorem 1

• It follows that

∥h∂T(1− Oph(χR))u
H,C
h ∥L2ϵ0

∥uH,Ch ∥L2ϵ0
= O(e(−CR+C0)/h).

• By choosing R sufficiently large in the radial frequency cutoff χR,
we get that CR − C0 ≫ R > 0.
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Outline of proof of Theorem 2

• We consider here the case where Ω is a bounded, convex planar
domain with ergodic billiards and that (ϕhj) is a sequence of QE
interior eigenfunctions. We want to show that
supz∈HC

ϵ0
|ϕH,C

h (z)| ≥ e−C/h in the case where H ⊂ Ω is an interior

curve with κH > 0. We do this by proving some weighted-L2 lower
bounds.

• To sketch the argument, assume for simplicity that ∂Ω is C∞ and
convex.

• Let HC(ϵ0) be a complex Grauert tube of radius ϵ0 > 0 with
totally-real part H and ζϵ0 ∈ C∞(HC(ϵ0); [0, 1]) be a cutoff on the
Grauert tube equal to 1 on the annulus HC(ϵ0/2)− HC(ϵ0/3) and
vanishing outside.
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Outline of proof of Theorem 2

• The main technical part of the proof of Theorem 2 consists of
showing that under the non-vanishing curvature condition on H
and for ϵ0 > 0 small, there is an order-zero semiclassical
pseudodifferential operator

P(h) ∈ Oph(S
0,0(T∗∂Ω))

and a weight function

ρ ∈ Cω(supp ζϵ0 ;R+)

such that

h−1/2 ∫ ∫
C e−2ρ(t)/h|uH,Ch (t)|2 ζϵ0(t) dtdt ∼h→0+ ⟨P(h)ϕ∂Ω

h , ϕ∂Ω
h ⟩.

(5)



Outline of proof of Theorem 2

• The potential layer formula gives

ϕH
h = γHN(h)ϕ∂Ω

h , (uHh (t) = ϕH
h (q(t))),

with holomorphic continuation

ϕH,C
h = (γHN(h)ϕ∂Ω

h )C, (uH,Ch (t))

• Writing the LHS of (5) as a composition, reduced to proving that
P(h) : C∞(∂Ω) → C∞(∂Ω) with

P(h) = (e−ρ/hζϵ0γ
C
HN

C(h))∗ ◦ (e−ρ/hζϵ0γ
C
HN

C(h))

is h-pseudodifferential.

• It is this point that the curvature assumption κH > 0 on H is used.
• Here, NC(h) is holomorphic continuation of the potential layer
operator N(h) : C∞(∂Ω) → C∞(∂Ω) and γCH : ΩC

ϵ0 → HC
ϵ0 is

restriction.
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Outline of proof of Theorem 2

• The principal symbol σ(P(h)) satisfies∫
B∗∂Ω

σ(P(h))γ−1 dydη ≥ CH,Ω,ϵ0 > 0

where γ(y, η) =
√

1− |η|2.

• Given a quantum ergodic sequence (ϕhjk
)∞k=1, the boundary

restrictions (ϕ∂Ω
hjk

)∞k=1 are themselves quantum ergodic

(Burq,Hassell-Zelditch) in the sense that

⟨P(h)ϕ∂Ω
h , ϕ∂Ω

h ⟩ ∼h→0+

∫
B∗∂Ω

σ(P(h))γ−1 dydη. (6)
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• The lower bound in (7) implies that the revised goodness
condition (∗) must be satisfied.
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Sketch of proof of Theorem 3

• Both Theorems 1 and 2 have analogues (proved similarily) when
(M, g) is a compact surface with ∂M = ∅.

• Potential layer operator N(h) gets replaced by heat operator
W(h) = e−h∆g (or wave operator)

• For example, holomorphic continuation of the obvious identity
e−1/hϕh = e−h∆gϕh gives

ϕH,C
h = e1/h(γHW(h))Cϕh = γCHW(h)Cϕh.

• Main point is to prove that P(h) : C∞(M) → C∞(M) with

P(h) = (e−ρ/hζϵ0γ
C
HW(h)C)∗ ◦ (e−ρ/hζϵ0γ

C
HW(h)C)

is h-pseudodifferential.
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Questions and Remarks

• (i) Derive an asymptotic density of states formula for complex
zeros of ϕH,C

h when H is geodesically curved (in analogy with the
case where H is geodesic (Zelditch (2012)).

• (ii) Upper bounds for n(H, λ) for more general (non-ergodic)
domains when H is curved.

• (iii) Polynomial lower bounds for n(H, λ) when H is either an
interior curve or H = ∂Ω.
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