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Let Q C R? be an analytic, bounded planar domain with boundary
02 and H C (2 be a real-analytic interior curve (ie. H C 2).

We consider Neumann (or Dirichlet) eigenfunctions ¢, on real
analytic plain domains Q C R? with

—A(p/\ = )\QQO)\ in Q
8,,% =0 on 0f). '
The nodal set of ¢, is by definition
Ny, = {x € Q: pr(x) = 0}.

QUESTION: As A\ — oo, how many nodal lines (components of the
nodal set) intersect a fixed interior real analytic curve H?



Probability density plot of an eigenstate of a Bunimovich stadium (courtesy
of M.F. Andersen, A. Kaplan, T. Griinzweig and N. Davidson)
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Theorem

Theorem (Zelditch-T (2009)) Let H be a real analytic interior curve that is
good.Then, there is a constant Cq 1 > 0 such that for all Neumann
eigenfunctions ¢y,

n(\H) < CaHA.

When H = 010,
n(A,@Q) < CqoA.
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e For interior H’s, the goodness condition is not easy to verify for all
eigenfunctions.

e Easy to see that not all interior curves are good. For example, the
Neumann eigenfunctions for the disc in polar variables
(r,0) € (0,1] x [0,27] are

Gmn(r,0) = Cm.n cOS MOy (jpy ) (Cmn SIN MO (1 1))

Here, J,, is the m-th integral Bessel function and ji, , is the m-th
critical point of . The eigenvalues are A7, , = (jr, ;).



Positive results known

e Fixm € Zt and consider

Ho = (r.0):0 = 2 k=0,_..m -1},

Then, clearly for all n,  ¢mn|n,, =0, and so Hp, is not good.



Positive results known

e Fixm € Zt and consider
Hm = {(r,0);60 = 2%1(; k=0,...m—1}.

Then, clearly for all n,  ¢mn|n,, =0, and so Hp, is not good.

e When (M",g) is a flat torus with n = 2,3, and H C M has strictly
positive curvature (Bourgain-Rudnick(2010))

/ (6 2dor ~ 1.
H



Positive results known

e Fixm € Zt and consider
Hm = {(r,0);60 = 2%1(; k=0,...m—1}.

Then, clearly for all n,  ¢mn|n,, =0, and so Hp, is not good.

e When (M",g) is a flat torus with n = 2,3, and H C M has strictly
positive curvature (Bourgain-Rudnick(2010))

/ (6 2dor ~ 1.
H

e Closed horocycles H in finite-volume hyperbolic surfaces are good
(Jung(2011)) and so the Oy()\) intersection bound holds.
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curve with restriction map vy : C°(2) — C(H).

Let H(EO denote the complex radius ey > 0 Grauert tube containing H as its
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Then, there is a constant Cq 1 > 0 such that for all X < X,

n(>\, H) < CQ}H)\.



Key tool: potential layer

e An important point is that () can be verified using T*T-type
operator bounds for the holomorphic continuation to HE of the
potential layer operator N(A) : C*(9Q) — C>*(H)

N()\)(X,y) = /@Q 8VyGO(X>.y7 )‘) dO‘(_y),

where, ‘
1
Go(x., A) = 3 Hay (Alx = ).
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By a slight abuse of notation, we denote the Neumann (or Dirichlet)
eigenfunctions ¢, by ¢, and write n(h, H) := n(\, H).

Theorem

Let Q2 be a bounded, piecewise-smooth convex domain with ergodic billiard
flow and H be a closed C* interior curve with strictly positive geodesic
curvature.

Let (qﬁhjk),f‘;l be a quantum ergodic sequence of Neumann or Dirichlet
eigenfunctions in €.

Then,

n(hj,,H) = Ona(h ).
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Theorem 3 [Canzani-T(2012)]

Theorem

Let (M?, g) be a compact, real-analytic surface with OM = () and ergodic
geodesic flow G' : S*M — S*M. Let H C M? be a real-analytic closed curve
with strictly-positive geodesic curvature.

Let (¢hjk)§°:1 be a quantum ergodic sequence of Laplace eigenfunctions.
Then,
n(hj, . H) = (’)MH(hjzl).

o When (M2, g) is quantum uniquely ergodic (QUE), the intersection
bound in Theorem 3 holds for all eigenfunctions. For example, this
is the case when M = I'/H is arithmetic (Lindenstrauss (2006)).

e One can formulate a more general version of Theorem 2 in terms
of defect measures which need not be ergodic (examples?)
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Outline of the proof of Theorem 1

o We want to show that n(h,H) = O(h™') under the assumption
that sup,.,c |6"%(z)| > e~</" for some C > 0.
€0

e Letq: [—m, m] — H be a C¥-parametrization of a closed curve H
with |¢'(t)| # 0 and q(t + 27) = q(t).

e Consider the eigenfunction restriction,

up (t) = on(q(1)), t € [~ 7]

and complexify u}! to a holomorphic function ug’c(t) with t € Sy,

where
So¢p = {t e C; |%t| < 260}.

e Let C., C Sa, be a simply-connected domain with C* boundary
JC, containing the interval [, 7].
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e Assuming uZ”C(t) # 0 for all t € C,,, frequency function method of
Han-Lin gives the upper bound

H,C
107ty .2
nhH) <G | —ge—" |- (2)
T

e In (2), L2, :=L*(8C¢,, do(t)) and Or is the unit tangential derivative
along 0C,.
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e We h-microlocally decompose the right hand side in (2). Let
Xr € CF(T*OC,) with xr(s,0) =1 for |o| <R+ 1and xz(s,0) =0
for |o| > R+ 2 with R > 1 sufficiently large.
Clearly,

,C ,C ,C
0ruf Il < 100p, (xr)u Lz + 1051 — Opy(xe))uff

(3)
« Since hdrOp,,(xr) € Op,(S*°(T*OC,,)), by L>-boundedness one
estimates the first term on RHS of (3):
H,C H,C
10r0py Oxe)uy "2 4 1h0rOpy Oxe)uy 2. _o(h), @

H,C H,C
e Nz, Mz,



Outline of the proof of Theorem 1

e To estimate the right hand side of (3), we use potential layer
formulas combined with a complex contour deformation
argument to show that

1hdr(1 — Opy(xr))uy iz, = O(e= /"),

Here, Ck > R as R — oc.



Outline of the proof of Theorem 1

e To estimate the right hand side of (3), we use potential layer
formulas combined with a complex contour deformation
argument to show that

1hdr(1 — Opy(xr))uy iz, = O(e= /"),

Here, Ck > R as R — oc.

e Choose the strip S, » = {t € C; —m < Rt < 7, |St| < €} with
Seo.r C Int(Ce,). By Cauchy integral formula, Cauchy-Schwarz and
the goodness condition (x),

6l > C- sup |uiC(e)] > e Co/h,
€0

€0,
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o |t follows that

1hdr(1 — Opy(xe))uy iz,

H,C
e,

_ O(e(_CR'FCO)/h).

o By choosing R sufficiently large in the radial frequency cutoff g,
we get that Cp — Cp > R > 0.
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e We consider here the case where Q2 is a bounded, convex planar
domain with ergodic billiards and that (¢,) is a sequence of QE
interior eigenfunctions. We want to show that
SUPche |6,"%(2)| > /" in the case where H C Q is an interior

curve with k5 > 0. We do this by proving some weighted-L? lower
bounds.

e To sketch the argument, assume for simplicity that 92 is C*° and
convex.

o Let H®(¢y) be a complex Grauert tube of radius ¢y > 0 with
totally-real part H and (., € C(H%(¢); [0, 1]) be a cutoff on the
Grauert tube equal to 1 on the annulus H(e/2) — H®(¢y/3) and
vanishing outside.



Outline of proof of Theorem 2

e The main technical part of the proof of Theorem 2 consists of
showing that under the non-vanishing curvature condition on H
and for eg > 0 small, there is an order-zero semiclassical
pseudodifferential operator

P(h) € Op,(s™°(T"092))

and a weight function

p € C*(supp (o RT)
such that

W72 [ [ e 20O C ()2 ¢ (¢) dedE ~por (P(R)GF, 60,
(5)
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e The potential layer formula gives

of =N, (uf(t) = ¢f(q(1))),
with holomorphic continuation

S = (mNmEDT, (U ()

e Writing the LHS of (5) as a composition, reduced to proving that
P(h) : C*(09) — C>(99Q) with
P(h) = (e™"/"CyriNE (1)) o (77 ¢ iiNT (h))
is h-pseudodifferential.

e It is this point that the curvature assumption sy > 0 on H is used.

o Here, NC(h) is holomorphic continuation of the potential layer
operator N(h) : C*(09) — C>(9Q) and v : Q5 — HE is
restriction.
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e The principal symbol o(P(h)) satisfies
/ o (PR dydy > Chigeg > 0
B*9Q

where y(y,n) = /1 — |n|2.

e Given a quantum ergodic sequence (¢hjk)g‘;1, the boundary
restrictions (qs?,jﬁ)go:l are themselves quantum ergodic
k
(Burqg,Hassell-Zelditch) in the sense that

(PR, B0%) ~opsor / o (P(h))y " dydy. (6)
*o0Q
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o It follows that

h / /(C e 2r0)/h| u;”‘c(t)ﬁ Ceo (t) dtdt (7)

ot / o(P(h))y~ dydy = Cappeg > 0
B*0Q)

e The lower bound in (7) implies that the revised goodness
condition (x) must be satisfied.
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Sketch of proof of Theorem 3

e Both Theorems 1 and 2 have analogues (proved similarily) when
(M, g) is a compact surface with OM = ().

o Potential layer operator N(h) gets replaced by heat operator
W(h) = e~"2s (or wave operator)

e For example, holomorphic continuation of the obvious identity
e V/hg, = e Mg, gives

¢" = /M (uW(h)Cpn = YEW(h)C .

e Main point is to prove that P(h) : C>°(M) — C>*(M) with
P(h) = (e™"/"Ce v W(h)©)" o (e "¢y W()©)

is h-pseudodifferential.
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Questions and Remarks

e (i) Derive an asymptotic density of states formula for complex
zeros of qﬁﬁ’c when H is geodesically curved (in analogy with the
case where H is geodesic (Zelditch (2012)).

e (ii) Upper bounds for n(H, \) for more general (non-ergodic)
domains when H is curved.

e (iii) Polynomial lower bounds for n(H, A\) when H is either an
interior curve or H = 0S.



