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Formal answer: a math debnition

A dynamical systemis a tudld , M, ! )

T : monoid {ime)
M : set Gtate space O:TxM — M
® : map évolution function

satisfying the two following properties

!! (0,X) = X
(T2, ! (t,x)) = ! (T + 12, X)

' x" M and! t{,to" T

In case the state space M is a function space, we
have an infinite dimensional dynamical system !




Examples

. Finite dimensional discrete dynamical systems

2x, for x € [0, %)
2(1—x), forxe[z,1

f(X)=.

1

The TentMap 1

T = N (discrete timg
M = [0, 1] (state spack

T M" M ,
(n,x) " 1 (n,x)= f"(x) 00-*/




Examples

2. Finite dimensional continuous dynamical systems: ODEs

y

axX = f (X)
ave) ¢ dt f1 CYR"
|x(0) = xo "

(¢, xq) : solution of the (IVP)

= R (continuous tim¢

= R" (state spacg

T M" M
(t,mo) — | (t,mo)

—=rX—-V—XZ
dt :
dz
= xy — bz
dt

Lorenz equations
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3. Infinite dimensional continuous dynamical systems

(a) Partial differential equations

Cahn-Hilliard equation

! (—V! u—u—l—u?’) — 0

Q@ R",n=1,2,3

T =[0, c0) (continuous timg
M = L2(Q) (inbnite dimensional state spce
LTI M M

(t,ug) " Y t,ug) (semigroup
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3. Infinite dimensional continuous dynamical systems

(b) Delay differential equations y!(t) = F (y(t), y(t | | ))

T =[0, 0o) (continuous timé
M = CJ[! !, 0] (inbnite dimensional state space
!

T M" M
(t,yo) " !( t,yo) (semigroup

I( t,Yo)

__/

ex: y/(t)= | 2y(t! DL+ y(b)]
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In practice, how to study a dynamical system?

A standard approach is to get insight from numerical simulations to formulate ne
conjectures, and then attempt to prove the conjectures using pure mathematical
techniques only. Actually, this strong dichotomy need not exist in the context of
dynamical systems, as the strength of numerical analysis and functional analysis
be combined to prove, in sigorous mathematical sense, the existence of
equilibria, periodic solutions, connecting orbits.... and even chaotic dynamics !

Rigorous computations

The goal of rigorous computations is to construct algorithms that
provide an approximate solution to the problem together with
precise and possibly efficient bounds within which the exact solution
is guaranteed to exist in the mathematically rigorous sense.
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Often impossible to compute exactly !




O

Alternative: find small balls in which it is demonstrated (in a
mathematically rigorous sense) that a unique solution exists.




Rigorous Computations
(Ingredients)

1. Smoothness of the solutions

2. Banach space of algebraically decaying sequences

3. Finite dimensional Galerkin projection

4. Bounds on the truncation error terms (Analytic estimates)
5. Fixed point theory, Uniform contraction principle

6. Numerical analysis (continuation, Fast Fourier transform)

/. Interval Arithmetic




Rigorous Computations
(Ingredients)

1. Smoothness of the solutions

2. Banach space of algebraically decaying sequences

3. Finite dimensional Galerkin projection

4. Bounds on the truncation error terms (Analytic estimates)
5. Fixed point theory, Uniform contraction principle

6. Numerical analysis¢ntinuation Fast Fourier transform)

7. Interval Arithmetic b predictor G

Corrector

Continuation 1]

(Predictor-Corrector Algorithm)
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Rigorous Computations

(Differential Equation)

F(u,!)=0 S"efﬁmet“‘)df (x,1)=0

X :modes
I parameter

Knowledge $ X1 15= (X )k :"X"g= sup{" X" K} < #

about regularity

Consider® such that (M) (g, ! o) !

f(x,')=0"r T (X)= X

¢

T o131 13
T (x)=x! Jf(x,!)

O .|Galerkin approximation

Newton-like operator

at ¥

@ The chances of contracting a small
\a set B around® depends on the

11 ' '
J1 D,f (8! ) BN magnitude of the eigenvalueslof .
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Q: How to Pnd a balBg4(r) such that
T,:Bg(r) ! Bg(r) is a contractiof?

Be(r) =& + Ball of radius r
centered at O

in the spacé °

A: |Radii polynomials| { P« ()} :upper bounds satisfying

r

| T, (@) ! wﬁki + sup | DyT, (®+ b)cﬁki! — " pk(r)
b,c! B (r) LK

Lemma: If there existg > 0 such that(r) < 0 for all |
then there is a uniqué! Bg(r) sh(®!)=0

proofBanach bPxed point theorem.




Analytic estimates to construct the polynomials

Supposethere exist A1, As, ..., A, sud that for everyj " {1,...,n} and every

k" Z9, we have that
18
v (tem sk )

Then, for any k " Z9, we get that

% (
%l # % 'n #(n)

c®) ¢ 454% ¢ R & A Sk
j=1 :

1) sz (n)| w

(
Ck1 aaaCy n

M. Gameiro & J.-P. L.  Analytic estimates and rigorous continuation for equilibria of
higher-dimensional PDEs. Journal of Differential Equations  , 2010.




” : - Verifying the uniform
Radii polynomials| { P (I ! 1)} :b contl};;\ctgiJon principle.

l r> 0 S.t. pe(r,! 1) <0,k =" T :uniform contraction or!o,!o+! ]

The rigorous computational method

w+ | X
BX! (I’)
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Gluing the
smooth pieces

{(X,!Vs)\f(x,!!)lz(), ] [!oy,zlz]}

e Global smooth curves of solutions.
e | ocal uniqueness by the Banach bxed point theorem.
¢ Proof of non existence of secondary bifurcations along the curves.
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e Initial value problems of ODEs (Chebyshev in time)
e Boundary value problems of ODEs (Chebyshev in time)
¢ Periodic solutions of ODEs (Fourier in time)

e Connecting orbits of ODEs (Chebyshev in time + parameterization
of invariant manifolds using power series)
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¢ Periodic solutions of delay differential equations (Fourier in time)
e Minimizers of action functionals (Chebyshev in time)
¢ Periodic solutions of PDEs (Fourier in space and in time)
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1. Homoclinic and heteroclinic orbits
of ODEs (traveling waves)

I
= X

homoclinic orbit

xt E X’
heteroclinic orbit
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Rigorous Computations
Connecting Orbits

Compute a set of equilibria.

Local representation of the

invariant manifolds.
Parameterization method

Connecting orbits between
the equilibria?
Boundary value problem

Chebyshev series
Radii polynomials




2. Equilibria of PDEs

Cahn-Hilliard 3D

"u=!1 L u+u! ud), in" 3 | |
u o ij =101, 1.001]! 0. 1.002]
#'_: "_:O,

In In

0.5689
!0.341 3

- 10.1137




Systems of reaction-diffusion PDEs

! Yo Y% &
polix=d x+ (" a(x+y)" biz)x+ 5oy 1° X
# 0)\'%
fly=(d+#N)Ly+(r" a(x+y)" hz)y” : y 1°

$ liz=dl z+(r2" bp(x+y)" axz)z.

z

W
Z n
N




Systems of reaction-diffusion PDEs

#

fly=(d+#N)Ly+(r" a(x+y)" hz)y” : y 1°

i

L= dl X+ (1" a(x+y) " biZ)x sy 17

Y% Y% &

o)\'%

z

W
Z n
N

liz=dl z+(r2" bp(x+y)" axz)z.

11 co-existing stead
states atd = 0.006




3. Periodic solutions of delay equations

y'(t) = F (y(t),y(t! '1),...,y(t! 1q),

f(x,1)=0

| | | J
2.5 3 : 3.5 4

y'(t)= U y(t! ")+ y(t! "2)][1+ y(t)],




I I I
0.05 0.1 0.15 0.2 0.25

yi(t) = | [2.425y(t! 11)+2.425(t! 15)+ "y(t! 13)][1+ y()],




4. Minimizers of action functionals

Ginzburg-Landau energy: a model of superconductivity

21d;!dd"'2('2' 2)+ 2L )2

QIEWYVIW XLI HIRWM
KRIXMG %2IPH TSXIRX

2,2 ! 2#
G=G(l,a)= +21“a“+2(a ! hg)” dt.

I >0
a OQFE
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4. Minimizers of action functionals

Ginzburg-Landau energy: a model of superconductivity

1 9" 2(1 )2 .. #
G=G(,a)= >d 12(121 2)+ (,,2) +21%a°+2(a ! hg)? dt.
I d
1 > 0 QIEWYVIW XLI HIRWM
a QEKRIXMG Y%IPH '_]':SO_)§’J}|:R4X

*  Bifurcation
Asym
Sym

Parameters —
d WM~M SJ XLI WYTIVGES

he I\XIVREP QEKRIXMG os

+MR"FYVK OERF
!(d)O.G-

Co-existence of
nontrivial solutions
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5. Periodic orbits of PDEs

Kuramoto-Sivashinski equation

u(t,y) = u(t,y +2%), u(t!y)="u(y)

(KS)

Popular model to analyze weak turbulence
or spatiotemporal chaos

A common approach to study time-periodic solutions of (KS) is to
construct a PoincarZ map via numerical integration of the 3ow, and to
look for Pxed points of this map on a prescribed PoincarZ section.

Christiansen, Cvitanovic, Lan, Johnson, Jolly, Kevrekidis, Putkaradze, ...

Goal: propose an method (based on spectral methods and fixed point
theory) to rigorously compute time periodic solutions of PDEs.
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using the Fourier expansion

ut,y)= o'k,  where fork = (ky, ky) ! Z2, 1, = gktgkay,
k! Z2

L,  k=(0,0)
Ak K

b =(ki,k2), ki E0 and k; EO.

def

ax £ Re(c) and b € Im(c).

Plugging the space-time Fourier expansion into (KS) results in solving, for allk # Z2

def

he & pec $ 2 iK5CG1C2 = MG $ Kol

C1C2 = O,
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Letting L = % the time-periodic solutions of periodp of (KS) can be expande
using the Fourier expansion

ut,y)= o'k,  where fork = (ky, ky) ! Z2, 1, = gktgkay,
k! Z2

L, k=(0,0)

op D g k=(0,ko), kpEO
Ef . k=(Ky, k), ki EO and k, EO.

def

ax £ Re(c) and b € Im(c).

Plugging the space-time Fourier expansion into (KS) results in solving, for allk # Z2

he © e $ 2 iK5CG1C2 = MG $ Kol C1G2 =0,
Ki+k2=k Kl+k2=k

where g = Mk, ko < kL + 'kg$ k%

def & 4 2| :

f € Re(he)= #ki! k3 a! (kiL)be + 2k, a.1h:,
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def

& ' .
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ki+k2=k




(0,0)
(0,k»), ko EO

=(ky,ks), ki EO0 and k, EO.

Debning

I'={0,0}!{ k=(0,kz) [ ke =0}!{ k =(ks,kz) | ke =0and kz =0},

one can identify X = {Xx}«ku .
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Lemma. Finding time-periodic solutions u(t,y) of (KS) such that " =0
IS equivalent to bPnd x such that F (x) = 0.




L, k =(0,0)

ak . k=(Kky, ko), ky EO and k, EO.

Debning
I ={0,0}!{ k=(0,ko) | ko =0}!{ k =(ki,kz) | ke =0 and kz =0},

one can identify X = {Xx}«ku .

Finally, let us debneF = {F «}«x:| component-wise by

k =(0,0)
k:(o,kz), kz#o

k = (ki ko), ki #0 and k, #0.

Lemma. Finding time-periodic setgtiors u(t,y) of (KS) such that " =0
IS equivalent to Pnd x such th w

To solve rigorously
in a Banach space




The Banach space

Debne the one-dimensional weight$ ¢ by
!
1, ifk=0
k|®, ifk$O0.
Using the 1-d weights, debne the 2-dimensional weights, givek = (ki,ky) ! Z2,

| S % | s1) s2
-k -kl- k2-

They are used to debPne the norm

W% =sup ! g[xl-
k! I

where |Xk |+ Is the sup norm of the vectorxy, which is one or two dimensional, depending
on k. Debne the Banach space

X3={x| %%< &},

consisting of sequences with algebraically decaying tails according to the rate




The Banach space

Debne the one-dimensional weight$ ¢ by
!

1, ifk=0

k|®, ifk$O0.

Using the 1-d weights, debne the 2-dimensional weights, givek = (ki,ky) ! Z2,

| S déf | S11 S2
-k -kln k2-

They are used to debPne the norm

W% =sup ! g[xl-
k! I

where |Xk |+ Is the sup norm of the vectorxy, which is one or two dimensional, depending

on k. Debne the Banach space Banach algebra

under discrete
X% ={x | %% <&>/) convolution

consisting of sequences with algebraically decaying tails according to the rate




For sake of simplicity of the presentation, fork = ( kq, ks) with ky # 0 or ky # 0,
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For sake of simplicity of the presentation, fork = ( kq, ks) with k; # 0 or ky # O,

#AL K3 kL »
L #kdt kg 8N4 Roke(®L) =

Re(#,L) £

#k5 ! k3,

2ak1 sz

def
Nk(X) B I aklakz + h(lh(z

k14k2=k

so that one has that
sz(xa V) — Rk(ya L)xk + kZNk(x)
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Re(#,L) £

#k5 ! k3,
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def
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so that one has that
Fk(xv V) — Rk(ya L)xk + k2Nkz(aj)

Lemma. (Bootstrap) Consider a bPxed decay rates > (1,1) and assume the existence ol
M > (0,0) such that Rx(!,L) is invertible for all |k| > M . If there exists x € X*® such
that F(x) =0, then x € X 30 for all sg > (1,1).

Hence, we focus our attention on looking for zeros of F
within a Banach space with a fixed decay rate s>(l,l).
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Consider a Galerkin projection of F of dimensionn = n(m) T 2myimo % 2mq Yomy + 2
given by F(m) £ (g (Ml .o whereF(™):R"' R", is given component-wise by

F™M (e ) € Fe(ze, 0. ), k! Fn.

Consider X such that F(M)(&:_) ( 0. Let ® £ (&g, ,0_) ! XS. Assume that the
Jacobian matrix DF (™) (& ) is non-singular and let A, an approximation for its inverse.

Debne the action of the linear operatorA on x = {zx}k#) component-wise by
* ( )
( ) F An(ze,) , ifk! Fy
A(z) = LK
< R, P Ly, iR F,.

T(x) = r%AF (). | (Newton-like operator)

Lemma. Consider a Galerkin projection dimensionm = (mq,my) and let s = (s1,Sy) >
(1,1) a decay rate. The solutions ofF =0 are in one to one correspondence with the bxel

points of T. Also, one has thatT : X°®' XS5,
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The rigorous continuation method is based on the notion of the radii polynomials, which
provide a numerically & cient way to verify that the operator T is a contraction on a small
closed ballB (&, r) centered at the numerical approximation X in XS,

Ingredients to construct the radii polynomials

¥ Convolution estimates
¥lInterval arithmetic
¥Fast Fourier transform

The closed ball of radiusr in X *, centered at the origin, is given by

1] #
w 1
B(r) = =S
k! | "kt kK

whered(k) =1 if k =(0,ky) and d(k) = 2 otherwise. The closed ball of radiusr centered
at ® is then

B(&7r) £ &+ B(r).
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Consider now boundsY;, and Z; for all k " |, such that

[T@)! 8], # Y.

sup |[DT(% + xl)xz}k‘ # Z.(r).

X1,X2! B(r)

def

Lemma. If there exists anr > 0 such that Y + Z$, < r, with Y = {Yi}w | and
Z = {Zi}w, then T is a contraction mapping on B(,r) with contraction constant at
most $Y + Z$, /r < 1. Furthermore, there is a uniquex" B(®,r) such that F (£) = 0.

Debne thefinite radii polynomials {pg(7) }xr F,, DY

pr(r) = Yi+ Zi(r) — %Hd(k)a
Wi

and the tail radii polynomaial by asymptotic bound

i / for Z,in X°
pn(r) = — 1

Lemma. If there exists r > 0 such that px(r) < 0 for all kK € Fy and Py (r) < 0, then
there is a unique X € B (X,r) such that F(X) = 0.
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Results

Kuramoto-Sivashinski equation

(KS) u(t,y) = u(t,y +2"), u(t,!y)="1u(ty)

m = (77,15), M = (229,43), s = (3,

/\ \

# of time Fourier modesl # of space Fourier models decay rates

v € {.127,.12707 .12715.12725.12739 .12756 .12777

d(k)

3x 104 3x 104

X—EB(ﬁ,r):&"'H T 13/2,.3/2 " 1.3/2,.3/2
per | KPR
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