Hamilton-Jacobi equation and non-holonomic dynamics

Why use algebroid theory to describe the H -J equation?

Edith Padrón
University of La Laguna, Spain
mepadron@ull.es

Focus Program on Geometry, Mechanics and Dynamics and the Legacy of Jerry Marsden

Advances about a formalism which allows to describe Hamilton-Jacobi equation for a great variety of mechanical systems

- Unconstrained systems (Classical hamiltonian systems, reduced hamiltonian systems,.....)
- nonholonomic systems subjected to linear or affine constraints
- dissipative systems subjected to external forces
- time-dependent mechanical systems
-

D Iglesias, M de León, D Martín de Diego (2008)
T Ohsawa, A Bloch (2009)
M de León, JC Marrero, D Martín de Diego (2010)
J F Carinena, X Gracia, G Marmo, E Martínez, M C Munoz-Lecanda, N Román-Roy (2010)
P Balseiro, JC Marrero, D Martín de Diego, E P (2010)
M Leok, T Ohsawa, D Sosa (2011)

INGREDIENTS

- Q configuration space (manifold) $\left(q^{i}\right)$
- $\tau_{Q}^{*}: T^{*} Q \rightarrow Q$ phase space of momenta $\left(q^{i}, p_{i}\right)$
- $H: T^{*} Q \rightarrow \mathbb{R}$ Hamiltonian function $H\left(q^{i}, p_{i}\right)$
\Downarrow

$$
X_{H} \in \mathfrak{X}\left(T^{*} Q\right) \text { hamiltonian vector field } \quad X_{H}=\frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q^{i}}-\frac{\partial H}{\partial q^{\prime}} \frac{\partial}{\partial p_{i}}
$$

- $W: Q \rightarrow \mathbb{R}$ the characteristic function $W\left(q^{i}\right)$

Classical Hamilton-Jacobi Theorem

The following sentences are equivalent
(1) For every $c: I \rightarrow Q, c(t)=\left(q^{i}(t)\right)$ integral curve of

$$
X_{H}^{W}=T \tau_{Q}^{*} \circ X_{H} \circ d W \in \mathfrak{X}(Q) \quad \frac{d q^{i}}{d t}=\frac{\partial H}{\partial p_{i}}\left(q(t), \frac{\partial W}{\partial q}(q(t))\right.
$$

\Downarrow
$d W \circ c: I \rightarrow T^{*} Q$ is an integral curve of X_{H}
(2) W satisfies Hamilton-Jacobi equation

$$
H \circ d W=\text { constant }, \quad H\left(q^{i}, \frac{\partial W}{\partial q^{i}}\right)=\text { constant }
$$

Classical Hamilton-Jacobi equation

Let $\lambda \in \Omega^{1}(Q)$ be a closed 1-form $(d \lambda=0)$

Theorem

$c: I \rightarrow Q$ integral curve of $X_{H}^{\lambda} \Rightarrow \lambda \circ c$ integral curve of X_{H}, I
X_{H} and X_{H}^{λ} are λ-related (i.e. $\left.T \lambda\left(X_{H}^{\lambda}\right)=X_{H}\right)$. ॥
$d(H \circ \lambda)=0$ Hamilton-Jacobi equation

Tools

$$
T Q \xrightarrow{\tau_{T Q}} Q \rightsquigarrow \text { vector bundle } \tau_{D}: D \rightarrow Q \text { over a manifold } Q
$$

The canonical symplectic 2-form ω_{Q} in $T^{*} Q \simeq$ The canonical Poisson bracket $\{\cdot, \cdot\}_{T^{*} Q}$ on $T^{*} Q \rightsquigarrow$ a linear Poisson bracket $\{\cdot, \cdot\}_{D^{*}}$ on D^{*}

A Hamiltonian function $H: T^{*} Q \longrightarrow \mathbb{R} \rightsquigarrow$ a function $H: D^{*} \rightarrow Q$

A section $\lambda: Q \longrightarrow T^{*} Q$ such that $d \lambda=0 \rightsquigarrow$ a section $\lambda \in \Gamma\left(D^{*}\right)$ which is closed with respect to a certain differential

INGREDIENTS

- Q manifold (configuration space)
- D a distribution on Q (constraint distribution)
- g a Riemannian metric on Q
- $V: Q \rightarrow \mathbb{R}$ a real function on Q (Potential) \Downarrow

$$
L: T Q \rightarrow \mathbb{R}, \quad L(v)=\frac{1}{2} g(v, v)-V(\tau(v))
$$

$\mathbb{F} L: T Q \rightarrow T^{*} Q$ Legendre transformation
$\mathbb{F} L \equiv$ The vector bundle isomorphism induced by the metric g
\square
$\bar{D}=\mathbb{F} L(D)$ the constraint Hamiltonian subbundle of $T^{*} Q$

- H: $T^{*} Q \rightarrow \mathbb{R}$ Hamiltonian function

$$
\stackrel{\Downarrow}{\bar{X}_{H} \in \mathfrak{X}\left(D^{*}\right)} \quad \bar{X}_{H}=T i_{D}^{*} \circ X_{H} \circ P^{*}
$$

$$
T Q=D \oplus D^{\perp} \quad P: T Q \rightarrow D, \quad P^{*}: D^{*} \rightarrow T^{*} Q
$$

$$
i_{D}: D \rightarrow T Q, \quad i_{D}^{*}: T^{*} Q \rightarrow D^{*} \quad T i_{D}^{*}: T\left(T^{*} Q\right) \rightarrow T D^{*}
$$

$\mathcal{I}\left(D^{0}\right) \equiv$ the algebraic ideal generated by D^{0}

Hamilton-Jacobi Theorem for nonholonomic systems

Let $\lambda \in \Omega^{1}(Q)$ taking values into \bar{D} and satisfying $d \lambda \in \mathcal{I}\left(D^{\circ}\right)$. Then the following conditions are equivalent:
(1) For every integral curve $c: \mathbb{R} \rightarrow Q$ of

$$
X_{H}^{\lambda}=\left(T \pi_{Q}\right) \circ X_{H} \circ \lambda \in \mathfrak{X}(Q)
$$

then $\lambda \circ c$ is an integral curve of \bar{X}_{H}.
(2) $d(H \circ \lambda)(Q) \subset D^{\circ}$
D. Iglesias, M. de León, D. Martín de Diego 2008

Tools

$$
D \xrightarrow{\tau_{D}} Q \rightsquigarrow \tau_{D}: D \rightarrow Q \text { vector bundle over a manifold } Q
$$

The nonholonomic bracket on $D^{*} \rightsquigarrow$ an almost linear Poisson $\{\cdot, \cdot\}_{D^{*}}$ bracket of functions on D^{*}, i.e., in general, does not satisfy Jacobi identity

$$
\begin{gathered}
\{F, G\}_{D^{*}}=\left\{F \circ i_{D}^{*}, G \circ i_{D}^{*}\right\} \circ P^{*}, \quad F, G \in C^{\infty}\left(D^{*}\right) \\
T Q=D \oplus D^{\perp} \quad P: T Q \rightarrow D, \quad P^{*}: D^{*} \rightarrow T^{*} Q \\
i_{D}: D \rightarrow T Q, \quad i_{D}^{*}: T^{*} Q \rightarrow D^{*}
\end{gathered}
$$

A Hamiltonian function $H: T^{*} Q \longrightarrow \mathbb{R} \Rightarrow \mathcal{H}=H \circ P^{*}: D^{*} \longrightarrow \mathbb{R} \rightsquigarrow$ function $\mathcal{H}: D^{*} \longrightarrow \mathbb{R}$

$$
\bar{X}_{H} \in \mathfrak{X}\left(D^{*}\right) \bar{X}_{H}(F)=X_{\mathcal{H}}(F)=\{F, \mathcal{H}\}_{D^{*}}
$$

A section $\lambda: Q \longrightarrow T^{*} Q$ taking values on \bar{D} such that $d \lambda(Q) \subset \mathcal{I}\left(D^{\circ}\right) \rightsquigarrow A$ section $\lambda \in \Gamma\left(D^{*}\right) \ldots$ and is it closed with respect to a certain differential operator?

INGREDIENTS:

- $\tau_{D}: D \longrightarrow Q$ a vector bundle \Downarrow

$$
\tau_{D^{*}}: D^{*} \longrightarrow Q \text { its dual vector bundle }
$$

- A linear almost Poisson bracket ${ }^{1}\{\cdot, \cdot\}_{D^{*}}$ on D^{*}
\Downarrow
$d^{D}: \Gamma\left(\wedge^{k} D^{*}\right) \rightarrow \Gamma\left(\wedge^{k+1} D^{*}\right)$ differential operator
${ }^{1}$ linear means that the bracket of two linear functions is a linear function
$\tau_{D}: D \rightarrow Q$ vector bundle with linear almost Poisson bracket $\{\cdot, \cdot\}_{D^{*}}$ on $D^{*} \rightarrow Q$ $\left\{\hat{X}: D^{*} \rightarrow \mathbb{R} / \hat{X}\right.$ is linear $\} \Longleftrightarrow \Gamma(D)=\{X: Q \rightarrow D / X$ is a section of $\tau\}$

What is the corresponding structure on D ?
\Downarrow
The bracket of two linear functions with respect to $D^{*} \rightarrow Q$ is again linear
The bracket on the space of sections of D
$\llbracket \cdot, \cdot \rrbracket_{D}: \Gamma(D) \times \Gamma(D) \rightarrow \Gamma(D)$ skew-symmetric

$$
\llbracket \widehat{X, Y} \rrbracket_{D}=-\{\hat{X}, \hat{Y}\}_{D^{*}}
$$

The bracket of a linear function and a basic function $f \circ \tau_{D^{*}}$ is a basic function
The vector bundle morphism between D and TQ
$\rho_{D}: D \rightarrow T Q$ (anchor map) $\Rightarrow \rho_{D}: \Gamma(D) \rightarrow \mathfrak{X}(Q)$

$$
\rho_{D}(X)(f) \circ \tau_{D^{*}}=\left\{\hat{X}, f \circ \tau_{D^{*}}\right\}_{D^{*}}
$$

$$
\llbracket X, f Y \rrbracket_{D}=f \llbracket X, Y \rrbracket_{D}+\rho_{D}(X)(f) Y, \quad \forall X, Y \in \Gamma(D), \quad \forall f \in C^{\infty}(Q)
$$

$\left\{\{\cdot, \cdot\}_{D^{*}}\right.$ linear almost Poisson bracket on $\left.D^{*}\right\}$
 \Uparrow
 $\left\{\left(\llbracket \cdot, \cdot \rrbracket_{D}, \rho_{D}\right)\right.$ skew-symmetric algebroid structure on $\left.D\right\}$

$$
\begin{aligned}
& \qquad \begin{aligned}
& d^{D}: \Gamma\left(\Lambda^{k} D^{*}\right) \rightarrow \Gamma\left(\Lambda^{k+1} D^{*}\right) \\
& d^{D} \Omega\left(\xi_{0}, \xi_{1}, \ldots, \xi_{k}\right)= \sum_{i=0}^{k}(-1)^{i} \rho_{D}\left(\xi_{i}\right)\left(\Omega\left(\xi_{0}, \ldots, \widetilde{\xi}_{i}, \ldots, \xi_{k}\right)\right) \\
&+\sum_{i<j} \Omega\left(\llbracket \xi_{i}, \xi_{j} \rrbracket_{D}, \xi_{0}, \ldots, \widetilde{\xi}_{i}, \ldots, \widetilde{\xi}_{j}, \ldots, \xi_{k}\right) \\
& \text { where } \xi_{0}, \xi_{1}, \ldots, \xi_{k} \in \Gamma(D) \\
&\left(d^{D}\right)^{2} \neq 0
\end{aligned}
\end{aligned}
$$

- $\tau_{D}: D \rightarrow Q$ vector bundle
- $\{\cdot, \cdot\}_{D^{*}}$ linear almost Poisson bracket on D^{*}
- $\mathcal{H}: D^{*} \rightarrow \mathbb{R}$ Hamiltonian function $\Rightarrow X_{\mathcal{H}}=\{\cdot, H\}_{D^{*}} \in \mathfrak{X}\left(D^{*}\right)$
- $\lambda: Q \longrightarrow D^{*}$ be a section of $\tau_{D^{*}}: D^{*} \longrightarrow Q$

$$
X_{\mathcal{H}}^{\lambda}=T_{\tau_{D^{*}} \circ X_{\mathcal{H}} \circ \lambda}
$$

$W: Q \rightarrow \mathbb{R}, \quad d^{D} W$ is not closed $d^{D}\left(d^{D} W\right) \neq 0$

- $\lambda \in \Gamma\left(D^{*}\right)$

$$
\begin{gathered}
\Upsilon^{\lambda}: \Omega^{1}\left(D^{*}\right) \rightarrow \Gamma(D), \quad \eta\left(\Upsilon^{\lambda}(\beta)\right)=\beta\left(\eta^{\vee}\right) \circ \lambda \quad \beta \in \Omega^{1}\left(D^{*}\right), \eta \in \Gamma\left(D^{*}\right) \\
\eta^{\vee} \in \mathfrak{X}\left(D^{*}\right) \\
\delta_{\mathcal{H}}^{\lambda} \in \Gamma(D)=\Upsilon^{\lambda}(d \mathcal{H})
\end{gathered}
$$

Hamilton-Jacobi Theorem

$c: I \rightarrow Q$ integral curve of $X_{\mathcal{H}}^{\lambda} \in \mathfrak{X}(Q) \Rightarrow \lambda \circ c$ integral curve of $X_{\mathcal{H}} \in \Gamma\left(D^{*}\right)$

$$
i_{\delta_{\mathcal{H}}^{\lambda}} d^{D} \lambda+d^{D}(\mathcal{H} \circ \lambda)=0
$$

M de León, JC Marrero, D Martín de Diego (2010)

The general distribution $\widetilde{D}=\rho_{D}(D)$ bracket generating ॥
$\left\{X_{k},\left[X_{k}, X_{l}\right],\left[X_{i},\left[X_{k}, X_{l}\right] \ldots / X_{j} \in \widetilde{D}\right\}\right.$ spans $\mathfrak{X}(Q)$
Lie $^{\infty}(\widetilde{D})$ the smallest Lie subalgebra of $\mathfrak{X}(Q)$ containing \widetilde{D}

$$
d^{D}(\mathcal{H} \circ \lambda)=0
$$

$$
\Uparrow
$$

$\mathcal{H} \circ \lambda$ is constant on the leaves of the foliation $\operatorname{Lie}^{\infty}(\widetilde{D})$

- $\mathfrak{g} \rightarrow\{x\}$ with Lie-Poisson structure on \mathfrak{g}^{*}. Thus, if $D=\mathfrak{h}$ is a subspace of \mathfrak{g}, we obtain that the nonholonomic bracket (nonholonomic Lie-Poisson bracket)
- A principal G-bundle $\pi: Q \rightarrow Q / G$

$$
\tau_{T Q}: T Q \rightarrow Q \text { is equivariant }
$$

\Downarrow

$$
T Q / G \rightarrow Q / G
$$

The linear Poisson structure on $\left(T^{*} Q\right) / G$ is characterized by the following condition: the canonical projection $T^{*} Q \rightarrow T^{*} Q / G$ is a Poisson epimorphism

the Hamilton-Poincare bracket on $T^{*} Q / G$

D a G-invariant distribution on Q
D / G is a vector subbundle of $T Q / G$
\Downarrow
the non-holonomic Hamilton-Poincaré bracket on D^{*} / G

INGREDIENTS

- $\pi: Q \rightarrow \mathbb{R}$ fibration (configuration space) $\quad \pi\left(q^{i}, t\right) \rightarrow t$

$$
\eta=\pi^{*}(d t) \in \Omega^{1}(Q) \quad \eta=d t
$$

- phase space of momenta
- extended $T^{*} Q$
- restricted $V^{*} \pi \quad V \pi=\{v \in T Q / \eta(v)=1\}$

Principal \mathbb{R}-bundle $\mu: T^{*} Q \rightarrow V^{*} \pi \quad \mu\left(q^{i}, t, p_{i}, p_{t}\right) \rightarrow\left(q^{i}, p_{i}, t\right)$

- $h: V^{*} \pi \rightarrow T^{*} Q$ Hamiltonian section of $\mu \quad h\left(q^{i} p_{i}, t\right) \rightarrow\left(q^{i}, p_{i}, t,-H\left(q^{i}, p_{i}, t\right)\right)$

$$
\begin{gathered}
F_{h}: T^{*} Q \rightarrow \mathbb{R} \quad F_{h}\left(q^{i}, t, p_{i}, p_{t}\right) \rightarrow H\left(q^{i}, p_{i}, t\right)+p_{t} \\
\mu(\alpha-h \mu(\alpha))=0 \Longrightarrow \alpha-h \mu(\alpha)=F_{h}(\alpha) \eta \\
R_{h} \in \mathfrak{X}\left(V^{*} \pi\right) \quad R_{h}(F) \circ \mu=\left\{F \circ \mu, F_{h}\right\} \quad R_{h}=\frac{\partial}{\partial t}+\frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q^{i}}-\frac{\partial H}{\partial q^{i}} \frac{\partial}{\partial p_{i}}
\end{gathered}
$$

- $W: Q \rightarrow \mathbb{R}$ the characteristic function $W\left(q^{i}, t\right)$

$$
Q=M \times \mathbb{R}
$$

$$
\begin{gathered}
h: V^{*} p i=T^{*} M \times \mathbb{R} \rightarrow T^{*} Q=T^{*}(M \times \mathbb{R}), \quad h\left(q^{i}, p_{i}, t\right) \rightarrow\left(q^{i}, t, p_{i},-H\left(q^{i}, p_{i}, t\right)\right) \\
H: V^{*} \pi: T^{*} M \times \mathbb{R} \rightarrow \mathbb{R}
\end{gathered}
$$

Hamilton-Jacobi Theorem for time-dependent Mechanics

The following sentences are equivalent
(1) For every curve $c: I \rightarrow Q$ such that

$$
c^{\prime}(t)=T \tau_{Q}^{*} \circ X_{H_{t}}\left(d W_{t}(c(t))\right)
$$

\Downarrow
$d W \circ c: I \rightarrow T^{*} Q$ is an integral curve of X_{H}.
(2) W satisfies Hamilton-Jacobi equation

$$
H_{t} \circ d W_{t}+\frac{\partial W}{\partial t}=\text { constant }
$$

Tools

$\tau_{Q}: T Q \longrightarrow Q, \rightsquigarrow \tau_{D}: D \rightarrow Q$ a vector bundle with a almost linear Poisson bracket $\{\cdot, \cdot\}_{D^{*}}$
$\eta \in \Gamma\left(T^{*} Q\right)$ such that $d \eta=0$ and $\eta(q) \neq 0 \quad \forall q \in Q \rightsquigarrow$ a section $\phi: Q \rightarrow D^{*}$ not null in everywhere such that $d^{D} \phi=0$

$$
\Downarrow
$$

$$
\begin{gathered}
\hat{\eta}: T Q \rightarrow \mathbb{R} \text { linear function } \rightsquigarrow \hat{\phi}: D \rightarrow \mathbb{R} \text { linear function } \\
\hat{\eta}^{-1}(0)=V \pi \quad \mu: T^{*} Q \rightarrow\left(\hat{\eta}^{-1}(0)\right)^{*} \rightsquigarrow \hat{\phi}^{-1}(0)=V \quad \mu: D^{*} \rightarrow V^{*}
\end{gathered}
$$

$\{\cdot, \cdot\}_{V}^{*}$ linear almost Poisson braket such that μ an almost Poisson morphim

A hamiltonian section $h:\left(\widehat{\phi}^{-1}(0)\right)^{*} \longrightarrow T^{*} Q \rightsquigarrow$ A section $h: V^{*} \rightarrow D^{*}$ of μ

$$
F_{h}: D^{*} \rightarrow \mathbb{R}
$$

$$
\Upsilon^{\lambda}: \Omega^{1}\left(D^{*}\right) \rightarrow \Gamma(D), \quad \delta_{H}^{\lambda}=\Upsilon^{\lambda}\left(d F_{h}\right) \in \Gamma(D)
$$

Hamilton-Jacobi Theorem

$$
\begin{gathered}
c: I \rightarrow Q \text { integral curve of } R_{h}^{\lambda}=T \tau_{V^{*}} \circ R_{h} \circ \mu \circ \lambda \in \mathfrak{X}(Q) \\
\Rightarrow \mu \circ \lambda \circ c \text { integral curve of } R_{h} \in \mathfrak{X}\left(V^{*}\right) \\
\Uparrow \\
\mu \circ i_{\delta_{h}}^{\lambda} d^{D} \lambda+d^{V}\left(F_{h} \circ \lambda\right)=0
\end{gathered}
$$

EXTERNAL FORCES

- The vector bundle: $T Q \times \mathbb{R} \rightarrow Q$
- The linear almost Poisson bracket:
$\mathcal{F}: T Q \rightarrow T Q$ vector bundle morphism $\equiv \beta \in \Omega^{1}(T Q)$ semibasic homogeneous of degree 1

$$
\begin{gathered}
\Pi_{T * Q \times \mathbb{R}}=\Pi_{T^{*} Q}+\frac{\partial}{\partial t} \wedge Y_{\mathcal{F}} \\
Y_{\mathcal{F}} \in \mathfrak{X}\left(T^{*} Q\right) \quad Y_{\mathcal{F}}(\alpha)=\mathcal{F}^{*}(\alpha)_{\alpha}^{v} \in T_{\alpha}\left(T^{*} Q\right)
\end{gathered}
$$

- $R_{h}=X_{H}-Y_{\mathcal{F}} \in \mathfrak{X}\left(T^{*} Q\right)$
- The 1 -cocyple $\phi=(0,1) \in \Gamma\left(T^{*} Q \times \mathbb{R}\right) \cong C^{\infty}(Q) \times \mathfrak{X}(Q) \Rightarrow V=T Q$
- $\mu=p_{1}: T^{*} Q \times \mathbb{R} \rightarrow T^{*} Q$
- The Hamiltonian section:
$H: T^{*} Q \rightarrow \mathbb{R} \Rightarrow h: T^{*} Q \rightarrow T^{*} Q \times \mathbb{R}, \quad h(\beta)=(\beta,-H(\beta))$

Hamilton-Jacobi equation for Mechanical systems with linear EXTERNAL FORCES

$$
\Upsilon^{\lambda}: \Omega^{1}\left(T^{*} Q\right) \rightarrow \mathfrak{X}(Q), \quad \delta_{H}^{\lambda}=\Upsilon(d H)
$$

Hamilton-Jacobi Theorem

$\lambda \in \Omega^{1}(Q)$

$$
\begin{gathered}
c: I \rightarrow Q \text { integral curve of } R_{h}^{\lambda}=T \tau_{T^{*} Q} \circ X_{H} \circ \lambda \in \mathfrak{X}(Q) \\
\Rightarrow \lambda \circ c \text { integral curve of } X_{H}-Y_{\mathcal{F}} \in \mathfrak{X}\left(T^{*} Q\right) \\
\hat{\mathbb{}} \\
i_{\delta_{H}^{\lambda}} d \lambda+d(H \circ \lambda)+Y_{\mathcal{F}}(\lambda)=0
\end{gathered}
$$

TO AFFINE NONHOLONOMIC CONSTRAINTS

Ingredients

- a vector subbundle $\tau: U \rightarrow Q$ of $\left(\tau_{D}: D \rightarrow Q,\{\cdot, \cdot\}_{D^{*}}\right)$
- a bundle metric $\mathcal{G}: D \times Q D \rightarrow \mathbb{R} \Rightarrow P: D=U \oplus U^{\perp} \rightarrow U$
- a function $V: Q \rightarrow \mathbb{R}$
- $X_{0} \in \Gamma(D)$ such that $P\left(X_{0}\right)=0$

$$
\Downarrow
$$

affine nonholonomic constraints $\equiv \tau_{\mathcal{U}}: \mathcal{U} \rightarrow Q$

$$
q \in Q \longrightarrow \mathcal{U}_{q}=\left\{u_{q}+X_{0}(q) / u_{q} \in U_{q}\right\}
$$

TO AFFINE NONHOLONOMIC CONSTRAINTS

- The vector bundle $\tau_{\tilde{\mathcal{U}}}: \tilde{\mathcal{U}}=\left(\mathcal{U}^{+}\right)^{*} \rightarrow Q$ (it is a subbundle of $D \times \mathbb{R} \rightarrow Q$)

$$
\Gamma(\widetilde{\mathcal{U}}) \equiv<\left\{\left(\sigma+f X_{0}, f\right) / \sigma \in \Gamma(U), \quad f \in C^{\infty}(Q)\right\}>
$$

- The linear almost Poisson manifold on $\tilde{\mathcal{U}}^{*} \cong \mathcal{U}^{+}$

I
$\left(\llbracket \cdot, \cdot \rrbracket_{D}, \rho_{D}\right)$ skewsymmetric algebroid

$$
\begin{gathered}
\widetilde{P}: D \times \mathbb{R} \rightarrow \tilde{\mathcal{U}}, \quad \widetilde{P}\left(e_{q}, s\right)=\left(P\left(e_{q}\right)+s X_{0}(q), s\right) \\
P: D=U \oplus U^{\perp} \rightarrow U
\end{gathered}
$$

$$
\begin{aligned}
\llbracket\left(\sigma_{1}+f_{1} X_{0}, f_{1}\right),\left(\sigma_{2}+f_{2} X_{0}, f_{2}\right) \rrbracket_{\tilde{\mathcal{U}}}= & \widetilde{P}\left(\llbracket \sigma_{1}+f_{1} x_{0}, \sigma_{2}+f_{2} X_{0} \rrbracket_{D},\right. \\
& \left.\rho_{D}\left(\sigma_{1}+f_{1} X_{0}\right)\left(f_{2}\right)-\rho_{D}\left(\sigma_{2}+f_{2} X_{0}\right)\left(f_{1}\right)\right)
\end{aligned}
$$

$$
\rho_{\tilde{\mathcal{U}}}\left(\sigma+f X_{0}, f\right)=\rho_{D}\left(\sigma+f X_{0}\right)
$$

- The 1-cocycle $\phi \in \Gamma\left(\tilde{\mathcal{U}}^{*}\right)$

$$
\phi: \Gamma(\tilde{\mathcal{U}}) \rightarrow C^{\infty}(Q) \quad \phi\left(\sigma+f X_{0}, f\right)=f
$$

TO AFFINE NONHOLONOMIC CONSTRAINTS

$$
V=U, \quad\left(\llbracket \cdot, \cdot \rrbracket_{U}=P \circ \llbracket \cdot, \cdot \rrbracket_{D}, \quad \rho_{U}=\rho\right)
$$

the Hamiltonian section $h: U^{*} \rightarrow \widetilde{\mathcal{U}}^{*}$

$$
\begin{aligned}
& H: U^{*} \rightarrow \mathbb{R} \quad H(\alpha)=\frac{1}{2} \mathcal{G}_{U^{*}}(\alpha, \alpha)+V(q) \\
& h(\gamma)=\left(u_{q}+s X_{0}(q), s\right)=\gamma_{q}\left(u_{q}\right)-s H(\gamma) \\
& \Upsilon^{\lambda}: \Omega^{1}\left(U^{*}\right) \rightarrow \Gamma(U) \quad \delta_{H}^{\lambda}=\Upsilon^{\lambda}(d H) \in \Gamma(U)
\end{aligned}
$$

Hamilton-Jacobi Theorem

Assume that $\lambda \in \Gamma\left(U^{*}\right)$

$$
\begin{gathered}
c: I \rightarrow Q \text { integral curve of } R_{h}^{\lambda}=T \tau_{U^{*}} \circ R_{h} \circ \lambda \in \mathfrak{X}(Q) \\
\Rightarrow \lambda \circ c \text { is a solution of Hamilton equations } \\
\hat{I} \\
i_{\delta_{H}} d^{U} \lambda+\mu \circ i_{\left(\lambda_{0}, 1\right)} d^{\tilde{u}}(h \circ \alpha)=0
\end{gathered}
$$

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

We consider a homogeneous ball with radius $r>0$, mass m and inertia $m k^{2}$ about any axis. Suppose that the ball rolls without sliding on a horizontal table which rotes with a time-dependent angular velocity $\Omega(t)$ about vertical axis thought of one of its point. Apart from the gravitational force, no other external forces are assumed.

Configuration space: Choose a cartesian reference frame with origin at the center of rotation of the table and z-axis along the rotation axis. $\left(q_{1}, q_{2}\right)=$ the position of the point of contact of the sphere with the table.

$$
\left(t, q_{1}, q_{2}\right) \in Q:=\mathbb{R}^{3}
$$

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

$$
\left(t, q^{1} q^{2}, \dot{q}^{1}, \dot{q}^{2}, \omega_{1}, \omega_{2}, \omega_{3}\right) \in \mathbb{R} \times T \mathbb{R}^{2} \times \mathbb{R}^{3}
$$

ω_{1}, ω_{2} and ω_{3} are the components of the angular velocity of the sphere

- The extended phase space of momenta: $T^{*} \mathbb{R}^{3} \times \mathbb{R}^{3}$
- The restricted phase space of momenta: $\mathbb{R} \times T^{*} \mathbb{R}^{2} \times \mathbb{R}^{3}$

$$
\mu: T^{*} \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R} \times T^{*} \mathbb{R}^{2} \times \mathbb{R}^{3}
$$

The hamiltonian section $h: \mathbb{R} \times T^{*} \mathbb{R}^{2} \times \mathbb{R}^{3} \rightarrow T^{*} \mathbb{R}^{3} \times \mathbb{R}^{3}$

$$
\begin{aligned}
& h\left(t, q^{i}, p_{i}, \pi_{i}\right)=\left(t, q^{i},-H\left(t, q^{i}, p_{i}, \pi_{i}\right), p_{i}, \pi_{i}\right) \\
& H=\frac{1}{2}\left(\frac{1}{m}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{1}{m k^{2}}\left(\pi_{1}^{2}+\pi_{2}^{2}+p_{2}^{2}\right)\right)
\end{aligned}
$$

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

Ball without sliding

\Downarrow
The affine constraints

$$
\begin{aligned}
& \dot{q}_{1}-r \omega_{2}=-\Omega(t) q_{2} \\
& \dot{q}_{2}+r \omega_{1}=\Omega(t) q_{1} \\
& \Omega(t) q^{2}+\frac{1}{m} p_{1}-\frac{r}{m k^{2}} \pi_{2}=0 \\
&-\Omega(t) q^{1}+\frac{1}{m} p_{2}-\frac{r}{m k^{2}} \pi_{1}=0
\end{aligned}
$$

Hamilton equations

$$
\begin{aligned}
\dot{q^{1}} & =\frac{1}{m} p_{1} \\
\dot{q^{2}} & =\frac{1}{m} p_{2} \\
\dot{p_{1}} & =-\frac{m k^{2}}{k^{2}+r^{2}}\left(\frac{d \Omega(t)}{d t} q^{2}+\Omega(t) \frac{p_{2}}{m}\right) \\
\dot{p_{2}} & =\frac{m k^{2}}{k^{2}+r^{2}}\left(\frac{d \Omega(t)}{d t} q^{1}+\Omega(t) \frac{p_{1}}{m}\right) \\
\dot{\pi_{1}} & =\frac{r m k^{2}}{k^{2}+r^{2}}\left(\frac{d \Omega(t)}{d t} q^{1}+\Omega(t) \frac{p_{1}}{m}\right) \\
\dot{\pi_{2}} & =\frac{r m k^{2}}{k^{2}+r^{2}}\left(\frac{d \Omega(t)}{d t} q^{2}+\Omega(t) \frac{p_{2}}{m}\right) \\
\dot{p_{3}} & =0
\end{aligned}
$$

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

The vector bundle: $\tau: D=T \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
Global basis of $\Gamma\left(T \mathbb{R}^{3} \times \mathbb{R}^{3}\right)$

$$
\begin{array}{llrl}
e_{0} & =\left(\frac{\partial}{\partial t}-\Omega(t) q^{2} \frac{\partial}{\partial q^{1}}+\Omega(t) q^{1} \frac{\partial}{\partial q^{2}}, 0\right), & e_{1} & =\left(\frac{\partial}{\partial q^{1}}, 0\right),
\end{array} e_{2}=\left(\frac{\partial}{\partial q^{2}}, 0\right), ~ e_{4}=(0,(0,1,0)), \quad e_{5}=(0,(0,0,1)),
$$

The linear almost Poisson structure on $D^{*}=T^{*} \mathbb{R}^{3} \times \mathbb{R}^{3}$

$$
\begin{gathered}
\llbracket e_{0}, e_{1} \rrbracket_{D}=-\Omega(t) e_{2}, \quad \llbracket e_{0}, e_{2} \rrbracket_{D}=\Omega(t) e_{1}, \quad \llbracket e_{3}, e_{4} \rrbracket_{D}=e_{5}, \\
\llbracket e_{4}, e_{5} \rrbracket_{D}=e_{3}, \quad \llbracket e_{5}, e_{3} \rrbracket_{D}=e_{4}, \\
\rho_{D}\left(e_{0}\right)=\frac{\partial}{\partial t}-\Omega(t) q^{2} \frac{\partial}{\partial q^{1}}+\Omega(t) q^{1} \frac{\partial}{\partial q^{2}}, \quad \rho_{D}\left(e_{1}\right)=\frac{\partial}{\partial q^{1}}, \quad \rho_{D}\left(e_{2}\right)=\frac{\partial}{\partial q^{2}} .
\end{gathered}
$$

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

Subbundle of D

$$
U:=\operatorname{span}\left\{e_{3}-r e_{2}, e_{4}+r e_{1}, e_{5}\right\}
$$

Fiber metric on D

$$
\mathcal{G}=e_{0}^{2}+\left(m\left(\left(e_{1}\right)^{2}+\left(e_{2}\right)^{2}\right)+m k^{2}\left(\left(e_{3}\right)^{2}+\left(e_{4}\right)^{2}+\left(e_{5}\right)^{2}\right)\right.
$$

The section X_{0} of D

$$
X_{0}=e_{0}
$$

The section λ of U^{*}

$$
\begin{gathered}
\lambda=d^{U}\left(\varphi_{1}(t) q^{1}+\varphi_{2}(t) q^{2}\right) \\
d^{U} \lambda \neq 0
\end{gathered}
$$

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

If $\Omega(t)=\Omega_{0} t$
Solution of Hamilton equations

$$
\begin{gathered}
\lambda \circ c(t)=\left(t, q^{1}(t), q^{2}(t) ; \lambda_{3}(c(t)), \lambda_{4}(c(t)), 0\right) \\
\lambda_{3}(c(t))=\frac{-r}{\sqrt{m\left(k^{2}+r^{2}\right)}}\left(C_{1} \sin \left(\frac{r^{2} \Omega_{0} t^{2}}{2\left(k^{2}+r^{2}\right)}\right)+C_{2} \cos \left(\frac{r^{2} \Omega_{0} t^{2}}{2\left(k^{2}+r^{2}\right)}\right)\right), \\
\lambda_{4}(c(t))=\frac{r}{\sqrt{m\left(k^{2}+r^{2}\right)}}\left(C_{1} \cos \left(\frac{r^{2} \Omega_{0} t^{2}}{2\left(k^{2}+r^{2}\right)}\right)-C_{2} \sin \left(\frac{r^{2} \Omega_{0} t^{2}}{2\left(k^{2}+r^{2}\right)}\right)\right),
\end{gathered}
$$

where C_{1}, C_{2} are real constants.

Using the linear almost Poisson theory (or skew-symmetric algebroid theory) we have given a simple method to describe the Hamilton-Jacobi equations for several situations. Usually, these equations make it easy to find solutions for the equations of Hamilton equations.

Thanks for your attention!

