General Techniques for Constructing Variational Integrators

Melvin Leok
Mathematics, University of California, San Diego

Joint work with James Hall, Cuicui Liao,
Tatiana Shingel, and Joris Vankerschaver
Conference on Geometry, Symmetry, Dynamics, and Control: The Legacy of Jerry Marsden, Fields Institute, University of Toronto Toronto, Canada, July 24, 2012.

Jerry Marsden’s Legacy in Discrete Geometry \& Mechanics ■ Ph.D. Theses Directed

- Sergey Pekarsky, Discrete Reduction of Mechanical Systems and Multisymplectic Geometry of Continuum Mechanics, 2000.
- Matthew West, Variational Integrators, 2002 (defended 2004).
- Razvan Fetecau, Variational Methods for Nonsmooth Mechanics, 2003.
- Anil Hirani, Discrete Exterior Calculus, 2003.
- Melvin Leok, Foundations of Computational Geometric Mechanics, 2004.
- Nawaf Bou-Rabee, Hamilton-Pontryagin Integrators on Lie Groups, 2007.
- Ari Stern, Geometric Discretizations of Lagrangian Mechanics and Field Theories, 2009.
- Ashley Moore, Discrete mechanics and optimal control for space trajectory design, 2011.
- Molei Tao, Multiscale geometric integration of deterministic and stochastic systems, 2011.

9 out of the $21 \mathrm{Ph} . \mathrm{D}$. students since 2000.

Jerry Marsden's Legacy in Discrete Geometry \& Mechanics ■ A blast from the past: some newly minted Ph.D.s

Lagrangian Variational Integrators

- Discrete Variational Principle

- Discrete Lagrangian

$$
L_{d}\left(q_{0}, q_{1}\right) \approx L_{d}^{\text {exact }}\left(q_{0}, q_{1}\right) \equiv \int_{0}^{h} L\left(q_{0,1}(t), \dot{q}_{0,1}(t)\right) d t
$$

where $q_{0,1}(t)$ satisfies the Euler-Lagrange equations for L and the boundary conditions $q_{0,1}(0)=q_{0}, q_{0,1}(h)=q_{1}$.

- This is related to Jacobi's solution of the Hamilton-Jacobi equation.

Lagrangian Variational Integrators

- Discrete Variational Principle
- Discrete Hamilton's principle

$$
\delta \mathbb{S}_{d}=\delta \sum L_{d}\left(q_{k}, q_{k+1}\right)=0
$$

where q_{0}, q_{N} are fixed.
■ Discrete Euler-Lagrange Equations

- Discrete Euler-Lagrange equation

$$
D_{2} L_{d}\left(q_{k-1}, q_{k}\right)+D_{1} L_{d}\left(q_{k}, q_{k+1}\right)=0
$$

- The associated discrete flow $\left(q_{k-1}, q_{k}\right) \mapsto\left(q_{k}, q_{k+1}\right)$ is automatically symplectic, since it is equivalent to,

$$
p_{k}=-D_{1} L_{d}\left(q_{k}, q_{k+1}\right), \quad p_{k+1}=D_{2} L_{d}\left(q_{k}, q_{k+1}\right)
$$

which is the Type I generating function characterization of a symplectic map.

Lagrangian Variational Integrators

- Main Advantages of Variational Integrators
- Discrete Noether's Theorem If the discrete Lagrangian L_{d} is (infinitesimally) G-invariant under the diagonal group action on $Q \times Q$,

$$
L_{d}\left(g q_{0}, g q_{1}\right)=L_{d}\left(q_{0}, q_{1}\right)
$$

then the discrete momentum map $J_{d}: Q \times Q \rightarrow \mathfrak{g}^{*}$,

$$
\left\langle J_{d}\left(q_{k}, q_{k+1}\right), \xi\right\rangle \equiv\left\langle D_{1} L_{d}\left(q_{k}, q_{k+1}\right), \xi_{Q}\left(q_{k}\right)\right\rangle
$$

is preserved by the discrete flow.

Lagrangian Variational Integrators

- Main Advantages of Variational Integrators
- Variational Error Analysis

Since the exact discrete Lagrangian generates the exact solution of the Euler-Lagrange equation, the exact discrete flow map is formally expressible in the setting of variational integrators.

- This is analogous to the situation for B -series methods, where the exact flow can be expressed formally as a B-series.
- If a computable discrete Lagrangian L_{d} is of order r, i.e.,

$$
L_{d}\left(q_{0}, q_{1}\right)=L_{d}^{\text {exact }}\left(q_{0}, q_{1}\right)+\mathcal{O}\left(h^{r+1}\right)
$$

then the discrete Euler-Lagrange equations yield an order r accurate symplectic integrator.

Constructing Discrete Lagrangians

- Systematic Approaches
- The theory of variational error analysis suggests that one should aim to construct computable approximations of the exact discrete Lagrangian.
- There are two equivalent characterizations of the exact discrete Lagrangian:
- Euler-Lagrange boundary-value problem characterization,
- Variational characterization,
which lead to two general classes of computable discrete Lagrangians:
- Shooting-based discrete Lagrangians,
- Galerkin discrete Lagrangians.

Shooting-Based Variational Integrators

■ Boundary-Value Problem Characterization of $L_{d}^{\text {exact }}$

- The classical characterization of the exact discrete Lagrangian is Jacobi's solution of the Hamilton-Jacobi equation, and is given by,

$$
L_{d}^{\text {exact }}\left(q_{0}, q_{1}\right) \equiv \int_{0}^{h} L\left(q_{0,1}(t), \dot{q}_{0,1}(t)\right) d t
$$

where $q_{0,1}(t)$ satisfies the Euler-Lagrange boundary-value problem.
■ Shooting-Based Discrete Lagrangians

- Replaces the solution of the Euler-Lagrange boundary-value problem with the shooting-based solution from a one-step method.
- Replace the integral with a numerical quadrature formula.

Shooting-Based Variational Integrators

- Shooting-Based Discrete Lagrangian

- Given a one-step method $\Psi_{h}: T Q \rightarrow T Q$, and a numerical quadrature formula $\int_{0}^{h} f(x) d x \approx h \sum_{i=0}^{n} b_{i} f\left(x\left(c_{i} h\right)\right)$, with quadrature weights b_{i} and quadrature nodes $0=c_{0}<c_{1}<\ldots<$ $c_{n-1}<c_{n}=1$, we construct the shooting-based discrete Lagrangian,

$$
\begin{equation*}
L_{d}\left(q_{0}, q_{1} ; h\right)=h \sum_{i=0}^{n} b_{i} L\left(q^{i}, v^{i}\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(q^{i+1}, v^{i+1}\right)=\Psi_{\left(c_{i+1}-c_{i}\right) h}\left(q^{i}, v^{i}\right), \quad q^{0}=q_{0}, \quad q^{n}=q_{1} . \tag{2}
\end{equation*}
$$

- Note that while we formally require that the endpoints are included as quadrature points, i.e., $c_{0}=0$, and $c_{n}=1$, the associated weights b_{0}, b_{n} can be zero, so this is does not constrain the type of quadrature formula we can consider.

Shooting-Based Variational Integrators

- Implementation Issues

- While one can view the implicit definition of the discrete Lagrangian separately from the implicit discrete Euler-Lagrange equations,

$$
p_{0}=-D_{1} L_{d}\left(q_{0}, q_{1} ; h\right), \quad p_{1}=D_{2} L_{d}\left(q_{0}, q_{1} ; h\right),
$$

in practice, one typically considers the two sets of equations together to implicitly define a one-step method:

$$
\begin{aligned}
L_{d}\left(q_{0}, q_{1} ; h\right) & =h \sum_{i=0}^{n} b_{i} L\left(q^{i}, v^{i}\right), \\
\left(q^{i+1}, v^{i+1}\right) & =\Psi_{\left(c_{i+1}-c_{i}\right) h}\left(q^{i}, v^{i}\right), \quad i=0, \ldots n-1, \\
q^{0} & =q_{0}, \\
q^{n} & =q_{1}, \\
p_{0} & =-D_{1} L_{d}\left(q_{0}, q_{1} ; h\right), \\
p_{1} & =D_{2} L_{d}\left(q_{0}, q_{1} ; h\right) .
\end{aligned}
$$

Shooting-Based Variational Integrators

■ Shooting-Based Implementation

- Given $\left(q_{0}, p_{0}\right)$, we let $q^{0}=q_{0}$, and guess an initial velocity v^{0}.
- We obtain $\left(q^{i}, v^{i}\right)_{i=1}^{n}$ by setting $\left(q^{i+1}, v^{i+1}\right)=\Psi_{\left(c_{i+1}-c_{i}\right) h}\left(q^{i}, v^{i}\right)$.
- We let $q_{1}=q^{n}$, and compute $p_{1}=D_{2} L_{d}\left(q_{0}, q_{1} ; h\right)$.
- Unless the initial velocity v^{0} is chosen correctly, the equation $p_{0}=$ - $D_{1} L_{d}\left(q_{0}, q_{1} ; h\right)$ will not be satisfied, and one needs to compute the sensitivity of $-D_{1} L_{d}\left(q_{0}, q_{1} ; h\right)$ on v^{0}, and iterate on v^{0} so that $p_{0}=-D_{1} L_{d}\left(q_{0}, q_{1} ; h\right)$ is satisfied.
- This gives a one-step method $\left(q_{0}, p_{0}\right) \mapsto\left(q_{1}, p_{1}\right)$.
- In practice, a good initial guess for v^{0} can be obtained by inverting the continuous Legendre transformation $p=\partial L / \partial v$.

Shooting-Based Variational Integrators: Inheritance

- Theorem: Order of accuracy
- Given a p-th order one-step method Ψ_{h}, a q-th order quadrature formula, and a Lipschitz continuous Lagrangian L, the shootingbased discrete Lagrangian has order of accuracy $\min (p, q)$.
■ Theorem: Symmetric discrete Lagrangians
- Given a self-adjoint one-step method Ψ_{h}, and a symmetric quadrature formula $\left(c_{i}+c_{n-i}=1, b_{i}=b_{n-i}\right)$, the associated shootingbased discrete Lagrangian is self-adjoint.
- Theorem: Group-invariant discrete Lagrangians
- Given a G-equivariant one-step method $\Psi_{h}: T Q \rightarrow T Q$, and a G invariant Lagrangian $L: T Q \rightarrow \mathbb{R}$, the associated shooting-based discrete Lagrangian is G-invariant, and hence preserves a discrete momentum map.

Shooting-Based Variational Integrators: Generalizations

■ Type I Variational Integrator for Hamiltonian Systems

- The shooting-based discrete Lagrangian is given by

$$
L_{d}\left(q_{0}, q_{1} ; h\right)=h \sum_{i=0}^{n} b_{i}\left[p^{i} v^{i}-H\left(q^{i}, p^{i}\right)\right]_{v^{i}=\partial H / \partial p\left(q^{i}, p^{i}\right)},
$$

where

$$
\left(q^{i+1}, p^{i+1}\right)=\Psi_{\left(c_{i+1}-c_{i}\right) h}\left(q^{i}, p^{i}\right), \quad q^{0}=q_{0}, \quad q^{n}=q_{1} .
$$

- Type II Variational Integrator for Hamiltonian Systems
- The shooting-based discrete Hamiltonian is given by $H_{d}^{+}\left(q_{0}, p_{1} ; h\right)=p^{n} q^{n}-h \sum_{i=0}^{n} b_{i}\left[p^{i} v^{i}-H\left(q^{i}, p^{i}\right)\right]_{v^{i}=\partial H / \partial p\left(q^{i}, p^{i}\right)}$, where

$$
\left(q^{i+1}, p^{i+1}\right)=\Psi_{\left(c_{i+1}-c_{i}\right) h}\left(q^{i}, p^{i}\right), \quad q^{0}=q_{0}, \quad p^{n}=p_{1}
$$

Shooting-Based Variational Integrators

■ Optimality for Shooting-Based Variational Integrators

- While shooting-based variational integrators rely on a choice of a one-step method and a numerical quadrature formula, it is still possible to formulate the question of optimal rates of convergence if we consider collocation one-step methods.
- In particular, collocation methods pick out a unique element of a finite-dimensional function space by requiring that it satisfies the differential equation at a number of collocation points.
- Optimality of the shooting-based variational integrator then reduces to the optimality of the corresponding collocation method, which has been established for a large class of approximation spaces.

Some related approaches

■ Prolongation-Collocation variational integrators

- Intended to minimize the number of internal stages, while allowing for high-order approximation.
- Allows for the efficient use of automatic differentiation coupled with adaptive force evaluation techniques to increase efficiency.

- Taylor variational integrators

- Taylor variational integrators allow one to reuse the prolongation of the Euler-Lagrange vector field at the initial time to compute the approximation at the quadrature points.
- As such, these methods scale better when using higher-order quadrature formulas, since the cost of evaluating the integrand is reduced dramatically.

Prolongation-Collocation Variational Integrators

- Euler-Maclaurin quadrature formula

- If f is sufficiently differentiable on (a, b), then for any $m>0$,

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\frac{\theta}{2}\left[f(a)+2 \sum_{k=1}^{N-1} f(a+k \theta)+f(b)\right] \\
& \quad-\sum_{l=1}^{m} \frac{B_{2 l}}{(2 l)!} \theta^{2 l}\left(f^{(2 l-1)}(b)-f^{(2 l-1)}(a)\right)-\frac{B_{2 m+2}}{(2 m+2)!} N \theta^{2 m+3} f^{(2 m+2)}(\xi)
\end{aligned}
$$

where B_{k} are the Bernoulli numbers, $\theta=(b-a) / N$ and $\xi \in(a, b)$.

- When $N=1$,

$$
K(f)=\frac{h}{2}[f(0)+f(h)]-\sum_{l=1}^{m} \frac{B_{2 l}}{(2 l)!} h^{2 l}\left(f^{(2 l-1)}(h)-f^{(2 l-1)}(0)\right),
$$

and the error of approximation is $\mathcal{O}\left(h^{2 m+3}\right)$.

Prolongation-Collocation Variational Integrators

- Two-point Hermite Interpolant
- A two-point Hermite interpolant $q_{d}(t)$ of degree $d=2 n-1$ can be used to approximate the curve. It has the form

$$
q_{d}(t)=\sum_{j=0}^{n-1}\left(q^{(j)}(0) H_{n, j}(t)+(-1)^{j} q^{(j)}(h) H_{n, j}(h-t)\right),
$$

where

$$
H_{n, j}(t)=\frac{t^{j}}{j!}(1-t / h)^{n} \sum_{s=0}^{n-j-1}\binom{n+s-1}{s}(t / h)^{s}
$$

are the Hermite basis functions.

- By construction,

$$
q_{d}^{(r)}(0)=q^{(r)}(0), \quad q_{d}^{(r)}(h)=q^{(r)}(h), \quad r=0,1, \ldots n-1
$$

Prolongation-Collocation Variational Integrators

- Prolongation-Collocation Discrete Lagrangian
- The prolongation-collocation discrete Lagrangian is

$$
L_{d}\left(q_{0}, q_{1}, h\right)=\frac{h}{2}\left(L\left(q_{d}(0), \dot{q}_{d}(0)\right)+L\left(q_{d}(h), \dot{q}_{d}(h)\right)\right)
$$

$$
-\sum_{l=1}^{\lfloor n / 2\rfloor} \frac{B_{2 l}}{(2 l)!} h^{2 l}\left(\left.\frac{d^{2 l-1}}{d t^{2 l-1}} L\left(q_{d}(t), \dot{q}_{d}(t)\right)\right|_{t=h}-\left.\frac{d^{2 l-1}}{d t^{2 l-1}} L\left(q_{d}(t), \dot{q}_{d}(t)\right)\right|_{t=0}\right),
$$

where $q_{d}(t) \in \mathcal{C}^{S}(Q)$ is determined by the boundary and prolongationcollocation conditions,

$$
\begin{aligned}
q_{d}(0) & =q_{0} & q_{d}(h) & =q_{1}, \\
\ddot{q}_{d}(0) & =f\left(q_{0}\right) & \ddot{q}_{d}(h) & =f\left(q_{1}\right), \\
q_{d}^{(3)}(0) & =f^{\prime}\left(q_{0}\right) \dot{q}_{d}(0) & q_{d}^{(3)}(h) & =f^{\prime}\left(q_{1}\right) \dot{q}_{d}(h), \\
& \vdots & & \vdots \\
q_{d}^{(n)}(0) & =\left.\frac{d^{n}}{d t^{n}} f\left(q_{d}(t)\right)\right|_{t=0} & q_{d}^{(n)}(h) & =\left.\frac{d^{n}}{d t^{n}} f\left(q_{d}(t)\right)\right|_{t=h}
\end{aligned}
$$

Prolongation-Collocation Variational Integrators

- Numerical Experiments: Pendulum

Prolongation-Collocation Variational Integrators

■ Numerical Experiments: Duffing oscillator

Taylor Variational Integrators

- Taylor Discrete Lagrangian

- Consider a p-th order accurate Taylor method,

$$
\Psi_{h}\left(q_{0}, \tilde{v}_{0}\right)=\left(\sum_{k=0}^{p} \frac{h^{k}}{k!} q^{(k)}(0), \sum_{k=1}^{p} \frac{h^{k-1}}{(k-1)!} q^{(k)}(0)\right)
$$

where one computes $q^{(k)}(0)$ by considering the prolongation of the Euler-Lagrange vector field, and evaluating it at $\left(q_{0}, \tilde{v}_{0}\right)$.

- The Taylor Discrete Lagrangian is given by

$$
L_{d}\left(q_{0}, q_{1} ; h\right)=h \sum_{i=0}^{n} b_{i} L\left(\Psi_{c_{i} h}\left(q_{0}, \tilde{v}_{0}\right)\right)
$$

where $\pi_{Q} \circ \Psi_{h}\left(q_{0}, \tilde{v}_{0}\right)=q_{1}$.

Galerkin Variational Integrators

- Variational Characterization of $L_{d}^{\text {exact }}$
- An alternative characterization of the exact discrete Lagrangian,

$$
L_{d}^{\text {exact }}\left(q_{0}, q_{1}\right) \equiv \underset{\substack{q \in C^{2}([0, h], Q) \\ q(0)=q_{0}, q(h)=q_{1}}}{\operatorname{ext}} \int_{0}^{h} L(q(t), \dot{q}(t)) d t
$$

which naturally leads to Galerkin discrete Lagrangians.
■ Galerkin Discrete Lagrangians

- Replace the infinite-dimensional function space $C^{2}([0, h], Q)$ with a finite-dimensional function space.
- Replace the integral with a numerical quadrature formula.
- The element of the finite-dimensional function space that is chosen depends on the choice of the quadrature formula.

Galerkin Variational Integrators

- Galerkin Lagrangian Variational Integrator

- The generalized Galerkin Lagrangian variational integrator can be written in the following compact form,

$$
\begin{array}{rlrl}
q_{1} & =q_{0}+h \sum_{i=1}^{s} B_{i} V^{i}, & \\
p_{1} & =p_{0}+h \sum_{i=1}^{s} b_{i} \frac{\partial L}{\partial q}\left(Q^{i}, \dot{Q}^{i}\right), & \\
Q^{i} & =q_{0}+h \sum_{j=1}^{s} A_{i j} V^{j}, & & \\
0 & =\sum_{i=1}^{s} b_{i} \frac{\partial L}{\partial \dot{q}}\left(Q^{i}, \dot{Q}^{i}\right) \psi_{j}\left(c_{i}\right)-p_{0} B_{j}-h \sum_{i=1}^{s}\left(b_{i} B_{j}-b_{i} A_{i j}\right) \frac{\partial L}{\partial q}\left(Q^{i}, \dot{Q}^{i}\right), & & j=1, \ldots, s \\
0 & =\sum_{i=1}^{s} \psi_{i}\left(c_{j}\right) V^{i}-\dot{Q}^{j}, & & j=1, \ldots, s
\end{array}
$$

where $\left(b_{i}, c_{i}\right)$ are the quadrature weights and quadrature points, and $B_{i}=\int_{0}^{1} \psi_{i}(\tau) d \tau, A_{i j}=\int_{0}^{c_{i}} \psi_{j}(\tau) d \tau$.

Galerkin Variational Integrators: Inheritence

- Theorem: Group-invariant discrete Lagrangians
- If the interpolatory function $\varphi\left(g^{\nu} ; t\right)$ is G-equivariant, and the Lagrangian, $L: T G \rightarrow \mathbb{R}$, is G-invariant, then the Galerkin discrete Lagrangian, $L_{d}: G \times G \rightarrow \mathbb{R}$, given by

$$
L_{d}\left(g_{0}, g_{1}\right)=\operatorname{ext}_{\substack{g^{\nu} \in G ; \\ g^{0}=g_{0} ; g^{s}=g_{1}}} \quad h \sum_{i=1}^{s} b_{i} L\left(T \varphi\left(g^{\nu} ; c_{i} h\right)\right),
$$

is G-invariant.

Galerkin Variational Integrators

■ Optimal Rates of Convergence

- A desirable property of a Galerkin numerical method based on a finite-dimensional space $F_{d} \subset F$, is that it should exhibit optimal rates of convergence, which is to say that the numerical solution $q_{d} \in F_{d}$ and the exact solution $q \in F$ satisfies,

$$
\left\|q-q_{d}\right\| \leq c \inf _{\tilde{q} \in F_{d}}\|q-\tilde{q}\| .
$$

- This means that the rate of convergence depends on the best approximation error of the finite-dimensional function space.

Galerkin Variational Integrators

- Optimality of Galerkin Variational Integrators

- Given a sequence of finite-dimensional function spaces $\mathcal{C}_{1} \subset \mathcal{C}_{2} \subset$ $\ldots \subset C^{2}([0, h], Q) \equiv \mathcal{C}_{\infty}$.
- For a correspondingly accurate sequence of quadrature formulas,

$$
L_{d}^{i}\left(q_{0}, q_{1}\right) \equiv \underset{q \in \mathcal{C}_{i}}{\operatorname{ext}} h \sum_{j=1}^{s_{i}} b_{j}^{i} L\left(q\left(c_{j}^{i} h\right), \dot{q}\left(c_{j}^{i} h\right)\right)
$$

where $L_{d}^{\infty}\left(q_{0}, q_{1}\right)=L_{d}^{\text {exact }}\left(q_{0}, q_{1}\right)$.

- Proving $L_{d}^{i}\left(q_{0}, q_{1}\right) \rightarrow L_{d}^{\infty}\left(q_{0}, q_{1}\right)$, corresponds to Γ-convergence.

Galerkin Variational Integrators

- Optimality of Galerkin Variational Integrators

- For optimality, we require the bound,

$$
L_{d}^{i}\left(q_{0}, q_{1}\right)=L_{d}^{\infty}\left(q_{0}, q_{1}\right)+c \inf _{\tilde{q} \in \mathcal{C}_{i}}\|q-\tilde{q}\|
$$

where we need to relate the rate of Γ-convergence with the best approximation properties of the family of approximation spaces.

- The proof of optimality of Galerkin variational integrators will involve refining the proof of Γ-convergence by Müller and Ortiz.

Galerkin Variational Integrators

■ Theorem: Optimality of Galerkin Variational Integrators

- Under suitable technical hypotheses:
- Regularity of L in a closed and bounded neighboorhood;
- The quadrature rule is sufficiently accurate;
- The discrete and continuous trajectories minimize their actions; the Galerkin discrete Lagrangian has the same approximation properties as the best approximation error of the approximation space.
- The critical assumption is action minimization. For Lagrangians $L=\dot{q}^{T} M \dot{q}-V(q)$, and sufficiently small h, this assumption holds.
- In particular, this shows that Galerkin variational integrators based on polynomial spaces are order optimal, and spectral variational integrators are geometrically convergent.

Galerkin Variational Integrators

- Spectral Variational Integrators

- Spectral variational integrators are a class of Galerkin variational integrators based on spectral basis functions, for example, the Chebyshev polynomials.

- This leads to variational integrators that increase accuracy by p refinement as opposed to h-refinement.

Spectral Variational Integrators

■ Numerical Experiments: Kepler 2-Body Problem

- $h=1.5, T=150$, and 20 Chebyshev points per step.

Spectral Variational Integrators

■ Numerical Experiments: Kepler 2-Body Problem

- $h=1.5, T=150$, and 20 Chebyshev points per step.

Spectral Variational Integrators

■ Numerical Experiments: Solar System Simulation

- Comparison of inner solar system orbital diagrams from a spectral variational integrator and the JPL Solar System Dynamics Group.
- $h=100$ days, $T=27$ years, 25 Chebyshev points per step.

Spectral Variational Integrators

\square Numerical Experiments: Solar System Simulation

- Comparison of outer solar system orbital diagrams from a spectral variational integrator and the JPL Solar System Dynamics Group. Inner solar system was aggregated, and $h=1825$ days.

Spectral Variational Integrators

- Numerical Experiments: Unstable Figure Eight

Spectral Variational Integrators

■ Numerical Experiments: Pseudospectral Wave Equation

- The wave equation $u_{t t}=u_{x x}$ on S^{1} is described by the Lagrangian density function, $L(\varphi, \dot{\varphi})=\frac{1}{2}|\dot{\varphi}(x, t)|^{2}-\frac{1}{2}|\nabla \varphi(x, t)|^{2}$.
- Discretized using spectral in space, and linear in time.

PDE Generalization: Multisymplectic Geometry

- Ingredients
- Base space \mathcal{X}. $(n+1)$-spacetime.
- Configuration bundle. Given by π : $Y \rightarrow \mathcal{X}$, with the fields as the fiber.
- Configuration $q: \mathcal{X} \rightarrow Y$. Gives the field variables over each spacetime point.
- First jet $J^{1} Y$. The first partials of the
 fields with respect to spacetime.

■ Variational Mechanics

- Lagrangian density $L: J^{1} Y \rightarrow \Omega^{n+1}(\mathcal{X})$.
- Action integral given by, $\mathcal{S}(q)=\int_{\mathcal{X}} L\left(j^{1} q\right)$.
- Hamilton's principle states, $\delta \mathcal{S}=0$.

Multisymplectic Exact Discrete Lagrangian

\square What is the PDE analogue of a generating function?

- Recall the implicit characterization of a symplectic map in terms of generating functions:

$$
\left\{\begin{array} { l }
{ p _ { k } = - D _ { 1 } L _ { d } (q _ { k } , q _ { k + 1 }) } \\
{ p _ { k + 1 } = D _ { 2 } L _ { d } (q _ { k } , q _ { k + 1 }) }
\end{array} \quad \left\{\begin{array}{l}
p_{k}=D_{1} H_{d}^{+}\left(q_{k}, p_{k+1}\right) \\
q_{k+1}=D_{2} H_{d}^{+}\left(q_{k}, p_{k+1}\right)
\end{array}\right.\right.
$$

- Symplecticity follows as a trivial consequence of these equations, together with $\mathbf{d}^{2}=0$, as the following calculation shows:

$$
\begin{aligned}
\mathbf{d}^{2} L_{d}\left(q_{k}, q_{k+1}\right) & =\mathbf{d}\left(D_{1} L_{d}\left(q_{k}, q_{k+1}\right) d q_{k}+D_{2} L_{d}\left(q_{k}, q_{k+1}\right) d q_{k+1}\right) \\
& =\mathbf{d}\left(-p_{k} d q_{k}+p_{k+1} d q_{k+1}\right) \\
& =-d p_{k} \wedge d q_{k}+d p_{k+1} \wedge d q_{k+1}
\end{aligned}
$$

Multisymplectic Exact Discrete Lagrangian

- Analogy with the ODE case

- We consider a multisymplectic analogue of Jacobi's solution:

$$
L_{d}^{\text {exact }}\left(q_{0}, q_{1}\right) \equiv \int_{0}^{h} L\left(q_{0,1}(t), \dot{q}_{0,1}(t)\right) d t
$$

where $q_{0,1}(t)$ satisfies the Euler-Lagrange boundary-value problem.

- This is given by,

$$
L_{d}^{\operatorname{exact}}\left(\left.\varphi\right|_{\partial \Omega}\right) \equiv \int_{\Omega} L\left(j^{1} \tilde{\varphi}\right)
$$

where $\tilde{\varphi}$ satisfies the boundary conditions $\left.\tilde{\varphi}\right|_{\partial \Omega}=\left.\varphi\right|_{\partial \Omega}$, and $\tilde{\varphi}$ satisfies the Euler-Lagrange equation in the interior of Ω.

Multisymplectic Exact Discrete Lagrangian

- Multisymplectic Relation

- If one takes variations of the multisymplectic exact discrete Lagrangian with respect to the boundary conditions, we obtain,

$$
\partial_{\varphi(x, t)} L_{d}^{\text {exact }}\left(\left.\varphi\right|_{\partial \Omega}\right)=p_{\perp}(x, t)
$$

where $(x, t) \in \partial \Omega$, and p_{\perp} is the component of the multimomentum that is normal to the boundary $\partial \Omega$ at the point (x, t).

- These equations, taken at every point on $\partial \Omega$ constitute a multisymplectic relation, which is the PDE analogue of,

$$
\left\{\begin{array}{l}
p_{k}=-D_{1} L_{d}\left(q_{k}, q_{k+1}\right) \\
p_{k+1}=D_{2} L_{d}\left(q_{k}, q_{k+1}\right)
\end{array}\right.
$$

where the sign in the equations come from the orientation of the boundary of the time interval.

Exact Multisymplectic Generating Functions

- Implications for Geometric Integration

- The multisymplectic generating functions depend on boundary conditions on an infinite set, and one needs to consider a finite-dimensional subspace of allowable boundary conditions.
- Let π be a projection onto allowable boundary conditions.
- In the variational error order analysis, we need to compare:
- $L_{d}^{\text {computable }}\left(\left.\pi \varphi\right|_{\partial \Omega}\right)$
- $L_{d}^{\text {exact }}\left(\left.\pi \varphi\right|_{\partial \Omega}\right)$
- $L_{d}^{\text {exact }}\left(\left.\varphi\right|_{\partial \Omega}\right)$
- The comparison between the last two objects involves establishing well-posedness of the boundary-value problem, and the approximation properties of the finite-dimensional boundary conditions.

Summary

- The variational and boundary-value problem characterization of the exact discrete Lagrangian naturally lead to Galerkin variational integrators and shooting-based variational integrators.
- These provide a systematic framework for constructing variational integrators based on a choice of:
- one-step method;
- finite-dimensional approximation space;
- numerical quadrature formula.
- The resulting variational integrators can be shown to inherit properties like order of accuracy, and momentum preservation from the properties of the chosen one-step method, approximation space, or quadrature formula.

References

- M.L., T. Shingel, Prolongation-Collocation Variational Integrators, IMA J. Numer. Anal., 32 (3), 1194-1216, 2012.
- M.L., T. Shingel, General Techniques for Constructing Variational Integrators, Front. Math. China, 7 (2), 273-303, 2012.
- J. Vankerschaver, C. Liao, M.L., Generating Functionals and Lagrangian PDEs, arXiv:1111.0280.
- J. Hall, M.L., Spectral Variational Integrators, in preparation.

