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Integrable Systems, gradient flows and dissipation

Anthony Bloch
(Recent work with Morrison and Ratiu)

•Toda and gradient flows

• Normal and Kahler metrics

• PDE’s on S1 and Loop groups

• Metriplectic Flows

• Double bracket dissipation (w. Jerry, Krishna, Tudor)
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Toda Flow:

Ẋ = [X,ΠSX ]

Double Bracket Flow:

Ẋ = [X, [X,N ]]

– gradient but special case yields Toda. (with Brockett and
Ratiu)

Ṗ = [P, [P,Λ]

(Bloch, Bloch, Flashcka and Ratiu, Total Least Squares).
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Heat equation
ut = uxx

Kahler flow:

ut = (−∆)1/2u

(with Morrison and Ratiu)
Dispersionless Toda flow

ẋ = {x, {x, z}}
(Bloch, Flaschka, Ratiu)
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An important and beautiful mechanical system that describes
the interaction of particles on the line (i.e., in one dimension) is
the Toda lattice. We shall describe the nonperiodic finite Toda
lattice following the treatment of Moser.

This is a key example in integrable systems theory.
The model consists of n particles moving freely on the x-axis

and interacting under an exponential potential. Denoting the
position of the kth particle by xk, the Hamiltonian is given by

H(x, y) =
1

2

n∑
k=1

y2k +

n−1∑
k=1

e(xk−xk+1).
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The associated Hamiltonian equations are

ẋk =
∂H

∂yk
= yk , (0.1)

ẏk = −∂H
∂xk

= exk−1−xk − exk−xk+1 , (0.2)

where we use the convention ex0−x1 = exn−xn+1 = 0, which corre-
sponds to formally setting x0 = −∞ and xn+1 = +∞.

This system of equations has an extraordinarily rich structure.
Part of this is revealed by Flaschka’s (Flaschka 1974) change of
variables given by

ak =
1

2
e(xk−xk+1)/2 and bk = −1

2
yk . (0.3)
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In these new variables, the equations of motion then become

ȧk = ak(bk+1 − bk) , k = 1, . . . , n− 1 , (0.4)

ḃk = 2(a2k − a2k−1) , k = 1, . . . , n , (0.5)

with the boundary conditions a0 = an = 0. This system may be
written in the following Lax pair representation:

d

dt
L = [B,L] = BL− LB, (0.6)

where

L =

 b1 a1 0 ··· 0
a1 b2 a2 ··· 0

...
bn−1 an−1

0 an−1 bn

 , B =

 0 a1 0 ··· 0
−a1 0 a2 ··· 0

...
0 an−1

0 −an−1 0

 .

Can show system is integrable.
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More structure in this example. For instance, if N is the matrix
diag[1, 2, . . . , n], the Toda flow (0.6) may be written in the following
double bracket form:

L̇ = [L, [L,N ]] . (0.7)

See Bloch [1990], Bloch, Brockett and Ratiu [1990], and Bloch,
Flaschka and Ratiu [1990]. This double bracket equation re-
stricted to a level set of the integrals is in fact the gradient flow
of the function TrLN with respect to the so-called normal metric.

From this observation it is easy to show that the flow tends
asymptotically to a diagonal matrix with the eigenvalues of L(0)
on the diagonal and ordered according to magnitude, recovering
the observation of Moser, Symes.
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• Four-Dimensional Toda. Here we simulate the Toda lattice
in four dimensions. The Hamiltonian is

H(a, b) = a21 + a22 + b21 + b22 + b1b2 . (0.8)

and one has the equations of motion

ȧ1 = −a1(b1 − b2) ḃ1 = 2a21 ,

ȧ2 = −a2(b1 + 2b2) ḃ2 = −2(a21 − a22) .
(0.9)

(setting b1 + b2 + b3 = 0, for convenience, which we may do since
the trace is preserved along the flow). In particular, TraceLN is,
in this case, equal to b2 and can be checked to decrease along the
flow.

Figure 0.1 exhibits the asymptotic behavior of the Toda flow.
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Figure 0.1: Asymptotic behavior of the solutions of the four-dimensional Toda lattice.
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It is also of interest to note that the Toda flow may be writ-
ten as a different double bracket flow on the space of rank one
projection matrices. The idea is to represent the flow in the vari-
ables λ = (λ1, λ2, . . . , λn) and r = (r1, r2, . . . , rn) where the λi are the
(conserved) eigenvalues of L and ri,

∑
i r

2
i = 1 are the top com-

ponents of the normalized eiqenvectors of L (see Moser). Then
one can show (Bloch (1990)) that the flow may be written as

Ṗ = [P, [P,Λ]] (0.10)

where P = rrT and Λ = diag(λ).
This flow is a flow on a simplex The Toda flow in its original

variables can also be mapped to a flow convex polytope (see
Bloch, Brockett and Ratiu, Bloch, Flaschka and Ratiu).
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Schur Horn Polytope

(1,2,3)

Figure 0.2: Image of Toda Flow
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Metrics on finite-dimensional orbits
Let gu be the compact real form of a complex semisimple Lie

algebra g and consider the flow on an adjoint orbit of gu given
by

L̇(t) = [L(t), [L(t), N ]] . (0.11)

Consider the gradient flow with respect to the “normal” metric
(see Atiyah ). Explicitly this metric is given as follows.

Decompose orthogonally, relative to −κ( , ) = 〈 , 〉, gu = gLu⊕guL
where guL is the centralizer of L and gLu = Im adL. For X ∈ gu
denote by XL ∈ gLu the orthogonal projection of X on gLu . Then
set the inner product of the tangent vectors [L,X ] and [L, Y ] to
be equal to 〈XL, Y L〉. Denote this metric by 〈 , 〉N . Then we
have
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Proposition 0.1. The flow (0.11) is the gradient vector field of H(L) =
κ(L,N), κ the Killing form, on the adjoint orbit O of gu containing the
initial condition L(0) = L0, with respect to the normal metric 〈 , 〉N on
O.

Proof. We have, by the definition of the gradient,

dH · [L, δL] = 〈gradH, [L, δL]〉N (0.12)

where · denotes the natural pairing between 1-forms and tangent vectors and
[L, δL] is a tangent vector at L. Set gradH = [L,X ]. Then (0.12) becomes

−〈[L, δL], N〉 = 〈[L,X ], [L, δL]〉N
or

〈[L,N ], δL〉 = 〈XL, δLL〉 .
Thus

XL = ([L,N ])L = [L,N ]
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and
gradH = [L, [L,N ]]

as required. �

For L and N as above obtain the Toda lattice flow. Full Toda
may be also obtained with a modified metric.
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Now in addition to the normal metric on an orbit there exist
two other natural metrics, the induced and Kahler metrics.
• There is the natural metric b on G/T induced from the invari-

ant metric on the Lie algebra –this is the induced metric.
• There is the normal metric described above which, following

Atiyah we call b1, which comes from viewing G/T as an adjoint
orbit.
• Finally identifying the adjoint orbit with a coadjoint orbit we

obtain the Kostant Kirilov symplectic structure which, together
the fact that G/T is a complex manifold defines a Kahler metric
b2.

If we define b1 and b2 in terms of positive self-adjoint operators
A1 and A2, A1 = A2

2. In fact b is just Tr(AB), b1 is Tr(ALBL) and
b2 is essentially the square root of b1.
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Gradient flows on the loop group of the circle
Recall that the loop group L̃(S1) of the circle S1 consists of

smooth maps of S1 to S1. With pointwise multiplication, L̃(S1)

is a commutative group. Often, elements of L̃(S1) are written as

eif , where f ∈ L̃(R) := {g : [−π, π]→ R | g is C∞, g(π) = g(−π) + 2nπ,
for some n ∈ Z}; n is the winding number of the closed curve

[−π, π] 3 t 7→ eig(t) ∈ S1 about the origin.
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The based loop group of S1. The inner product on the Hilbert
space L2(S1) of L2 real valued functions on S1 is defined by

〈f, g〉 :=
1

2π

∫ π

−π
f (θ)g(θ)dθ, f, g ∈ L2(S1).

We introduce the closed Hilbert Lie subgroup L(S1) := {ϕ ∈
L̃(S1) | ϕ(1) = 1} of L̃(S1) whose closed commutative Hilbert Lie
algebra is L(R) := {u ∈ Hs(S1,R) | u(1) = 0}. The exponential map
exp : L(R) 3 u 7→ eiu ∈ L(S1) is a Lie group isomorphism (with L(R)
thought of as a commutative group relative to addition).
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There is a natural 2-cocycle ω on L(R), namely

ω(u, v) :=
1

2π

∫ π

−π
dθ u′(θ)v(θ) = 〈u′, v〉 , (0.13)

where u′ := du/dθ. Therefore, there is a central extension of Lie
algebras

0 −→ R −→ L̂(R) −→ L(R) −→ 0

which, integrates to a central extension of Lie groups

1 −→ S1 −→ L̂(S1) −→ L(S1) −→ 1.

The “geometric duals” of L(R) and L̂(R) = R⊕L(R) are themselves,
relative to the weak L2-pairing.
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The coadjoint action of L̂(S1) on L̂(R) preserves {1} ⊕ L(R) so

that, as usual, the coadjoint action of L̂(S1) on L(R) is an affine
action which, in this case, because the group is commutative,
equals

Ad∗eif µ =
f ′

f
= (log |f |)′ eif ∈ L(S1), µ ∈ L(R).

Thus, the orbit of the constant function 0 is L̂(S1)/S1 (where the
denominator is thought of as constant loops), i.e., it equals L(S1).
Therefore, every element u ∈ L(R) of its Lie algebra has vanishing
zero order Fourier coefficient , i.e., û(0) = 0.

Thus, the based loop group is a coadjoint orbit of its natu-
ral central extension has three distinguished weak Riemannian
metrics.
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Now we introduce the Hilbert transform on the circle

Hu(θ) :=
1

2π
−
∫ π

−π
u(s) cot

θ − s
2

ds =
1

2π
−
∫ π

−π
u(θ − s) cot

s

2
ds

:= lim
ε→0+

1

π

∫
ε≤|s|≤π

u(θ − s) cot
s

2
ds

for any u ∈ L2(S1), where −
∫

denotes the Cauchy principal value.
• If u(θ) =

∑∞
n=−∞ û(n)einθ ∈ L2(S1), where û(n) := 1

2π

∫ π
−π u(θ)e−inθdθ,

so û(n) = û(−n) since u is real valued, then

Hu(θ) = −i

∞∑
n=−∞

û(n)(signn)einθ ∈ L2(S1) (0.14)

which follows from the identity Ĥf (n) = −if̂ (n)(signn)
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Can show

Hu′(θ) = (Hu)′ (θ) =

(
−i

∞∑
n=−∞

û(n)(signn)einθ

)′
=

∞∑
n=−∞

|n|û(n)einθ .

(0.15)
On the other hand, if v ∈ H2(S1), then

− d2

dθ2
v(θ) =

∞∑
n=−∞

n2v̂(n)einθ (0.16)

and hence if u ∈ H1(S1),(
− d2

dθ2

)1
2

u(θ) =

∞∑
n=−∞

|n|û(n)einθ = Hu′(θ) =

((
H ◦ d

dθ

)
u

)
(θ) (0.17)

by (0.15).
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H (L(R)) ⊆ L(R), H is unitary on L(R) (relative to the Hs-inner
product), H◦H = −I on L(R). Concretely, the Hilbert transform
on L(R) has the form:

u(θ) =
∑

n∈Z\{0}

û(n)einθ ∈ L(R) =⇒ Hu(θ) = −i
∑

n∈Z\{0}

û(n)(signn)einθ

Thus, H defines the structure of a complex Hilbert space on
L(R), relative to the Hs inner product, s ≥ 1. Hence, translating
H to any tangent space of L(S1), we obtain an invariant almost
complex structure on the Hilbert Lie group L(S1) which is, in
fact, a complex structure.



23

Finally, L(S1) is a Kähler manifold. This is immediately seen
by noting that

g(1)(u, v) := ω(Hu, v) =

∞∑
n=−∞

|n|û(n)v̂(n) (0.18)

is symmetric and positive definite and so, by translations, defines
a weak Riemannian metric on L(S1). Note that this metric is not
the Hs metric for any s ≥ 1. In fact, the metric g is incomplete,
whereas the Hs metric is complete.
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Weak Riemannian metrics on L(S1). The three metrics for L(S1)
viewed as a coadjoint orbit of its central extension are as follows.

The induced metric is defined by the natural inner product on
L(R), which is the usual L2-inner product. Hence, the induced
metric is obtained by left (equivalently, right) translation of the
inner product

b(1)(u, v) := 〈u, v〉 =
1

2π

∫ π

−π
u(t)v(t)dt (0.19)

for any two functions u, v ∈ L(R).

Define the following inner products on L(R):

b2(1)(u, v) := b(1)(u,Hv′) = 〈u,Hv′〉 , if u, v ∈ Hs(S1), s ≥ 1 (0.20)

b1(1)(u, v) := b(1)(u′, v′) = 〈u′, v′〉 , if u, v ∈ Hs(S1), s ≥ 1. (0.21)
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Bilinearity and symmetry of b1(1) and b2(1) are obvious. Also

b1(1)(u, u) =

∞∑
n=−∞

n2|û(n)|2 ≥ 0.

In addition, b1(1)(u, u) = 0 if and only if û(n) = 0 for all n 6= 0, i.e.,
u(θ) = û(0) = 0. This shows that b1(1) is indeed an inner product
on L(R) which coincides with the H1 inner product. Hence, if L(R)
is endowed with the Hs topology for s ≥ 1, this inner product is
strong if s = 1 and weak if s > 1. Left translating this inner
product to any tangent space of L(S1) (endowed with the Hs

topology for s ≥ 1), yields a Riemannian metric on L(S1) which
is strong for s = 1 and weak for s > 1.
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This Riemannian metric is the the normal metric on L(S1).
The inner product b2(1) is identical to g(1) by (0.20). Thus,

translating this inner product to the tangent space at every point
of the Hilbert Lie group L(S1), yields the standard Kähler metric
b2 = g on L(S1), endowed with the Hs topology for s ≥ 1. Note
that if u ∈ L(S1), then

b2(1)(u, u) =

∞∑
n=−∞

|n||û(n)|2

which shows that the Kähler metric b2 coincides with the H1/2

metric and is, therefore, a weak metric on L(S1).



27

The gradient vector fields in the three metrics of L(S1). We com-
pute now the gradients of a specific function the three metrics.

Theorem 0.2. The gradients of the smooth function H : L(S1)→ R given
by

H
(
eif
)

=
1

4π

∫ π

−π
f ′(θ)2dθ

are

(i) ∇1H
(
eif
)

= feif for the normal metric b1;

(ii) ∇H
(
eif
)

= −f ′′eif with respect to the induced metric b for f ∈
Hs(S1) with s ≥ 2;

(iii) ∇2H
(
eif
)

= (Hf ′)eif with respect to the weak Kähler metric b2.
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Since

ω
(
eif
) (
H∇2H

(
eif
)
, ueif

) (0.27)
= b2

(
eif
) (
∇2H

(
eif
)
, ueif

)
= dH

(
eif
) (
ueif

)
it follows that the Hamiltonian vector field on

(
L(S1), ω

)
for the

function H is XH = H∇2H. Since H commutes with the tangent
lift to group translations, Theorem 0.2(iii) implies that

XH

(
eif
)

=
(
H∇2H

) (
eif
)

= H
(
∇2H

(
eif
))

= H
(
(Hf ′) eif

)
= −f ′eif .

This proves the first part of the following statement.
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Corollary 0.3. The Hamiltonian vector field of H relative to the trans-
lation invariant symplectic form ω on L(S1) whose value at the identity
element is given by (0.13) has the expression XH

(
eif
)

= −f ′eif . Its flow
is the rotation (

Ft
(
eif
))

(θ) = e−i(f(t+θ)−f(t)).
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Theorem 0.4. Let H : L(S1) → R be a smooth function (with L(S1)
endowed, as usual, with the Hs topology for s ≥ 1) and assume that the
functional derivative δH/δu ∈ L(S1) exists. Then the gradient vector fields
are

(i) ∇H(u) = δH
δu with respect the weak inner product b(1) defining the

induced metric;

(ii)
(
∇1H(u)

)
(θ) = −

∫ θ
0

(∫ ϕ
0

δH
δu (ψ)dψ

)
dϕ with respect to the (weak) in-

ner product b1(1) defining the normal metric, provided both
∫ θ
0
δH
δu (ϕ)dϕ

and
∫ θ
0

(∫ ϕ
0

δH
δu (ψ)dψ

)
dϕ are periodic;

(iii)
(
∇2H(u)

)
(θ) = −H

∫ θ
0
δH
δu (ϕ)dϕ wrt the weak inner product b2(1)

defining the Kähler metric, provided
∫ θ
0
δH
δu (ϕ)dϕ is periodic.
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Vector fields on L(S1) and L(R):
Note the exponential map exp : L(R) 3 u 7→ eiu ∈ L(S1) is a Lie

group isomorphism
Here, we identified the Lie algebra of S1 with R, even though,

naturally, it is the imaginary axis, the tangent space at 1 ∈ S1 to
S1.

Proposition 0.5. Let X ∈ X(L(R)) be an arbitrary vector field . Then its
push-forward to L(S1)) has the expression

(exp∗X)
(
eiu
)

= X(u)eiu

for any u ∈ L(R).
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Applying Proposition 0.5 to Theorem 0.2, we get the following
result:

Corollary 0.6. The three gradient vector fields for the smooth function
H1 : L(R)→ R given by

H1(u) =
1

4π

∫ π

−π
dθ (u′)2

are

(i) ∇1H1(u) = u for the weak inner product b1(1) defining the normal
metric;

(ii) ∇H1(u) = −u′′ for the weak inner product b(1) defining the induced
metric, where for u ∈ Hs(R) with s ≥ 2;

(iii) ∇2H1(u) = (Hu′) for the weak inner product b2(1) defining the Kähler
metric.
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Since the exponential map is a Lie group isomorphism and the
three metrics coincide with the respective inner products at the
identity, their left invariance guarantees that the three inner
products on L(R) correspond to the three invariant metrics on
L(S1).
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Applying Proposition 0.5 to Corollary 0.3, we conclude:

Corollary 0.7. The Hamiltonian vector field of H1 relative to the sym-
plectic form ω given by (0.13) has the expression XH(u) = −u′. Its flow
is (Ft(u)) (θ) = u(θ − t).

The verification of the statement about the flow is immediate:
d

dt
(Ft(u)) (θ) =

d

dt
u(θ − t) = −u′(θ − t) = (XH (Ft(u))) (θ).
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More stringent hypotheses on the functional give a more gen-
eral result:

Theorem 0.8. Let H : L(S1) → R be a smooth function (with L(S1)
endowed, as usual, with the Hs topology for s ≥ 1) and assume that the
functional derivative δH/δu ∈ L(S1) exists. Then the gradient vector fields
are

(i) ∇H(u) = δH
δu with respect the weak inner product b(1) defining the

induced metric;

(ii)
(
∇1H(u)

)
(θ) = −

∫ θ
0dϕ

(∫ ϕ
0 dψ δH

δu (ψ)
)

with respect to the (weak) in-

ner product b1(1) defining the normal metric, provided both
∫ θ
0 dϕ δH

δu (ϕ)

and
∫ θ
0 dϕ

(∫ ϕ
0 dψ δH

δu (ψ)
)

are periodic;

(iii)
(
∇2H(u)

)
(θ) = −H

∫ θ
0 dϕ δH

δu (ϕ) wrt weak inner product b2(1) defining

the Kähler metric, provided
∫ θ
0 dϕ δH

δu (ϕ) is periodic.
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Corollary 0.9. Under the same hypothesis as in Theorem 0.8(iii), the
Hamiltonian vector field of the smooth function H : L(S1)→ R relative to
the symplectic form ω on L(R) given by (0.13) has the expression XH(u) =∫ θ
0 dϕ δH

δu (ϕ)
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The theorem can be applied to the functional H1 in Corollary
0.6, but one needs additional smoothness. Indeed, the first thing
to check is if this functional has a functional derivative. In fact,
it does not, unless we assume that u ∈ Hs(S1) for s ≥ 2, in which
case we have

DH1(u) · v =
1

2π

∫ π

−π
ds u′(s)v′(s) == 〈−u′′, v〉 ,

i.e., δH/δu = −u′′. With this additional hypothesis, the gradient
flow with respect to the weak inner product b(1) defining the
induced metric is given by ut = −u′′.
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Similarly ∇1H(u) = u.
The same situation occurs in the computation of the third gra-

dient. In the hypotheses of the theorem, we have(
∇2H(u)

)
(θ) = −H

∫ θ

0

dϕ
δH

δu
(ϕ) = H(u′ − u′(0)) = Hu′

because the Hilbert transform of a constant is zero. Thus, the
gradient flow is given in this case by

ut = Hu′ (0.17)=

(
− d2

dθ2

)1
2

u.
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Symplectic structures on loop groups:
The periodic Korteweg-de Vries (KdV) equation

ut − 6uuθ + uθθθ = 0, (0.22)

where u(t, θ) is a real valued function of t ∈ R and θ ∈ [−π, π],
periodic in θ, and uθ := ∂u/∂θ. The KdV equation is, of course, a
most famous integrable Hamiltonian system. It is Hamiltonian
on the Poisson manifold of all periodic functions relative to the
Gardner bracket

{F,G} =
1

2π

∫ π

−π
dθ
δF

δu

d

dθ

δG

δu
, (0.23)

where

F (u) =

∫
S1

dθ f (u, uθ, uθθ, . . .)

and similarly for G.
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The functional derivative δF/δu is the usual one relative to the
L2(S1) inner product, i.e.,

δF

δu
=
∂f

∂u
− d

dθ

(
∂f

∂uθ

)
+
d2

dθ2

(
∂f

∂uθθ

)
− · · · .

The Hamiltonian vector field of H(u) = 1
2π

∫ π
−πdθ h(u, uθ, uθθ, . . .) has

the expression

XH(u) =
d

dθ

(
δH

δu

)
.

For the KdV equation one takes

H(u) =
1

2π

∫ π

−π
dθ

(
2u3 +

1

2
u2θ

)
. (0.24)
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The Casimir functions of the Gardner bracket are all smooth
functionals C for which δC/δu = c is a constant function, i.e.,

C(u) = 〈c, u〉 =
1

2π

∫ π

−π
dθ cu(θ) = cû(0).

Thus C−1(0) is a candidate weak symplectic leaf in the phase space
of all periodic functions. The situation in infinite dimensions
is not as clear as in finite dimensions, where this would be a
conclusion, because there is no general stratification theorem
and one cannot expect, in general, more than a weak symplectic
form. However, in our case, this actually holds.
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This immediately shows that there is a tight relationship with
the symplectic form ω of the complex Hilbert space L(R1) namely

σ

(
d2

dθ2
u, v

)
= ω(u, v)

for all u, v ∈ L(S1) of class Hs, s ≥ 2. Defining(
d

dθ

)−1
u :=

∫ θ

0

dϕu(ϕ),

the KdV symplectic form σ has the suggestive expression

σ(u1, u2) =

〈(
d

dθ

)−1
u1, u2

〉
,

which is well defined on H−
1
2(S1,R).
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On the other hand, the Poisson bracket given by the Kähler
symplectic form on L(S1) is

{F,G} =
1

2π

∫ π

−π
dθ
δF

δu

(
d

dθ

)−1
δG

δu
, (0.25)

which is similarly well defined on H−
1
2, and the Hamiltonian vec-

tor field defined by this bracket is given by Corollary 0.9, i.e.,

ut = XH(u) =

(
d

dθ

)−1
δH

δu
. (0.26)

Now, the gradient vector field for the corresponding Kähler met-
ric, as computed in Theorem 0.8(iii), is written as

ut = −H
(
d

dθ

)−1
δH

δu
. (0.27)
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Metriplectic Systems.
A metriplectic system consists of a smooth manifold P , two

smooth vector bundle maps π, κ : T ∗P → TP covering the identity,
and two functions H,S ∈ C∞(P ), the Hamiltonian or total energy
and the entropy of the system, such that

(i) {F,G} := 〈dF, π(dG)〉 is a Poisson bracket; in particular π∗ =
−π;

(ii) (F,G) := 〈dF, κ(dG)〉 is a positive semidefinite symmetric
bracket, i.e., ( , ) is R-bilinear and symmetric, so κ∗ = κ, and
(F, F ) ≥ 0 for every F ∈ C∞(P );

(iii) {S, F} = 0 and (H,F ) = 0 for all F ∈ C∞(P ) ⇐⇒ π(dS) =
κ(dH) = 0.
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The metriplectic dynamics of the system is given in terms of
the two brackets by

d

dt
F = {F,H+S}+(F,H+S) = {F,H}+(F, S), for all F ∈ C∞(P ),

(0.28)
or, equivalently, as an ordinary differential equation, by

d

dt
c(t) = π(c(t))dH(c(t)) + κ(c(t))dS(c(t)). (0.29)

The Hamiltonian vector field XH := π(dH) ∈ X(P ) represents the
conservative or Hamiltonian part, whereas YS := κ(dS) ∈ X(P )
the dissipative part of the full metriplectic dynamics (0.28) or
(0.29).
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The definition of metriplectic systems has three immediate im-
portant consequences. Let c(t) be an integral curve of the system
(0.29).

(1) Energy conservation :

d

dt
H(c(t)) = {H,H}(c(t)) + (H,S)(c(t)) = 0. (0.30)

(2) Entropy production :

d

dt
S(c(t)) = {S,H}(c(t)) + (S, S)(c(t)) ≥ 0. (0.31)

(3) Maximum entropy principle yields equilibria : Suppose that
there are n functions C1, . . . , Cn ∈ C∞(P ) such that {F,Ci} =
(F,Ci) = 0 for all F ∈ C∞(P ), i.e., these functions are simulta-
neously conserved by the conservative and dissipative part of
the metriplectic dynamics.
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Let p0 ∈ P be a maximum of the entropy S subject to the
constraints H−1(h)∩C−11 (c1)∩ . . . C−1n (cn), for given regular values
h, c1, . . . , cn ∈ R of H,C1, . . . , Cn, respectively. By the Lagrange
Multiplier Theorem, there exist α, β1, . . . , βn ∈ R such that

dS(p0) = αdH(p0) + β1dC1(p0) + · · · + dCn(p0).

But then, assuming that α 6= 0, for every F ∈ C∞(P ), we have

{F,H}(p0) + (F, S)(p0)

= 〈dF (p0), π(p0) (dH(p0))〉 + 〈dF (p0), κ(p0) (dS(p0))〉 = 0

which means that p0 is an equilibrium of the metriplectic dy-
namics (0.28) or (0.29). This is akin to the free energy extrem-
ization of thermodynamics, as noted by Morrison and Mielke.
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Suppose that K ∈ C∞(P ) is a conserved quantity for the Hamil-
tonian part of the metriplectic dynamics, i.e., {K,H} = 0. Then,
if c(t) is an integral curve of the metriplectic dynamics, we have

d

dt
K(c(t)) = dK(c(t)) (ċ(t))

= 〈dF (c(t)), π(c(t)) (dH(c(t)))〉 + 〈dF (c(t)), κ(c(t)) (dS(c(t)))〉
= {K,H}(c(t)) + (K,S)(c(t)) = (K,S)(c(t)).

As pointed out by Morrison, this immediately implies that a
function that is simultaneously conserved for the full metriplec-
tic dynamics and its Hamiltonian part, is necessarily conserved
for the dissipative part. Physically, it is advantageous for gen-
eral metriplectic systems to conserve dynamical constraints, i.e.,
conserved quantitates of its Hamiltonian part.
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Metriplectic systems based on Lie algebra triple brackets:
Let g be an arbitrary finite dimensional Lie algebra. Recall

that the Killing form is defined by κ(ξ, η) := Trace(adξ ◦ adη). If
{ei}, i = 1, . . . dim g, is an arbitrary basis of g and cpij are the
structure constants of g, i.e., [ei, ej] = cpijep, then

κ(ξ, η) = ξicpiqη
jcqjp

and hence the components of κ in the basis {ei}, i = 1, . . . dim g,
are given by

κij = κ(ei, ej) = cpiqc
q
jp.

The Killing form is bilinear symmetric and invariant; it is non-
degenerate if and only if g is semisimple. Moreover, −κ is a
positive definite inner product if and only if the Lie algebra g is
compact (i.e., it is the Lie algebra of a compact Lie group).
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In general, let κ be a bilinear symmetric non-degenerate in-
variant form and define the completely antiymmetric covariant
3-tensor

c(ξ, η, ζ) := κ(ξ, [η, ζ ]) = −c(ξ, ζ, η) = −c(η, ξ, ζ) = −c(ζ, η, ξ).

In the coordinates given by the basis {ei}, i = 1, . . . dim g, the
components of c are

cijk := κimc
m
jk = −cikj = −cjik = −ckji.
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This construction immediately leads to the triple bracket intro-
duced by Bialnycki-Birula and Morrison, 1991 { · , ·, ·} : C∞(g) ×
C∞(g)× C∞(g)→ C∞(g) defined by

{f, g, h}(ξ) := c(∇f (ξ),∇g(ξ),∇h(ξ)) := κ (∇f (ξ), [∇g(ξ),∇h(ξ)]) ,
(0.32)

where the gradient is taken relative to the non-degenerate bilin-
ear form κ, i.e., for any ξ ∈ g we have

κ(∇f (ξ), ·) := df (ξ)

or, in coordinates

∇if (ξ) = κij
∂f

∂ξi

where [κij] = [κkl]
−1, i.e., κijκjk = δik. This triple bracket is trilinear

over R, completely antisymmetric, and satisfies the Leibniz rule
in any of its variables.
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This construction extends the bracket due to Nambu to a Lie
algebra setting. Nambu considered ordinary vectors in R3 and
defined

{f, g, h}Nambu(Π) = ∇f (Π) · (∇g(Π)×∇h(Π)) , (0.33)

where ‘·’ and ‘×’ are the ordinary dot and cross products. Thus,
the Nambu bracket is a special case of the triple bracket (0.32) in
the case of g = so(3), whose the structure constants are the com-
pletely antisymmetric Levi-Civita symbol εijk. Such ‘modified
rigid body brackets’ were also described in Bloch and Marsden
[1990], Holm and Marsden [1991], and and Marsden and Ratiu
[1999].
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If g is an arbitrary quadratic Lie algebra with bilinear symmet-
ric non-degenerate invariant form κ, the quadratic function

C2(ξ) := 1
2κ(ξ, ξ) (0.34)

is a Casimir function for the Lie-Poisson bracket on g, identified
with g∗ via κ, i.e.,

{f, g}±(ξ) = ±κ (ξ, [∇f (ξ),∇g(ξ)]) , (0.35)

as an easy verification shows since ∇C2(ξ) = ξ. In view of (0.35),
the following identity is obvious

{f, g}+ = {C2, f, g}.
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For example, if g = so(3), the (-)Lie-Poisson bracket

{f, g}so(3)− (Π) = −{C2, f, g}Nambu(Π) = −Π · (∇f (Π)×∇g(Π)) (0.36)

is the rigid body bracket, i.e., if h(Π) = 1
2Π ·Ω, where Πi = IiΩi,

Ii > 0, i = 1, 2, 3, and Ii are the principal moments of inertia of

the body, then Hamilton’s equations d
dtF (Π) = {f, h}so(3)− (Π) are

equivalent to Euler’s equations Π̇ = Π×Ω.
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Note that given any two functions, f, g ∈ C∞(g), because the
triple bracket satisfies the Leibniz identity in every factor, the
map C∞(g) 3 h 7→ {h, f, g} ∈ C∞(g) is a derivation and hence
defines a vector field on g, denoted by Xf,g : g→ g, i.e.,

〈dh(ξ), Xf,g(ξ)〉 = κ (∇h(ξ), Xf,g(ξ)) = {h, f, g}(ξ) for all h ∈ C∞(g).
(0.37)

Note that Xf,f = 0. Thus, for triple brackets, two functions define
a vector field, analogous to the Hamiltonian vector field defined
by a single function associated to a standard Poisson bracket.
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We have the following result.

Proposition 0.10. The vector field Xf,g on g corresponding to the pair of
functions f, g is given by

Xf,g(ξ) = [∇f (ξ),∇g(ξ)] . (0.38)
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Triple brackets of the form (0.32) can be used to construct
metriplectic systems on a quadratic Lie algebra g in the following
manner. Let κ be the bilinear symmetric non-degenerate form
on g defining the quadratic structure and fix some h ∈ C∞(g).
Define the symmetric bracket

(f, g)κh(ξ) := −κ (Xh,f(ξ), Xh,g(ξ)) . (0.39)

Assume that −κ is a positive definite inner product. Then (f, f ) ≥
0. Thus we have the manifold g endowed with the Lie-Poisson
bracket (0.35), the symmetric bracket (0.39), the Hamiltonian
h, and for the entropy S we take any Casimir function of the
Lie-Poisson bracket.
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Then the conditions (i)–(iii) of metriplectic are all satisfied,
because (h, g)κh = −κ(Xh,h, Xh,g) = −κ(0, Xh,g) = 0 for any g ∈ C∞(g).
The equations of motion (0.28) are in this case given by

d

dt
f (ξ) = κ

(
∇f (ξ),

d

dt
ξ

)
= {f, h}±(ξ) + (f, S)(ξ) = ±κ (ξ, [∇f (ξ),∇h(ξ)])− κ (Xh,f(ξ), Xh,S(ξ))

= ∓κ (∇f (ξ), [ξ,∇h(ξ)])− κ ([∇h(ξ),∇f (ξ)], [∇h(ξ),∇S(ξ)])

for any f ∈ C∞(g).
This gives the equations of motion

ξ̇ = ±[ξ,∇h(ξ)] + [∇h(ξ), [∇h(ξ),∇S(ξ)]] . (0.40)
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Note that the flow corresponding to S is a generalized double
bracket flow. Observe also that this flow reduces to a double
bracket flow and is tangent to an orbit of the group if ∇h(ξ) = ξ.
Indeed if h = 1

2κ(ξ, ξ) the symmetric bracket (0.39) reduces to the
symmetric bracket induced from the normal metric.
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Special Case of so(3): If the quadratic Lie algebra is so(3), we
identify it with R3 with the cross product as Lie bracket via the
Lie algebra isomorphism ˆ : R3 → so(3) given by ûv := u × v for

all u,v ∈ R3. Since AdA û = Âu, for any A ∈ SO(3) and u ∈ R3, we
conclude that the usual inner product on R3 is an invariant inner
product. In terms of elements of so(3) we have u·v = −1

2 Trace (ûv̂).
We shall show below that the metriplectic structure on R3 is
precisely the one given in Morrison [1986].

Recall that the Nambu bracket is given for so(3) by (0.33) and
hence the symmetric bracket (0.39) has the form



61

κ({Π, h, f}, {Π, h, g}) = εimn
∂h

∂Πm

∂f

∂Πn
δij ε

jst ∂h

∂Πs

∂g

∂Πt

= εimn ε sti
∂h

∂Πm

∂f

∂Πn

∂h

∂Πs

∂g

∂Πt

= ‖∇h‖2∇g · ∇f − (∇f · ∇h)(∇g · ∇h)(0.41)

where in the third equality we have used the identity εimnε sti =
δmsδnt − δmtδns.

With the choice S(Π) = ‖Π‖2/2 and the usual rigid body Hamil-
tonian, the equations of motion (0.40) are those for the relaxing
rigid body of Morrison [1986].
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Comments.

• In three dimensions any Poisson bracket can be written as

{f, g} = J ij
∂f

∂Πi

∂g

∂Πj
= εijkV

k(Π)
∂f

∂Πi

∂g

∂Πj
(0.42)

where i, j, k = 1, 2, 3, and V ∈ R3. Using the well known fact
that brackets of the form of (0.42) satisfy the Jacobi identity
if

V · ∇ × V = 0 , (0.43)

we conclude that

{F,G}f = {f, F,G}Nambu (0.44)

satisfies the Jacobi identity for any smooth function f ; i.e.,
unlike the general case.
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• Thinking in terms of so(3)∗, the setting arising from reduction,
this construction leads to a natural geometric interpretation
of a metriplectic system on the manifold P = R3. With the
Poisson bracket on R3 of (0.44), the bundle map π : T ∗R3 → TR3

has the expression

πf(x,Π) =
(
x,∇f (Π)× (·)>

)
since dH(Π)> = ∇H(Π) (dH(Π) is a row vector and ∇H(Π) is its
transpose, a column vector). Now the triple bracket associ-
ated to the equation (0.40) can be used to generate a sym-
metric bracket :

(F,G)BKMR(Π) = (F,G)κC = κ({Π, C, F}, {Π, C,G})
= (Π×∇F (Π)) · (Π×∇G(Π)) . (0.45)

where now C = ||Π||2/2. Hence the bundle map κ : T ∗R3 → TR3
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has the expression

κ(x,Π) = −Π×
(
Π× (·)>

)
.

Thus, with the freedom to choose any quantity S = f as an en-
tropy, with the assurance that (0.43) will be satisfied because
∇ × V = ∇ × ∇f = 0, we can take H = C and have {F, S}f = 0
and (F,H) = 0 for all F ∈ C∞(R3). The equations of motion for
this metriplectic system are

Π̇ = −Π×∇f (Π)− Π× (Π×∇f (Π)). (0.46)

The symmetric bracket is the inner product of the two Hamil-
tonian vector fields on each concentric sphere. As discussed
in BKMR, this symmetric bracket can be defined on any com-
pact Lie algebra by taking the normal metric on each coadjoint
orbit.
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• The following set of equations were given in Fish (2005):

Π̇ = ∇S ×∇H −∇H × (∇H ×∇S). (0.47)

This metriplectic system is equivalent to.

Π̇ = {Π, S,H} + κ ({Π, H,Π}, {Π, H, S}) , (0.48)

(F,G)g(Π) = κ ({Π, g, F}, {Π, g, G}) = (∇g(Π)×∇F (Π))·(∇g(Π)×∇G(Π)).
(0.49)

Thus, the bundle map κ : T ∗R3 → TR3 has the expression

κg(x,Π) = −∇g(Π)×
(
∇(Π)× (·)>

)
.
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Examples: Two special cases of the equation (0.47) are of
interest.

(i) If we take H = 1
2||Π||

2 and S = c · Π, c a constant vector, we
obtain

Π̇ = c× Π− Π× (Π× c). (0.50)

(ii) If we take S = 1
2‖Π‖

2 and H = c ·Π, c a constant, we obtain

Π̇ = Π× c− c× (c× Π) . (0.51)

The equations of motion (0.50) is an instance of double bracket
damping, where the damping is due to the normal metric,
whereas (0.51) gives linear damping of the sort arising in quan-
tum systems. See also Gay-Balmaz/Holm fluids.
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Metriplectic extends to full Toda with dissipation:
Triple bracket and associate symmetric brackets extends to

fields and PDE’s (see paper.)
Related work: dispersionless Toda with Hermann Flaschka and

Tudor.


