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Motivation

• L : TQ →R is the Lagrangian (kinetic minus potential energy), where Q
is the configuration space

• The dynamics is given by the Euler–Lagrange equations
d

dt

∂L

∂q̇
− ∂L

∂q
= 0

• These equations appeared in Lagrange [1788]. Lagrange obtained them in an
attempt to derive the equations of motion for mechanical systems in a
covariant (i.e., coordinate-independent) form

• Substitutions are a major tool for studying differential equations. However,
it may be impossible to find coordinates on the configuration space in which
the Euler–Lagrange equations are sufficiently simple



Motivation

• For instance, consider the rotational dynamics of a rigid body. The
configuration space is the rotation group, i.e., the group of orientation-
preserving orthogonal matrices

• The Euler angles are often used as configuration coordinates

−→
φ

θ
ψ



Motivation

• Using the Euler angles as local coordinates on the rotation group SO(3), the
Euler–Lagrange equations for the Euler top are(

J1 cos2ψ+ J2 sin2ψ
)
θ̈+ (J1 − J2)sinθ sinψcosψφ̈+ (J2 − J1)sin2ψθ̇ψ̇

−(
J1 sin2ψ+ J2 cos2ψ− J3

)
sin2θ φ̇2 + (

J1 cos2ψ− J2 cos2ψ+ J3
)

sinθ φ̇ψ̇= 0,(
J1 − J2

)
sinθ sinψcosψθ̈+ (

J1 sin2θ sin2ψ+ J2 sin2θcos2ψ+ J3 cos2θ
)
φ̈

+J3 cosθψ̈+ (
J1 − J2

)
cosθ sin2ψθ̇2 + (

J1 sin2ψ+ J2 cos2ψ− J3
)

sin2θ θ̇φ̇

+(
J1 cos2ψ− J2 cos2ψ− J3

)
sinθ θ̇ψ̇+ (

J1 − J2
)

sin2θ sin2ψφ̇ψ̇= 0,

J3
(
cosθ φ̈+ ψ̈− sinθ θ̇φ̇

)= 0,

where J1, J2, and J3 are the principal moments of inertia of the top



The Euler Top

• Using the body angular velocity components
(
ξ1,ξ2,ξ3

)
, the dynamics of the

Euler top reads (Euler [1752])

J1ξ̇
1 = (J2 − J3)ξ2ξ3, θ̇ = ξ1 cosψ−ξ2 sinψ,

J2ξ̇
2 = (J3 − J1)ξ3ξ1, φ̇= (

ξ1 sinψ+ξ2 cosψ
)

cscθ,

J3ξ̇
3 = (J1 − J2)ξ1ξ2, ψ̇= ξ3 − (

ξ1 sinψ+ξ2 cosψ
)

cotθ

• The first three equations decouple from the full system
• The last three equations suffer from artificial singularities



Hamel’s Equations

• Let u1(q), . . . ,un(q), n = dimQ, be independent (local) vector fields on Q.
These fields in general do not commute. Introduce the structure functions
ck

i j (q) by the relation[
ui (q),u j (q)

]
(q) = ck

i j (q)uk (q)

• Use these fields to measure the velocity components,

q̇ = q̇ i∂q i = ξi ui (q), where ξ= (
ξ1, . . . ,ξn) ∈Rn ,

and write the Lagrangian as a function of (q,ξ):

l (q,ξ) := L
(
q,ξi ui (q)

)



Hamel’s Equations

• The dynamics is (Euler, Lagrange, Poincaré, Boltzmann, Hamel...)

d

dt

∂l

∂ξ j
= ca

i j (q)
∂l

∂ξa ξ
i +u j [l ]

• These equations generalize both the Euler–Lagrange and Euler–Poincaré
equations

• Hamel’s formalism is useful in
• Nonholonomic mechanics (momentum conservation, integrability)
• Control of mechanical systems
• Discrete mechanics



Outline

1 Hamel’s formalism in nonholonomic mechanics
2 Variational structures for Hamel’s equations
3 Applications to nonholonomic integrators

Motivation: The nonholonomic integrator of Cortés and Martínez may fail to
preserve the relative equilibria of nonholonomic systems and their stability



Nonholonomic System

• Nonholonomic systems are mechanical systems with velocity constraints
that cannot be rewritten as position constraints

• Typically, the constraints are linear, i.e., they are given by a distribution
D ⊂ T Q that defines a subspace Dq of admissible velocities at each
configuration q ∈Q



Nonholonomic System

• The constraints are ideal: They can be replaced with reaction forces R, and〈
R, v

〉= 0 for any v ∈Dq

• For a suitable frame, the constraints read ξm+1 = ·· · = ξn , and, according to
the Lagrange–d’Alembert principle, the dynamics is given by the constrained
Hamel equations

d

dt

∂l

∂ξ j
= ca

i j (q)
∂l

∂ξa ξ
i +u j [l ], i , j = 1, . . . ,m, a = 1, . . . ,n,

coupled with the equation

q̇ = ξi ui (q)

• Hamel’s formalism allows to eliminate the Lagrange multipliers



Bundles and Frame Selection

• Nonholonomic constraints and/or symmetry define subbundles of the velocity
phase space of the system. The base space of both subbundles is the
configuration manifold Q

• Let D and S be the constraint and symmetry subbundles, respectively
• The frame ui , i = 1, . . . ,n, is usually selected in such a way that there are
subframes that span the fibers of D, S , and D∩S

• For underactuated systems, the controlled directions are characterized by the
fibers of a subbundle T ∗ of the momentum phase space T ∗Q. One then may
wish to select a frame that contains a subframe whose dual spans the fibers
of T ∗



Variational Principles

• The Euler–Lagrange equations are equivalent to Hamilton’s principle: q(t )
is a trajectory of the Euler–Lagrange equations if and only if q(t ) extremizes
the action:

δ

∫ b

a
L(q(t ), q̇(t ))dt , where δq(a) = δq(b) = 0

• The equations for the angular velocity ξ= (
ξ1,ξ2,ξ3

)
of the Euler top are

equivalent to the principle

δ

∫ b

a
l (ξ)dt = 0,

where

l (ξ) = 1
2

(
J1

(
ξ1)2 + J2

(
ξ2)2 + J3

(
ξ3)2

)
, δξ= ζ̇+ξ×ζ, and ζ(a) = ζ(b) = 0;

observe that the variations are defined in a nontrivial way



Hamel’s Equations

Theorem

The curve
(
q(t ),ξ(t )

)
satisfies the Hamel equations

d

dt

∂l

∂ξ j
= ca

i j (q)
∂l

∂ξa ξ
i +u j [l ]

if and only if

δ

∫ b

a
l (q,ξ)dt = 0,

where

δξa(t ) = ζ̇a(t )+ ca
i j (q(t ))ξi (t )ζ j (t ), δq(t ) = ζ j (t )u j (q(t )), and ζ(a) = ζ(b) = 0



Hamel’s Equations

The formula for variations

δξa = ζ̇a + ca
i j (q)ξiζ j ,

follows form the formula
d
dt δq = δq̇ ,

which, when written relative to the frame u1, . . . ,un , becomes
d
dt

(
ζi ui

)= δ(
ξi ui

)



The Hamilton–Pontryagin Principle

• Q is a manifold, TQ and T ∗Q are its tangent and cotangent bundles. Let q,
(q, v), and (q, p) be local coordinates on Q, T Q, and T ∗Q, respectively

• t 7→ (q(t ), v(t ), p(t )), t ∈ [a,b], is a curve in the Pontryagin bundle TQ ⊕T ∗Q

• The action on T Q ⊕T ∗Q is defined by

S =
∫ b

a

[
L(q(t ), v(t ))+〈

p(t ), q̇(t )− v(t )
〉]

dt

• Setting the variation of this action equal to zero produces the Euler–Lagrange
equations, the Legendre transform, and the second order condition q̇ = v

• See the papers of Yoshimura and Marsden for details



The Hamilton–Pontryagin Principle

Theorem
The following statements are equivalent:

(i) The curve (q(t ),η(t ),µ(t )), a ≤ t ≤ b, is a critical point of the action functional∫ b

a

[
l (q(t ),η(t ))+〈

µi ui (q(t )), q̇(t )−η j (t )u j (q(t ))
〉]

dt

on the space of curves in TQ ⊕T ∗Q connecting qa and qb on the interval
[a,b], where we choose variations of the curve (q(t ),η(t ),µ(t )) that satisfy
δq(a) = δq(b) = 0

(ii) The implicit Hamel equations, the Legendre transform, the second order
condition, and the ‘reconstruction equation’,

u j [l ]− µ̇ j −
∂φa

b

∂qr ψ
r
i ψ

b
j µaξ

i − ∂ψb
i

∂qr φ
a
bψ

r
jµaη

i = 0, µ= ∂l

∂η
, ξ= η, q̇ = ξi ui (q)

hold, where φa
b are the elements of the inverse of ψ j

i



Discrete Hamilton’s Principle and Variational Integrators

• Assuming Q is a vector space, L : T Q →R is a Lagrangian. A discrete
Lagrangian is a map Ld : Q ×Q →R that approximates the action integral
along an exact solution of the Euler–Lagrange equations joining the
configurations qk , qk+1 ∈Q :

Ld (qk , qk+1) = hL
( 1

2 (qk +qk+1), 1
h (qk+1 −qk )

)≈ ∫ h

0
L(q, q̇)dt

• Continuous-time trajectories q(t ) are replaced with finite sequences
{

qk
}N

k=0
in the configuration space Q

• The states of the system are the pairs (qk , qk+1) ∈Q ×Q



Discrete Hamilton’s Principle and Variational Integrators

• The action integral is replaced with the action sum

Sd (q0, q1, . . . , qN ) =
N−1∑
k=0

Ld (qk , qk+1),

where qk ∈Q, k = 0,1, . . . , N , is a finite sequence of points in the configuration
space with given fixed endpoints q0 and qN

• The dynamics is determined by the discrete Hamilton principle

δSd (q0, q1, . . . , qN ) = 0, δq0 = δqN = 0

• The discrete Euler–Lagrange equations are

D2Ld (qk−1, qk )+D1Ld (qk , qk+1) = 0,

where Di denotes differentiation with respect to the i th input



Discrete Hamilton’s Principle and Variational Integrators

• The update map (qk−1, qk ) 7→ (qk , qk+1) defined by the discrete Euler–
Lagrange equations is the analogue of the phase flow of the continuous-time
mechanics. The update map preserves the discrete Lagrangian symplectic
form, and thus is volume-preserving. If symmetry is present, the update map
preserves the discrete momentum map

• Numerical experiments suggest that discretizations like that adequately
model continuous-time dynamics and accurately track system’s energy over
long time intervals, i.e., they are free from the so-called numerical
dissipation (an artificial dissipation introduced by some numerical methods)



Discrete Hamel’s Equations

• Assuming Q is a vector space and adopting the midpoint rule, let
qk+1/2 = 1

2

(
qk +qk+1

)
, and let ξk,k+1 be the discrete analogue of ξ.

Define the discrete Lagrangian by the formula

l d (qk+1/2,ξk,k+1) := hl (qk+1/2,ξk,k+1)

• Set µk,k+1 := D2l d (qk+1/2,ξk,k+1), which is a discrete analogue of

µ= D2l (q,ξ) ≡ ∂l /∂ξ



Discrete Hamel’s Equations

Theorem
The sequence

(
qk+1/2,ξk,k+1) satisfies the discrete Hamel equations

1
h

(
µk−1,k; j −µk,k+1; j

)+ 1
2

(
u j

[
l d ]

(qk+1/2,ξk,k+1)+u j
[
l d ]

(qk−1/2,ξk−1,k )
)

+ 1
2

(
ca

i j (qk+1/2)ξi
k,k+1µk,k+1;a + ca

i j (qk−1/2)ξi
k−1,kµk−1,k;a

)= 0

if and only if

δ
N−1∑
k=0

l d (qk+1/2,ξk,k+1) = 0,

where

δq i
k+1/2 = 1

2ψ
i
b(qk+1/2)

(
ζb

k+1 +ζb
k

)
,

δξb
k,k+1 = 1

h

(
ζb

k+1 −ζb
k

)+ 1
2 cb

i j (qk+1/2)ξi
k,k+1

(
ζ

j
k+1 +ζ

j
k

)
,

where ζ0 = ζN = 0, and where ui (q) =ψ j
i (q)∂q j

One then writes a discrete analogue of the kinematic equation q̇ = ξi ui (q), there
is a certain freedom in doing that



Discrete Hamel’s Equations

• The principal step is to obtain the formulae

δq i
k+1/2 = 1

2ψ
i
b(qk+1/2)

(
ζb

k+1 +ζb
k

)
,

δξb
k,k+1 = 1

h

(
ζb

k+1 −ζb
k

)+ 1
2 cb

i j (qk+1/2)ξi
k,k+1

(
ζ

j
k+1 +ζ

j
k

)
• In the continuous-time case the formulae for variations

δq i =ψi
b(q)ζb , δξb = ζ̇b + cb

i j (q)ξiζ j

are straightforward to obtain and follow form the formula
d
dt

(
ζi ui

)= δ(
ξi ui

)
• In the discrete case it becomes less straightforward because of the absence of
time-differentiation

• Alternatively, one can utilize the discrete version of the Hamilton–Pontryagin
principle to derive the implicit discrete Hamel equations



Nonholonomic Integrators

According to Cortés and Martínez, the discrete Lagrange–d’Alembert
principle is

δ
N−1∑
k=0

Ld (qk , qk+1) = 0, δqk ∈Dqk , (qk , qk+1) ∈Dd ,

where D ⊂ TQ is a continuous-time constraint distribution and Dd ⊂Q ×Q is
discrete constraint space



Nonholonomic Integrators

Nonholonomic integrators are sensitive to how the constraints are discretized.
For instance a trajectory of the contact point of a discrete balanced
Chaplygin sleigh (a platform supported by a skate) may become a spiral,
which is not what the continuous-time model predicts

• For a proper discrete constraint one obtains the anticipated trajectory
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Nonholonomic Integrators

Nonholonomic integrators are sensitive to how the constraints are discretized.
For instance a trajectory of the contact point of a discrete balanced
Chaplygin sleigh (a platform supported by a skate) may become a spiral,
which is not what the continuous-time model predicts

• For a proper discrete constraint one obtains the anticipated trajectory
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Nonholonomic Integrators

• Lynch and Zenkov [2009] observed that the stability of relative equilibria of
Chaplygin systems may be corrupted by the discretization of Cortés and
Martínez

• L = 1
2

(
ṙ 2 + ġ 2 + (e−g ṡ)2

)−U (r ), ṡ +eg
(
a(r )ṙ +b(r )ġ

)= 0



Equilibria and Structural Stability

• Relative equilibria of nonholonomic systems with symmetry are never isolated
and often are partially asymptotically stable

• Relative equilibria are not robust under perturbations



Equilibria and Structural Stability

Dynamics before and after a perturbation



Equilibria and Structural Stability

• Let g t : M → M be the phase flow of a continuous-time system of interest.
An ideal integrator is a discrete dynamical system F : M → M , where F is
a diffeomorphism such that F k = g kh and where h is the time step

• Constructing an ideal integrator is equivalent to ability to solve the system
analytically

• Real-life integrators may be interpreted as perturbations of the ideal
integrator

• We ask for the preservation of the manifold of relative equilibria and their
stability type. This is important for long-term numerical integration. If these
are not preserved, the α- and ω-limit sets of the original continuous-time
system and of its discretization are certain to be not the same. Therefore,
the asymptotic dynamics of the discrete system is different from that of the
original system, resulting in a structurally-unstable discretization



Discrete Nonholonomic Systems

One of the challenges in the nonholonomic setting is discretizing the constraints.
Discrete Hamel’s formalism suggests a natural procedure:

1 Select the fields ui (q) such that the continuous-time constraints read
ξm+1 = ξm+2 = ·· · = ξn = 0

2 Define the discrete constraints to be ξm+1
k,k+1 = ξm+2

k,k+1 = ·· · = ξn
k,k+1 = 0

3 The discrete nonholonomic dynamics becomes

1
h

(
µk−1,k; j −µk,k+1; j

)+ 1
2

(
u j

[
l d ]

(qk+1/2,ξk,k+1)+u j
[
l d ]

(qk−1/2,ξk−1,k )
)

+ 1
2

(
cc

i j (qk+1/2)ξi
k,k+1µk,k+1;a + ca

i j (qk−1/2)ξi
k−1,kµk−1,k;a

)= 0,

i , j = 1, . . . ,m, a = 1, . . . ,n



Discrete Nonholonomic Systems

• Discrete Hamel’s formalism modifies the discrete Lagrange–d’Alembert
principle of Cortés and Martínez and brings back the preservation of
manifolds of relative equilibria and their stability

• The proof is based on the center manifold stability analysis, which produces
the same stability conditions in both the continuous-time and discrete
settings



The Spherical Pendulum (with A. Bloch and M. Leok)

• Consider a point mass moving on a sphere in the presence of gravity. One can
use the spherical coordinates to study the motion, but this is not the best idea

• Alternatively, one may view the pendulum as a degenerate rigid body. The
inertia tensor J = diag

{
mr 2,mr 2,0

}
is non-invertible, and the Lagrangian

1
2 〈Jξ,ξ〉−mg rγ3 is degenerate. Here m is the mass and r is the length of the
pendulum

• The dynamics is captured by the equations

µ̇= τ, γ̇= γ×ξ
where ξ is the angular velocity, µ= Jξ is the angular momentum, γ is a unit
vertical vector relative to the body frame, and τ is the torque due to gravity

• Observe that for a given µ= (
µ1,µ2,0

)
there may be many corresponding

angular velocities, but the third component of angular velocity does not
affect the motion of the pendulum.



The Spherical Pendulum (with A. Bloch and M. Leok)

• Knowing γ= (
γ1,γ2,γ3

)
is equivalent to knowing the position of the

pendulum. The components of γ are not independent as ‖γ‖ = 1, and thus
are redundant coordinates for the pendulum. The redundancy is minimal and
the components of γ give a global and singularity-free coordinate system

• Let

u1 = γ3 ∂

∂γ2 −γ2 ∂

∂γ3 , u2 = γ1 ∂

∂γ3 −γ3 ∂

∂γ1 ,

these are tangent to the unit sphere. Then

µ̇1 = mg rγ2, µ̇2 =−mg rγ1, γ̇1 =−ξ2γ3, γ̇2 = ξ1γ3, γ̇3 = ξ2γ1 −ξ1γ2

are the Hamel equations for the pendulum written in the redundant
configuration coordinates

(
γ1,γ2,γ3

)



The Spherical Pendulum (with A. Bloch and M. Leok)

• Understanding the variational structure of Hamel’s equations assisted in the
derivation of discrete Hamel’s equations and an energy- and momentum-
preserving integrator for a spherical pendulum

• Preservation of the length of γ
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• Conservation of energy

0 2000 4000 6000 8000 10 000
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Concluding Remarks

• Discrete Hamel’s formalism modifies the discrete Lagrange–d’Alembert
principle of Cortés and Martínez and brings back the preservation of
manifolds of relative equilibria and their stability

• A discretizations causing stability loss for systems with holonomic constraints
has been observed in a recent work of Peng, Huynh, Zenkov, and Bloch.
Hamel’s formalism is likely to repair this situation
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