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Non-holonomic reduction

Non-holonomic reduction is the term used for the reduction of
symmetries of non-holonomically constrained Hamiltonian systems.

Consider a constrained system with con�guration space Q, kinetic
energy metric k : TQ �Q TQ ! R, potential energy V : Q ! R, and
a constraint distribution P � TQ.
Assumption: the work of the reaction force of the constraints on
virtual motions compatible with constraints vanishes.
Let τ : P ! Q be the restriction to P of the tangent bundle
projection τQ : TQ ! Q, and

H = fw 2 TP j Tτ(w) 2 P � TQg.

The pull-back of the canonical symplectic form ωQ of T �Q by the
Legendre transformation corresponding to the kinetic energy 1

2k(u, u)
of the system, induces on each �bre Hu a linear symplectic form vu .
(H,v) is a symplectic distribution on P.
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J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 19 July 2012 2

/ 18



Non-holonomic reduction

Non-holonomic reduction is the term used for the reduction of
symmetries of non-holonomically constrained Hamiltonian systems.
Consider a constrained system with con�guration space Q, kinetic
energy metric k : TQ �Q TQ ! R, potential energy V : Q ! R, and
a constraint distribution P � TQ.
Assumption: the work of the reaction force of the constraints on
virtual motions compatible with constraints vanishes.

Let τ : P ! Q be the restriction to P of the tangent bundle
projection τQ : TQ ! Q, and

H = fw 2 TP j Tτ(w) 2 P � TQg.

The pull-back of the canonical symplectic form ωQ of T �Q by the
Legendre transformation corresponding to the kinetic energy 1

2k(u, u)
of the system, induces on each �bre Hu a linear symplectic form vu .
(H,v) is a symplectic distribution on P.
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For each f 2 C∞(P), the distributional Hamiltonian vector �eld of f
is the unique vector �eld Yf in H such that, for every u 2 P and
w 2 Hu ,

v(Yf (u),w) = hdf j wi.

If ∂H f denote the restriction of df to H, then,

Yf v = ∂H f .

Yf is the distributional Hamiltonian vector �eld of f 2 C∞(P).

Motions are given by integral curves of the distributional Hamiltonian
vector �eld Yh of the energy function

h(u) =
1
2
k(u, u) + V (τQ (u)).

We say that (P,H,v, h) is a distributional Hamiltonian system.
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Almost Poisson structure

On C∞(P), we de�ne a bracket almost Poisson bracket

ff1, f2g = Yf1 f2.

It is called an almost Poisson bracket. It is skew symmetric and is a
derivation. However, it satis�es Jacobi�s identity only if the
distribution P on Q is integrable.

The ring C∞(P) endowed with an almost Poisson bracket is called an
almost Poisson algebra.

We can put equations of motion in the almost Poisson form:

d
dt
f (c(t)) = fh, f g(c(t))

for every f 2 C∞(P) and each integral curve of Yh.
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Symmetry

We assume that a Lie symmetry group G of (P,H,v, h) acts
properly on P, preserving H � TP,

Hence, the action of G on P preserves the almost Poisson bracket on
C∞(P).
Therefore, the ring C∞(P)G of G -invariant smooth functions on P is
an almost Poisson subalgera of C∞(P).
Let R = P/G be the space of G -orbits on P and ρ : P ! R be the
orbit map.
The di¤erential structure of R is given by

C∞(R) = ff : R ! R j ρ�f 2 C∞(P)g.

C∞(R) is isomorphic to C∞(R)G . Hence, it inherits an almost
Poisson bracket such that

ρ�ff̄1, f̄2g = fρ� f̄1, ρ� f̄2g

for all f̄1, f̄2 2 C∞(R).
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Reduction

For f̄ 2 C∞(R) de�ne an almost Poisson derivation Ȳf̄ of C
∞(R)

such that
Ȳf̄ f̄1 = ff̄ , f1g.

Then
ρ�(Ȳf̄ f̄1) = Yρ�f ρ�f1

which implies that Ȳf̄ is a vector �eld on R.

The Hamiltonian h is G -invariant, hence h = ρ�h̄, and integral curves
of Ȳh̄ are projections to R of integral curves of Yh.

The reduced system (R, f., .g, h̄) is an almost Poisson system.
R is strati�ed by orbits of the family of all vector �elds on R. Each
stratum is an almost Poisson manifold.

Each stratum inherits the structure of a constrained Hamiltonian
system.
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ρ�(Ȳf̄ f̄1) = Yρ�f ρ�f1
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Pontryagin bundle

The Pontryagin bundle of a manifold Q is the direct sum TQ � T �Q
of the tangent and cotangent bundle of Q. It is naturally isomorphic
to the �bre product P = TQ �Q T �Q. Let τ : TQ ! Q and
ϑ : T �Q ! Q be the tangent and the cotangent bundle projections,
respectively, and

π : P = TQ �Q T �Q ! Q : (u, p) 7! π(u, p) = (τ(u), ϑ(p)).

The Pontryagin bundle carries a symmetric form hh�, �ii de�ned as
follows. For each (u1, p1) and (u2, p2) in the same �bre of π,

hh(u1, p1), (u2, p2)ii = hp1 j u2i+ hp2 j u1i.
The form hh�, �ii is inde�nite with signature (dimQ, dimQ).
Moreover, the space Γ(P) of smooth sections of the Pontryagin
bundle carries a bilinear skew-symmetric bracket, called the Courant
bracket,

[(X , α), (Y , β)] = ([X ,Y ], $X β� $Y α+
1
2
d (α(Y )� β(X ))).
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Symmetries of a Dirac structure

A Dirac structure on Q is a subbundle D of TQ �Q T �Q, which is
maximal isotropic with respect to the bilinear form hh�, �ii . Thus,
rankD = dimQ. We denote by ι : D ! P the inclusion map and by
δ = π � ι : D ! Q the projection of D onto Q.

Let
Φ : G �Q ! Q : (g , x) 7! Φg (x) = gx

be an action of a connected Lie group G on the manifold Q. It
induces an action

TΦ : G � TQ ! TQ : (g , u) 7! TΦg (u)

of G on the tangent bundle TQ of Q. The push-forward of a vector
�eld X on Q by Φg is given by

(Φg )�X = TΦg � X �Φg�1 ,

where, we treat X as a section of the tangent bundle projection
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Similarly, we have an induced action

T �Φ : G � T �Q ! T �Q : (g , p) 7! T �Φg (p),

where
hT �Φg (p) j ui = hp j TΦg�1(u)i

for every pair (u, p) 2 P = TQ �Q T �Q. This de�nition implies that
the action of G on P preserves the evaluation. In other words,

hT �Φg (p) j TΦg (u)i = hp j ui
for all g 2 G .

If α is a 1-form on Q, considered as a section of the cotangent bundle
ϑ : T �Q ! Q, then

(Φg )�α = T �Φg � α �Φg�1

is a section of ϑ that we shall also call the push-forward of α by Φg .
A form α is G -invariant if (Φg )�α = α for every g 2 G . For every
1-form α on Q,

(Φg )�α = (Φ�
g�1)α.
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The product of TΦ and T �Φ gives rise to an action

Ψ : G � P ! P : (g , (u, p)) 7! Ψg (u, p) = (TΦg (u),T �Φg (p)).

For a section σ = (X , α) of π : P ! Q, we denote by (Φg )�σ the
section of π given by

(Φg )�σ = Ψg � σ �Φg�1 = ((Φg )�X , (Φg )�α) = ((Φg )�X ,Φ�
g�1α).

A section σ of π is G -invariant if (Φg )�σ = σ for each g 2 G .
We consider here a Dirac structure D � P that is invariant under the
action of G on P.

J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 19 July 2012 10

/ 18



The product of TΦ and T �Φ gives rise to an action

Ψ : G � P ! P : (g , (u, p)) 7! Ψg (u, p) = (TΦg (u),T �Φg (p)).

For a section σ = (X , α) of π : P ! Q, we denote by (Φg )�σ the
section of π given by

(Φg )�σ = Ψg � σ �Φg�1 = ((Φg )�X , (Φg )�α) = ((Φg )�X ,Φ�
g�1α).

A section σ of π is G -invariant if (Φg )�σ = σ for each g 2 G .
We consider here a Dirac structure D � P that is invariant under the
action of G on P.
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Free and proper action

If the action Φ of G on Q is free and proper, the action Ψ of G on
the Pontryagin bundle is also free and proper.
Therefore, Q is a left principal �bre bundle with structure group G ,
the base manifold Q/G and the projection map ρQ : Q ! Q/G .
Similarly, P is a left principal G -bundle with base manifold P/G and
the projection map ρP : P ! P/G .
Since the Pontryagin bundle projection π : P ! Q intertwines the
action of G in P and Q; that is, for each g 2 G , π �Ψg = Φg � π, it
follows that there exists a map π : P/G ! Q/G such that the
following diagram

ρP
P �! P/G

π # # π
Q �! Q/G

ρQ
commutes.
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Moreover, the action Ψ on P is linear on �bres of the projection π.

Therefore, π : P/G ! Q/G is a vector bundle.
If σ = (X , α) : Q ! P is a G -invariant section of π, there exists a
section σ = (X , α) : Q/G ! P/G of π such that the following
diagram

ρP
P �! P/G

σ " " σ
Q �! Q/G

ρQ

commutes.
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Principal connection

A connection on the principal bundle Q is a G -invariant distribution
horTQ, that is complementary to the vertical distribution
verTQ = kerTπ. This implies that we have a direct sum
decomposition

TQ = verTQ � horTQ.

Every vector u 2 TqQ can be decomposed into the vertical part ver u
and the horizontal part hor u, that is u = ver u + hor u. Similarly,
every covector p 2 T �qQ can be decomposed into the vertical part
ver p and the horizontal part hor p such that

hp j ui = hver p j ver ui+ hhor p j hor ui.

The decompositions described here lead to a decomposition of the
Pontryagin bundle P = verP � horP, where the vertical Pontryagin
bundle verP and the horizontal Pontryagin bundle horP are given by

verP = verTQ � verT �Q and horP = horTQ � horT �Q.
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We get a decomposition of the bilinear form on P into its vertical and
horizontal components

hh�, �ii = ver hh�, �ii+ hor hh�, �ii.

The bracket on the space of sections of P need not decompose into
horizontal and vertical parts because the bracket of a horizontal
section of P with the vertical section of P need not vanish.
The orbit spaces (verP)/G and (horP)/G are vector bundles over
P/G . We call (verP)/G the reduced vertical Pontryagin bundle and
(horP)/G the reduced horizontal Pontryagin bundle.
The reduced vertical Pontryagin bundle (verP)/G is isomorphic to
the direct sum of Q [g]�Q [g�] of the adjoint and co-adjoint bundles
of Q.
The reduced horizontal Pontryagin bundle is isomorphic to the
Pontryagin bundle of the orbit space Q/G .
Note that the adjoint bundle of a principal �bre bundle Q is
Q [g] = (Q � g)/G . Similarly, the co-adjoint bundle of Q is
Q [g�] = (Q � g�)/G .
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The reduced Pontryagin bundle P/G is isomorphic to the direct sum
of Q [g]�Q [g�] and T (Q/G )� T �(Q/G ).

The bilinear form hh�, �ii on P is G -invariant and it gives rise to a
bilinear form hh�, �iiP/G on the reduced Pontryagin bundle such that

hhp1, p2ii = hhρP (p1), ρP (p2)iiP/G

for every p1, p2 in the same �bre of P.

The Courant bracket evaluated on G -invariant sections of P ! Q
gives a G -invariant section of P ! G . Hence, there is a bracket
[�, �]P/G on the space Γ(P/G ) of sections of π : P/G ! Q/G such
that if σ1 and σ2 are G -invariant sections of P ! G , then

[σ1, σ2]P/G = [σ1, σ2].

J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 19 July 2012 15

/ 18



The reduced Pontryagin bundle P/G is isomorphic to the direct sum
of Q [g]�Q [g�] and T (Q/G )� T �(Q/G ).
The bilinear form hh�, �ii on P is G -invariant and it gives rise to a
bilinear form hh�, �iiP/G on the reduced Pontryagin bundle such that

hhp1, p2ii = hhρP (p1), ρP (p2)iiP/G

for every p1, p2 in the same �bre of P.

The Courant bracket evaluated on G -invariant sections of P ! Q
gives a G -invariant section of P ! G . Hence, there is a bracket
[�, �]P/G on the space Γ(P/G ) of sections of π : P/G ! Q/G such
that if σ1 and σ2 are G -invariant sections of P ! G , then

[σ1, σ2]P/G = [σ1, σ2].

J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 19 July 2012 15

/ 18



The reduced Pontryagin bundle P/G is isomorphic to the direct sum
of Q [g]�Q [g�] and T (Q/G )� T �(Q/G ).
The bilinear form hh�, �ii on P is G -invariant and it gives rise to a
bilinear form hh�, �iiP/G on the reduced Pontryagin bundle such that

hhp1, p2ii = hhρP (p1), ρP (p2)iiP/G

for every p1, p2 in the same �bre of P.

The Courant bracket evaluated on G -invariant sections of P ! Q
gives a G -invariant section of P ! G . Hence, there is a bracket
[�, �]P/G on the space Γ(P/G ) of sections of π : P/G ! Q/G such
that if σ1 and σ2 are G -invariant sections of P ! G , then

[σ1, σ2]P/G = [σ1, σ2].
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Consider now a Dirac structure on Q given by a G -invariant subbundle
D of P, which is maximal isotropic with respect to the bilinear form.

A G -invariant Dirac structure D � P = TQ �T �Q is locally spanned
by G -invariant sections.

The space D/G of G -orbits in D is a subbundle of P/G , which is
maximally isotropic with respect to the bilinear form on P/G induced
by the bilinear form hh�, �iiP/G .

If the Dirac structure D is closed in the sense that for each pair σ1
and σ2 of G -invariant sections of D ! Q, the bracket [σ1, σ2] has
values in D, then [σ1, σ2]P/G has values in D/G for every pair of
sections σ1, σ2 of (D/G )! Q/G .
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Reduction for a proper action

We drop the assumption that the action of G on Q is free.

Nevertheless, if a Dirac structure D � P = TQ � T �Q is invariant
under a proper action of a connected Lie group G on Q, D is locally
spanned by G -invariant sections.

For each compact subgroup H of G and each connected component L
of

QH = fq 2 Q j Gq = Qg,
consider the intersection DL = D \ π�1(L), where π : P ! Q is the
Pontryagin bundle projection.

Theorem
D is uniquely determined by the collection of all structures DL, as L varies
over connected components of QH and H varies over compact subgroups
of G.
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J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 19 July 2012 17

/ 18



Let NL � G be a subgroup of G consisting of elements g 2 G that
preserve the manifold L.

The action of GL = NL/H on L is free and proper.
Since the Dirac structure D is G -invariant, it follows that DL is
GL-invariant.

Hence, we need to analyze the structure of DL and apply regular
reduction.
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