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Strati�ed subcartesian spaces

A strati�cation of a subcartesian space S is a partition of S by a locally
�nite family M of locally closed connected submanifolds M, called strata
of M, which satisfy the following
Frontier Condition. For M,M 0 2M, if M 0 \M 6= ∅, then either
M 0 = M or M 0 � MnM.
We showed that every subcartesian space S admits a partition O by orbits
of the family X(S) of all vector �elds on S , which we denote by O. It is of
interest to see under what conditions this partition of S is a strati�cation.

The partition O of a subcartesian space S by orbits of the family X(S) of
all vector �elds on S satis�es Frontier Condition.
Proof. Let O and O 0 be orbits of X(S). Suppose x 2 O 0 \O with
O 0 6= O. We �rst show that O 0 � O. Note that the orbit O is invariant
under the family of one-parameter local groups of local di¤eomorphisms of
S generated by vector �elds. Since, x 2 O, it follows that, for every vector
�eld X on S , exp(tX )(x) is in O if it is de�ned. But, O 0 is the orbit of
X(S) through x . Hence, O 0 � O.
J. Śniatycki (University of Calgary) Singular Reduction

Mechanics and Geometry in Canada Fields Instutute Toronto 18 July 2012 2
/ 21



Strati�cations of S can be partially ordered by inclusion. If M1 and M2

are two strati�cations of S , we say that M1 is a re�nement of M2 and
write M1 �M2, if, for every M1 2M1, there exists M2 2M2 such that
M1 � M2. We say that M is a minimal (coarsest) strati�cation of S if it is
not a re�nement of a di¤erent strati�cation of S . If S is a manifold, then
the minimal strati�cation of S consists of a single manifold M = S .
If (S ,M) is a strati�ed subcartesian space and N is a manifold, the
product S �N is strati�ed by the family MS�N = fM �N j M 2Mg. If
U is an open subset of a strati�ed space (S ,M), we can consider a family
MU = fM \U j U 2Mg. In general, MU need not be a strati�cation of
U.
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J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 18 July 2012 3

/ 21



A strati�cation M of a subcartesian space S is locally trivial if, for every
M 2M and each x 2 M,
(i) there exists an open neighbourhood U of x in S such that MU is a
strati�cation of U,
(ii) there exists a subcartesian strati�ed space (S 0,M0) with a
distinguished point y 2 S 0 such that the singleton fyg 2M0, and
(iii) there is an isomorphism ϕ : (U,MU )! ((M \U)� S 0,M0

(M\U )�S 0)

such that ϕ(x) = (x , y).
Let M be a strati�cation of a subcartesian space S .

De�nition
We say that M admits local extension of vector �elds if, for each M 2M,
for each vector �eld XM on M and for each point x 2 M, there exists a
neighbourhood V of x in M, and a vector �eld X on S such that
XjV = XM jV . In other words, the vector �eld X is an extension to S of the
restriction of XM to V .
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Theorem
Every locally trivial strati�cation of a subcartesian space S admits local
extensions of vector �elds.

Proof. Let XM be a vector �eld on M 2M. Since M is locally trivial,
given x0 2 M, there exists a neighbourhood U of x0 in M, a strati�ed
di¤erential space (S 0,M0) with a distinguished point y 2 S 0 such that the
singleton fy0g 2M0, and an isomorphism ϕ : U ! (M \U)� S 0of
strati�ed subcartesian spaces such that ϕ(x0) = (x0, y0).
Let exp(tXM ) be the local one-parameter group of local di¤eomorphisms
of M generated by XM , and let X(M\U )�S 0 be a derivation of
C∞((M \U)� S 0) de�ned by

(X(M\U )�S 0h)(x , y) =
d
dt
h(exp(tXM )(x), y)jt=0,

for every h 2 C∞((M \U)� S 0) and each (x , y) 2 (M \U)� S 0. Since
X(M\U )�S 0 is de�ned in terms of a local one-parameter group
(x , y) 7! (exp(tXM )(x), y) of di¤eomorphisms, it is a vector �eld on
(M \U)� S 0.
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We can use the inverse of the di¤eomorphism ϕ : U ! (M \U)� S 0 to
push-forward X(M\U )�S 0 to a vector �eld XU = (ϕ

�1)�X(M\U )�S 0 on U.
Choose a function f0 2 C∞(S) with support in U and such that f (x) = 1
for x in some neighbourhood U0 of x0 contained in U. Let X be a
derivation of C∞(S) extending f0XU by zero outside U. In other words, for
every f 2 C∞(S), if x 2 U, then (Xf )(x) = f0(x)(XU f )(x), and if
x /2 U0, then (Xf )(x) = 0. Clearly, X is a vector �eld on S extending the
restriction of XM to M \U0. �

Theorem
Let M be a strati�cation of a subcartesian space S admitting local
extensions of vector �elds. The partition O of S by orbits of the family
X(S) of all vector �elds on S is a strati�cation of S, and M is a
re�nement of O. Moreover, if M is minimal, then M = O.
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Proof. Let M be a strati�cation of S admitting local extensions of vector
�elds. Since every vector �eld XM on a manifold M 2M extends locally
to a vector �eld on S and M is connected, it follows that M is contained
in an orbit O 2 O.
Every orbit O 2 O is a union of strata of M. Since M is locally �nite, for
each x 2 O, there exists a neigbourhood V of x in S which intersects only
a �nite number of strata M1, ...,Mk of M. Hence, V intersects only a
�nite number of orbits in O. Moreover, since strata of M form a partition

of S , it follows that V =
k[
i=1

Mi \ V .

Consider x 2 M1. Since M1 is locally closed there exists a neighbourhood
U of x contained in V , and such that M1 \U is closed in U. We can

relabel the manifolds M1, ...,Mk so that O \U =
l[
i=1

Mi \U for some

l � k. Without loss of generality we may assume that x 2 M i for each
i = 2, ..., l . We want to see if O \U is closed in U.
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Suppose we have a sequence (yk ) in O \U convergent to y 2 U. Since
O \U is a �nite union of disjoined manifolds, there must be a
subsequence of (yk ) contained in one of them. Without loss of generality
we may assume that each yk 2 Mi for some i = 1, ..., l . We want to show
that the limit y = limk!∞ yk 2 O \U. If y 2 Mi , then
y 2 Mi \U � O \U. If y 2 M inMi , then y 2 Mj for some j = 1, ..., k.
By assumption, y 2 U and U intersects only the strata that have x in
their closure. If Mj � O then y 2 O \U. Therefore, y /2 O \U implies
that Mj is not contained in O. By a construction in the proof of
Sussmann�s Theorem, expx X(W ) is an m dimensional locally closed
submanifold of S . Let U0 be an open neighbourhood of x in U such that
U0 \ expx X(W ) is closed in U0.
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As before, we consider a sequence (yk ) in
Mi \U0 \ expx X(W ) � O \U0, which converges to y 2 Mj \U0. Since
Mj * O, it follows that y /2 U0 \ expx X(W ) � U0 \O. This contradicts
the fact that U0 \ expx X(W ) is closed in U0 Therefore, O \U is closed in
U. Since x is an arbitrary point of the orbit O, it follows that O is locally
closed.
We have shown that the partition O of S by orbits of the family X (S) of
all vector �elds on S is locally �nite and that each orbit in O is locally
closed. Also, we showed earlier that that O is a strati�cation of S . By
construction, every stratum of the original strati�cation M is contained in
a stratum of O. This implies that M � O. If M is minimal, then M = O.
�
Theorem
The space P/G of orbits of a proper action of a Lie group G on a
manifold P is a minimally strati�ed space that admits local extensions of
vector �elds.

Proof. Minimal strati�cation (Bierstone). Local extension of vector �elds
(Lusala - Śniatycki).
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Symplectic reduction

A symplectic form on a manifold P is a closed and non-degenerate
2-form on P. Non-degeneracy of ω implies that for every f 2 C∞(P),
there exists a unique vector �eld Xf such that

Xf ω = �df ,

called the Hamiltonian vector �eld of f .

Let G be a connected Lie group, and

Φ : G � P ! P : (g , p) 7! Φg (p) = gp

be an symplectic action of G on P with an Ad�-equivariant
momentum map J : P ! g�. For each ξ 2 g, the action on P of the
one-parameter subgroup exp tξ of G is given by translations along the
integral curves of XJξ

, where Jξ = hJ j ξi. is the momentum
corresponding to ξ.
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Poisson algebra

The assignment f 7! Xf gives a linear map of the space C∞(P) of
smooth functions on P into the space X(P) of smooth vector �elds
on P. If P is connected, the kernel of this map consists of constant
functions on P.

The symplectic form ω on P induces a bracket on C∞(P), called the
Poisson bracket, such that for each f1, f2 2 C∞(P),

ff1, f2g = �Xf1 f2 = Xf2 f1 = �ω(Xf1 ,Xf2).

The Poisson bracket is bilinear, antisymmetric, acts as a derivation,
and satis�es the Jacobi identity.
The action Φ of G on (P,ω) gives rise to the action
G � C∞(P)! C∞(P) : (g , f ) 7! Φ�

g f . Since the action of G on P is
symplectic, it follows that its action on C∞(P) is Poisson. That is, it
preserves the Poisson bracket. For each g 2 G and f1, f2 2 C∞(P),
Φ�
g ff1, f2g = fΦ�

g f1,Φ�
g f2g.

The space C∞(P)G of G -invariant smooth functions on P is a
Poisson subalgebra of P.
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Poisson reduction

We assume here that the action of G on P is proper. We denote by
R = P/G the space of G -orbits on P and by ρ : P ! R the orbit
map. The di¤erential structure of R is

C∞(R) = ff : R ! R j ρ�f 2 C∞(P)g.

C∞(R) has a structure of a Poisson algebra isomorphis to C∞(P)G .

The orbit type strati�cation N of R = P/G coincides with the
partition of R by the family of all vector �elds X(R).

Theorem
Each stratum N of R is a Poisson manifold.

Given f 2 C∞(R), let Xf 2 Der C∞(R) be de�ned by Xf (h) = fh, f g
for each h 2 C∞(R). We refer to Xf as the Poisson derivation of f .

We denote by P(R) the family of all Poisson derivations of C∞(R).

J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 18 July 2012 12

/ 21



Poisson reduction

We assume here that the action of G on P is proper. We denote by
R = P/G the space of G -orbits on P and by ρ : P ! R the orbit
map. The di¤erential structure of R is

C∞(R) = ff : R ! R j ρ�f 2 C∞(P)g.

C∞(R) has a structure of a Poisson algebra isomorphis to C∞(P)G .

The orbit type strati�cation N of R = P/G coincides with the
partition of R by the family of all vector �elds X(R).

Theorem
Each stratum N of R is a Poisson manifold.

Given f 2 C∞(R), let Xf 2 Der C∞(R) be de�ned by Xf (h) = fh, f g
for each h 2 C∞(R). We refer to Xf as the Poisson derivation of f .

We denote by P(R) the family of all Poisson derivations of C∞(R).
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J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 18 July 2012 12

/ 21



Poisson reduction

We assume here that the action of G on P is proper. We denote by
R = P/G the space of G -orbits on P and by ρ : P ! R the orbit
map. The di¤erential structure of R is

C∞(R) = ff : R ! R j ρ�f 2 C∞(P)g.

C∞(R) has a structure of a Poisson algebra isomorphis to C∞(P)G .

The orbit type strati�cation N of R = P/G coincides with the
partition of R by the family of all vector �elds X(R).

Theorem
Each stratum N of R is a Poisson manifold.

Given f 2 C∞(R), let Xf 2 Der C∞(R) be de�ned by Xf (h) = fh, f g
for each h 2 C∞(R). We refer to Xf as the Poisson derivation of f .

We denote by P(R) the family of all Poisson derivations of C∞(R).
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Theorem
For each f 2 C∞(R), the Poisson derivation Xf is the push-forward of the
Hamiltonian vector �eld Xρ�f on P by the orbit map ρ : P ! R.

Hence, Poisson derivations of R are vector �elds on R.
Orbits of P(R) are smooth manifolds immersed in strata of R.
Let Q be the orbit of P(R) through x 2 R. For each f 2 C∞(R), the
restriction Xf jQ of the Poisson vector �eld of f to Q is a vector �eld
on Q, and TQ = fXf (x) j x 2 Q, f 2 C∞(R)g.

Theorem
Each orbit Q of the family P(R) of Poisson vector �elds on R is a
symplectic manifold with a unique symplectic form ωQ on Q such that

ωQ (Xf1 jQ ,Xf2 jQ ) = �ff1, f2gjQ

for every f1, f2 2 C∞(R). Moreover, for each p 2 ρ�1(Q),

ωQ (Xf1 jQ ,Xf2 jQ )(ρ(p)) = ω(Xρ�f1 ,Xρ�f2)(p).
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Hamiltonian vector �eld Xρ�f on P by the orbit map ρ : P ! R.

Hence, Poisson derivations of R are vector �elds on R.
Orbits of P(R) are smooth manifolds immersed in strata of R.
Let Q be the orbit of P(R) through x 2 R. For each f 2 C∞(R), the
restriction Xf jQ of the Poisson vector �eld of f to Q is a vector �eld
on Q, and TQ = fXf (x) j x 2 Q, f 2 C∞(R)g.

Theorem
Each orbit Q of the family P(R) of Poisson vector �elds on R is a
symplectic manifold with a unique symplectic form ωQ on Q such that

ωQ (Xf1 jQ ,Xf2 jQ ) = �ff1, f2gjQ

for every f1, f2 2 C∞(R). Moreover, for each p 2 ρ�1(Q),

ωQ (Xf1 jQ ,Xf2 jQ )(ρ(p)) = ω(Xρ�f1 ,Xρ�f2)(p).
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Level sets of the momentum map

Consider the family

E(P) = fXf j f 2 C∞(P)G g
of Hamiltonian vector �elds of G -invariant smooth functions on P.

Theorem
For each p 2 P, the orbit through p of the family E(P) is contained in the
set PGp = fx 2 P j Gx = Gpg, where Gp is the isotropy group of p.

Proof. For f 2 C∞(P)G , let exp tXf denote the local one-parameter
group of local di¤eomorphisms generated by the Hamiltonian vector �eld
Xf of f . The G -invariance of X implies that for each g 2 G ,
Φg � exp tXf = (exp tXf ) �Φg . Let x = (exp tXf )(p), and g 2 Gx . Then
x = Φg x implies (exp tXf )(p) = (Φg � (exp tXf ))(p). Hence,
p = ((exp tXf )

�1 �Φg � (exp tXf ))(p) = ((exp tXf )�1 � (exp tXf ) �Φg )(p) = Φgp,

and g 2 Gp . Thus Gx � Gp . In a similar way, we can show that Gp � Gx .
Hence, Gx = Gp , which ensures that the orbit of Xf through p is
contained in PGp . Therefore, the orbit through p of the family E(P) is
contained in PGp . �
J. Śniatycki (University of Calgary) Singular Reduction

Mechanics and Geometry in Canada Fields Instutute Toronto 18 July 2012 14
/ 21



Theorem
Assume that the action of G on P is proper. Then, for each p 2 P,

E(P)p = kerp dJ \ TpPGp ,

and the orbit of E(P) through p is the connected component of
J�1(J(p))) \ PGp that contains p.
( ii) For each compact subgroup H of G, connected components of PH are
symplectic manifolds.
( iii) If particular, if p 2 PH , µ = J(p) and L is the connected component
of PH that contains p, then the connected component of J�1(µ) \ L that
contains p is a manifold and its tangent bundle is spanned by Hamiltonian
vector �elds of G-invariant functions.

This theorem, due to Ortega and Ratiu, is at the foundation of their
theory of optimal reduction.
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We showed above orbits of the family P(R) of Poisson vector �elds on R
are symplectic manifolds. In the theorem below, we show that they are
projections to R of connected components of level sets of J with
submanifolds of P with a �xed isotropy group.

Theorem
Assume that the action of a connected Lie group G on a symplectic
manifold (P,ω) is Hamiltonian and proper. Given p0 2 P, let µ = J(p0)
and H = Gp0 be the isotropy group of p0. The connected component K of
J�1(µ) \ PH is a submanifold of P, and the projection Q = ρ(K )
coincides with the orbit of P(R) through ρ(p0). In particular, the
symplectic form ωQ satis�es the condition

ρ�KωQ = ωK ,

where ρK : K ! Q is the restriction of the orbit map ρ : P ! R to
domain K and codomain Q, and ωK is the pull-back of ω by the inclusion
map K ,! P.
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Review of the strati�cation structure.

The proper action of G on P de�nes the orbit type stratifcation M of P,
whose strata are connected components of local manifolds

PH = fp 2 P j Gp is conjugate to Hg,

where H is a compact subgroup of G . Note that this strati�cation is not
minimal.
The orbit type strati�cation N of R = P/G is the projection to R of the
strati�cation M of P by the orbit map ρ. For each stratum M 2M, the
projection N = ρ(M) is a stratum of N. The strati�cation N of R
coincides with the partition O of R by orbits of the family X(R) of all
vector �elds on R.
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Theorem
We assume that the action of G on P is proper and denote by M and N
orbit type strati�cations of P and R = P/G, respectively.
( i) For each µ 2 g�, the family of sets

Mµ = fconnected components of J�1(µ) \M j M 2Mg

is a strati�cation of the level set J�1(µ). The inclusion map J�1(µ) ,! P
is a morphism of strati�ed spaces.
( ii) Connected components of the sets ρ(J�1(µ) \M) = ρ(J�1(µ)) \N,
where N = ρ(M), are symplectic orbits of the family P(R) of Poisson
vector �elds on R.
( iii) The family of sets

Nµ = fconnected components of ρ(J�1(µ)) \N j N 2 Ng

is a strati�cation of ρ(J�1(µ)) with symplectic strata. The restriction
ρjJ�1(µ) of ρ to J�1(µ) is a morphism of strati�ed spaces.
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Up to now we considered the di¤erential structure of J�1(µ) given by its
inclusion in P and the structure of ρ(J�1(µ)) embedded in the orbit space
R = P/G .
In Hamiltonian mechanics we often perform the reduction procedure by
investigating �rst the structure of the quotient J�1(µ)/Gµ, where

Gµ = fg 2 G j Ad�g µ = µg

is the isotropy group of µ. Since J : P ! g� is continuous, it follows that
J�1(µ) is a closed subset of P. The local compactness of P implies that
J�1(µ) is locally compact. Moreover, the action Gµ on J�1(µ) is proper
because the action of G on P is proper. The general results on quotient
spaces prove only that J�1(µ)/Gµ is a locally compact di¤erential space
with the quotient space topology and the di¤erential structure

C∞(J�1(µ)/Gµ) = ff 2 C 0(J�1(µ)/Gµ) j ρ�µf 2 C∞(J�1(µ))g,

where
ρµ : J�1(µ)! J�1(µ)/Gµ

is the orbit map. However, we can prove much more.
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Theorem
There exists a di¤eomorphism l : J�1(µ)/Gµ ! ρ(J�1(µ)) such that the
following diagram

i
J�1(µ) �! P

ρµ # # ρ

J�1(µ)/Gµ R
&

l
%

j
ρ(J�1(µ))

,

where i : J�1(µ) �! P and j : ρ(J�1(µ)) �! R denote the inclusion
maps, commutes.
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Theorem
The strati�cation of ρ(J�1(µ)) gives rise to a strati�cation of J�1(µ)/Gµ

such that the orbit map ρµ: : J�1(µ)! J�1(µ)/Gµ is a morphism of
strati�ed spaces.

This gives the �avour of type of results we can obtain in sigular reduction.
We could continue with the desciption of reduction of coadjoint orbits, but
we would not contribute anything new.
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