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Introduction

I would like to than the organizers of this event for inviting me and
giving me an opportunity to give this series of lectures.

Reduction of symmetries in mechanics was an important theme in
Jerry Marsden�s research.

In 1974, Marsden and Weinstein formulated a reduction scheme for
free and proper action of the symmetry group.

In a 1981 paper, Arms, Marsden and Moncrief showed that the
reduction of the zero level of a proper action of a Lie group exhibits
properties of a strati�ed space.

In 1998, Koon and Marsden proposed Poisson reduction of
non-holonomic systems.

In a 2007 paper, Yoshimura and Marsden investigated reduction of
symmetries of Dirac structures.
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Orbit spaces

In reduction of symmetries of a Hamiltonian system, we study the
interplay between the structure of the space of orbits of the symmetry
group of the system and its symplectic structure.

If the action of the symmetry group G on the phase space P of a
system is free and proper, then the space of orbits is a manifold and
the the space of orbits P/G is a quotient manifold of P.
If the action on P of a Lie group G is proper, the orbit space P/G is
strati�ed (Bierstone 1980).

Strati�ed spaces were introduced by Whitney (1955), who called
them manifold collections. The term strati�ed spaces (strati�cations)
was coined by Thom (1955).

The following photograph of soap bubbles illustrates the structure of
a strati�ed space.
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Singular reduction

In 1983, Cushman initiated his technique of singular reduction with a
study of a Hamiltonian action of a compact Lie group. Using the
1975 paper of G. Schwarz, in many cases, Cushman was able to
describe explicitly the strati�cation structure of the reduced space in
terms of algebraic invariants of the action.

I was fascinated by Cushman�s results and tried to understand his
theory. His explanations were very helpful. Nevertheless, for a long
time I did not understand was he was doing.

Finally, I realized that Cushman was using the language of di¤erential
geometry in the sense of Sikorski.

In his 1972 book, Sikorski introduced the notion of a di¤erential
structure on a topological space that is given by a class of continuous
functions which are deemed to be smooth.
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Di¤erential structures

A di¤erential structure on a topological space S is a family C∞(S) of
functions on S such that

1 The collection of sets

ff �1((a, b)) j f 2 C∞(S), a, b 2 Rg

is a subbasis for the topology of P/G .
2 For every n 2 N, F 2 C∞(Rn) and f1, ..., fn 2 C∞(S),

F (f1, ..., fn) 2 C∞(S).

3 If h : S ! R has the property that for every point x 2 S , there exists
an open neighbourhood U of x in S and a function f 2 C∞(S) such
that

hjU = fjU ,

then h 2 C∞(S).

A di¤erential space is a topological space S endowed with a
di¤erential structure C∞(S).
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Category of di¤erential spaces

Let S and T be di¤erential spaces with di¤erential structures C∞(S)
and C∞(T ), respectively.

A map ϕ : S ! T is smooth if ϕ�f 2 C∞(S) for every f 2 C∞(T ).
A map ϕ : S ! T is a di¤eomorphism if ϕ is smooth, invertible and
ϕ�1 is smooth.

If T is a di¤erential space, and S � T , then S is a di¤erential space
with the di¤erential structure generated by restrictions to S of
functions in C∞(T ).

A di¤erential space S is a manifold if every point of S has a
neighbourhood di¤eomorphic to an open subset of Rn.

A di¤erential space S is subcartesian if it is Hausdor¤ and every point
of S has a neighbourhood di¤eomorphic to a subset of Rn.
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Proper action

Let
Φ : G � P ! P : (g , p) 7! Φg (p) = gp

be a proper action of a connected Lie group G on a manifold P.

Properness of Φ means that for every convergent sequence (pn) in P
and a sequence (gn) in G such that the sequence (gnpn) is convergent
in P, there exists a convergent subsequence (gnk ) of G and

lim
n!∞

gnpn = ( lim
k!∞

gnk )( limn!∞
pn).

Properness of the action implies that all isotropy groups

Gp = fg 2 G j gp = pg

are compact.
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Space of orbits of a proper action

We denote the space of G orbits in P by P/G and the canonical
projection by

ρ : P ! P/G : p 7! Gp.

The di¤erential structure of the orbit space P/G is

C∞(P/G ) = ff 2 C 0(P/G ) j ρ�f 2 C∞(P)G g,

where C∞(P)G is the space of smooth G -invariant functions on P.

Theorem
The orbit space P/G endowed with the di¤erential structure C∞(P/G ) is
a subcartesian di¤erential space.

Proof of this theorem involves all the steps which entered in
Cushman�s singular reduction theory.
Our aim is to decode the structure of P/G from the data encoded in
its di¤erential structure C∞(P/G ).
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where C∞(P)G is the space of smooth G -invariant functions on P.

Theorem
The orbit space P/G endowed with the di¤erential structure C∞(P/G ) is
a subcartesian di¤erential space.

Proof of this theorem involves all the steps which entered in
Cushman�s singular reduction theory.
Our aim is to decode the structure of P/G from the data encoded in
its di¤erential structure C∞(P/G ).
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Di¤erential equations on subcartesian spaces

A derivation of C∞(S) is a map X : C∞(S)! C∞(S) satis�ying
Leibniz�s rule

X (f1f2) = X (f1)f2 + f1X (f2).

Let I be an interval in R. A smooth map c : I ! S is an integral
curve of a derivation X if

d
dt
f (c(t)) = (X (f ))(c(t))

for every t 2 I .

Theorem
Let S be a subcartesian space, and let X be a derivation of C∞(S). For
every x 2 S, there exists a unique maximal integral curve c : I ! S of X
such that c(0) = x.
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Orbits of families of vector �elds

Let X be a derivation of the di¤erential structure C∞(S) of a
subcartesian space S .

De�nition
We say that X is a vector �eld on S if translations along integral curves of
X give rise to local one-parameter groups exp tX of local di¤eomorphisms
of S .

Let F be a family of vector �elds on a subcartesian space S .
For x0 2 S , the orbit of F through x0 is

Ox0 =
∞[
n=1

[
X1,..,Xn

[
J1,...,Jn

n[
i=1

f(exp tiXi )(xi�1) 2 S j ti 2 Jig,

where the vector �elds X1, ...,Xn are in F and, for each i = 1, ..., n,
the interval Ji � Ixi�1 is either [0, τi ] or [τi , 0] with
xi = (exp τiXi )(xi�1).
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Generalized Sussmann�s theorem

Theorem
Orbits of families of vector �elds on a subcartesian space S are manifolds
immersed in S .

Let X(S) be the family of all vector �elds on S . By the theorem
above, every subcartesian space S is partitioned by orbits of the
family X(S) of all vector �elds on S .
picture of soap bubbles

Note, that we have got a structure theorem for a very general space.
The category of subcartesian spaces contains all subsets of Rn and
spaces that locally look like subsets Rn.
According to our theorem, each of these spaces has a partition by
immersed manifolds that are orbits of the family of all vector �elds.
Moreover, this partition is minimal in the sense that there is no local
one-parameter group of local di¤eomorphisms that acts transversally
to the manifolds of the partition.
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Application to reduction of symmetry

Let P/G be the space of orbits of a proper action of a connected Lie
group G on a manifold P.

Theorem
Strata of the orbit type strati�cation of P/G are orbits of the family
X(P/G ) of all vector �elds on P/G.

If P has a geometric structure invariant under the action of G , then
this structure induces an additional structure on the orbit space.
The process of determination of the structure of the orbit space P/G
induced by an invariant geometric structure on P is called reduction
of symmetries.
For a proper action of G on P, it is convenient to encode the
geometric structure on P as an algebraic structure on the ring
C∞(P)G of smooth functions on P.
The di¤erential structure C∞(P/G ) inherits an isomorphic algebraic
structure.
The last step is to determine the geometric structure on P/G on the
basis of the algebraic structure of C∞(P/G ).
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Palais�Slice Theorem

A slice for the action of G on P through a point p 2 P is a
submanifold Sp containing p such that:

1 Sp is invariant under the action of the iostropy group Gp of p.
2 GSp = fgq j g 2 G , q 2 Spg is an open G -invariant neighbourhood of
p in P.

3 Sp \ (Gq) = Gpq for every q 2 Sp .

By a Theorem of Palais (1961), the properness of the action of G on
P ensures that for every point p 2 P, there exists a slice Sp through
p.

Corollary
The open neighboourhood GSp/G of the orbit Gp in P/G is
di¤eomorphic to Sp/Gp .
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Bochner�s Linearization Lemma

Since p is a �xed point of Gp , the derived action of G restricted to Gp
preserves TpP, and induces a linear action

Ψp : Gp � TpP ! TpP : (g , u) 7! TΦg (u).

By Bochner�s Linearization Lemma (1945), one can choose Sp so that
the action of Gp on Sp is equivalent to the the restriction of Ψp to an
open Gp-invariant neighbourhood Up of 0 in a subspace Ep of TpP.
In other words, there exists a di¤eomorphism ψp : Up ! Sp such that

ψp � TΦg = Φg � ψp

for all g 2 Gp .

Corollary
Sp/Gp is di¤eomorphic to the orbit space Up/Gp of the linear action Ψp

of Gp on Ep � Up .
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open Gp-invariant neighbourhood Up of 0 in a subspace Ep of TpP.
In other words, there exists a di¤eomorphism ψp : Up ! Sp such that

ψp � TΦg = Φg � ψp

for all g 2 Gp .

Corollary
Sp/Gp is di¤eomorphic to the orbit space Up/Gp of the linear action Ψp

of Gp on Ep � Up .
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Schwarz�s Theorem and Weyl�s Nullstellensatz

The di¤erential structure of Up/Gp is generated by the restrictions to
Up of smooth functions on Ep .

In other words, Up/Gp is a di¤erential subspace of the space Ep/Gp
consisting of orbits of the linear action of Gp on Ep .

By a theorem of G. Schwarz (1975), invariant smooth functions of a
linear action of a compact group are smooth functions of algebraic
invariants.

By Weyl�s Nullstellensatz (1946), the ring of algebraic invariants of a
linear action of a compact group is �nitely generated.
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J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 16 July 2012 15

/ 22



Hilbert basis and Tarski-Seidenberg Theorem

A Hilbert basis of the action of Gp on Ep is a minimal set σ1, ..., σn of
homogeneous generators of the ring of algebraic invariants.

The corresponding Hilbert map is

σp : Ep ! Rn : v 7! (σ1(v), ..., σn(v)).

The map σp : Ep ! Rn induces a map

σ̃p : Ep/Gp ! Σ = σp(Ep),

which is an isomorphism onto its range.
Since the Hilbert map σp : TpP ! Rn is algebraic, the
Tarski-Seidenberg Theorem ensures that its range Σ is a semialgebraic
subset of Rn.
In particular, Σ is a closed subset of Rn and the di¤erential structure
of Σ is given by restrictions of smooth functions on Rn to Σ.

Corollary
Ep/Gp is di¤eomorphic to Σ � Rn.
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J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 16 July 2012 16

/ 22



Hilbert basis and Tarski-Seidenberg Theorem

A Hilbert basis of the action of Gp on Ep is a minimal set σ1, ..., σn of
homogeneous generators of the ring of algebraic invariants.
The corresponding Hilbert map is

σp : Ep ! Rn : v 7! (σ1(v), ..., σn(v)).

The map σp : Ep ! Rn induces a map

σ̃p : Ep/Gp ! Σ = σp(Ep),

which is an isomorphism onto its range.

Since the Hilbert map σp : TpP ! Rn is algebraic, the
Tarski-Seidenberg Theorem ensures that its range Σ is a semialgebraic
subset of Rn.
In particular, Σ is a closed subset of Rn and the di¤erential structure
of Σ is given by restrictions of smooth functions on Rn to Σ.

Corollary
Ep/Gp is di¤eomorphic to Σ � Rn.
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Summary

We have obtained a sequence of di¤eomorphisms of neighbourhoods
of an arbitrary orbit Gp 2 P/G .

1 GSp/G is di¤eomorphic to Sp/Gp , where Sp is a slice at p and Gp is
the isotropy group of p.

2 Sp/Gp is di¤eomorphic to Up/Gp , where Up is an invariant open
subset of a vector subspace Ep of TpP and the action of Gp on Ep is
linear.

3 Ep/Gp is di¤eomorphic to Σ � Rn .

Hence, GSp/G is di¤eomorphic to an open subset of Rn.
It is easy to show that the topology of the orbit space is Hausdor¤.

Therefore, P/G is subcartesian.
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Reduction of symmetries

If P has a geometric structure invariant under the action of G , then
this structure induces an additional structure on the orbit space.

The process of determination of the structure of the orbit space P/G
induced by an invariant geometric structure on P is called reduction
of symmetries.

For a proper action of G on P, it is convenient to encode the
geometric structure on P as an algebraic structure on the ring
C∞(P)G of smooth functions on P.

The di¤erential structure C∞(P/G ) inherits an isomorphic algebraic
structure.

The next step is to determine the geometric structure on P/G on the
basis of the algebraic structure of C∞(P/G ).
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Symplectic reduction

Suppose that P is endowed with an invariant symplectic form ω.

The symplectic structure on P de�nes a Poisson algebra structure on
C∞(P).
Since ω is G -invariant, the induced Poisson structure on C∞(P) is
G -invariant.
Hence, C∞(P)G is a Poisson subalgebra of C∞(P).
Therefore, C∞(P/G ) has the structure of a Poisson algebra.
For each h 2 C∞(P/G ), the Poisson derivation Xh of h is given by

Xh(f ) = ff , hg for all f 2 C∞(P/G ).

Poisson derivations of C∞(P/G ) are vector �elds on P/G .
Orbits of the family of all Poisson vector �elds are symplectic
manifolds.
Thus, the orbit space P/G is strati�ed. Each stratum is a Poisson
manifold singularly foliated by symplectic manifolds.

J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 16 July 2012 19

/ 22



Symplectic reduction

Suppose that P is endowed with an invariant symplectic form ω.
The symplectic structure on P de�nes a Poisson algebra structure on
C∞(P).

Since ω is G -invariant, the induced Poisson structure on C∞(P) is
G -invariant.
Hence, C∞(P)G is a Poisson subalgebra of C∞(P).
Therefore, C∞(P/G ) has the structure of a Poisson algebra.
For each h 2 C∞(P/G ), the Poisson derivation Xh of h is given by

Xh(f ) = ff , hg for all f 2 C∞(P/G ).

Poisson derivations of C∞(P/G ) are vector �elds on P/G .
Orbits of the family of all Poisson vector �elds are symplectic
manifolds.
Thus, the orbit space P/G is strati�ed. Each stratum is a Poisson
manifold singularly foliated by symplectic manifolds.
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Details of symplectic reduction

A 2-form ω on P is symplectic if dω = 0 and ω is nondegenerate.

If ω is symplectic, for every f 2 C∞(P) there exists a unique vector
�eld Xf on P such that

Xf ω = �df .

Xf is called the Hamiltonian vector �eld of f .
If f describes the energy of a mechanical system, integral curves of
Xf give time evolution of the system.
The Posson bracket of f1 and f2 in C∞(P) is

ff1, f2g = �ω(Xf1 ,Xf2).

Poisson bracket is bilinear, skew-symmetric, acts as a derivation and
satis�es the Jacobi identity.
C∞(P) with the Poisson bracket f�, �g is called the Poisson algebra of
(P,ω).
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Hamiltonian action

Let G be a connected Lie group with a Lie algebra g and its dual g�.

A action Φ : G � P ! P : (g , p) 7! Φg (p) = gp is Hamiltonian if
there exists an Ad�G -equivariant map J : P ! g� such that for each
ξ 2 g, the action of exp tξ on P is given by translations along integral
curves of the Hamiltonian vector �eld XhJ jξi.
Symplectic reduction deals with the structure of of the orbit space
P/G of a proper Hamiltonian action of G on (P,ω).
Hamiltonian action of G on (P,ω) preserves ω.

Hence, Hamiltonian action of G on (P,ω) preserves preserves the
Poisson bracket.
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J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 16 July 2012 21

/ 22



Hamiltonian action

Let G be a connected Lie group with a Lie algebra g and its dual g�.

A action Φ : G � P ! P : (g , p) 7! Φg (p) = gp is Hamiltonian if
there exists an Ad�G -equivariant map J : P ! g� such that for each
ξ 2 g, the action of exp tξ on P is given by translations along integral
curves of the Hamiltonian vector �eld XhJ jξi.
Symplectic reduction deals with the structure of of the orbit space
P/G of a proper Hamiltonian action of G on (P,ω).

Hamiltonian action of G on (P,ω) preserves ω.

Hence, Hamiltonian action of G on (P,ω) preserves preserves the
Poisson bracket.
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Poisson reduction

The space C∞(P)G is a Poisson subalgebra of C∞(P).

Hence, the di¤erential structure C∞(P/G ) is a Poisson algebra.
For each f 2 C∞(P/G ), the derivation Yf de�ned by

Yf (h) = �fYf , hg 8 h 2 C∞(P/G )

is a vector �eld on P/G , called the Poisson vector �eld of f .
We know that orbits of the family X(P/G ) of all vector �elds on
P/G are strata of the orbit type strati�cation of P/G .

Theorem
Each stratum of the orbit type strati�cation of P/G is a Poisson manifold
singularly foliated by symplectic manifolds that are orbits of the family of
all Poisson vector �elds on P/G.
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