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Does this make sense?

Figure : figure courtesy Kakani Katija

Courtesy Nikita Nester

Figure : Jellyfish in Palau (video by Naoki Inoue posted on
YouTube Feb 2007)



The Averaging Theorem

Theorem
Let

ẋ = f (x)

be a dynamical system with an asymptotically stable fixed
point at x0. Then for any T -periodic vector field, g(x , t), the
dynamical systems

ẋ = f (x) + εg(x , t)

admits a limit cycle near x0 with period T for sufficiently small
ε.
1

1Guckenheimer & Holmes, Nonlinear Oscillations and Chaos, 2nd Ed,
Springer (1983).



The passive system has a stable point

eb
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b(f)b

Figure : embedding of a dead fish in R3

a motionless corpse in stagnant water is a stable state.
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An analogous system
Consider the system on R3

ẋ = y

ẏ = −x − νy + ε sin(t)

ż = ẋ + xẏ

The first two equations are that of a forced/damped oscillator.
Note that this ODE has z symmetry so we can “ignore” z.
(draw diagram on board)
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ẋ = y
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What just happened?
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Some sad news

The Averaging theorem requires that we be in a Banach space.
Here are some musings

1. We can use the completion of Q? This involves
non-differentiable mappings.

2. We can search for a set of feasible perturbations?

3. We may construct a sequence of finite dimensional
models.
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Conclusion

We found:

1. a dead fish immersed in an ideal fluid is a Lagrangian
system on TQ.

2. We can use particle relabling symmetry to reduce to A.

3. Friction forces produce a stable manifold, S ⊂ A.

4. The system on A is frame invariant.

5. Reduction by frame-invariance projects S to an
asymptotically stable point [S ] ∈ [A].

6. The averaging theorem suggests that a periodic force on
the shape of the fish leads to a limit cycle in [A].

7. this implies the existence of a rigid motion (i.e. an SE(3)
action) with each period.

8. ... almost.
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