Riemannian cubics on Lie groups and orbits

David Meier, joint work with François Gay-Balmaz, Darryl Holm,
Tudor Ratiu and François-Xavier Vialard

18 July

Plan of the talk (1)

Have a Lie group G (of transformations) acting transitively on a manifold Q (the object manifold:

$$
G \times Q \rightarrow Q, \quad(g, q) \mapsto g q
$$

Introduce a right-invariant metric γ_{G} on G and project the metric to Q to obtain the normal metric γ_{Q}.

Plan of the talk (1)

Have a Lie group G (of transformations) acting transitively on a manifold Q (the object manifold:

$$
G \times Q \rightarrow Q, \quad(g, q) \mapsto g q
$$

Introduce a right-invariant metric γ_{G} on G and project the metric to Q to obtain the normal metric γ_{Q}.
\rightsquigarrow Occurs naturally:
Image/shape matching ($G=$ Diff, $Q=$ shapes);
quantum mechanics ($G=S U(n+1), Q=\mathbb{C P}^{n}$ with Fubini-Study metric); unit sphere ($G=S O(3), Q=S^{2}$ with usual metric)

Plan of the talk (2)

- Consider a higher-order variational principle in both spaces. The solution curves are called Riemannian cubics. Generalization of cubic polynomials and cubic splines to Riemannian manifolds.
\rightsquigarrow Interpolation problems where a certain degree of smoothness is required (piecewise geodesic interpolation leads to discontinuous velocities). This may be unnatural (shapes), or inconvenient (quantum control, camera configurations).

Plan of the talk (2)

```
G\timesQ ->Q, (g,q)\mapstogq.
```

- Consider a higher-order variational principle in both spaces. The solution curves are called Riemannian cubics. Generalization of cubic polynomials and cubic splines to Riemannian manifolds.
\rightsquigarrow Interpolation problems where a certain degree of smoothness is required (piecewise geodesic interpolation leads to discontinuous velocities). This may be unnatural (shapes), or inconvenient (quantum control, camera configurations).
- Study the relationship between optimal curves on G and optimal curves on Q, for the variational principle defined on the respective spaces.
\rightsquigarrow Both variational principles (on G or on Q) may be interesting in applications.
\rightsquigarrow In geodesic shape matching one encounters geodesics on Diff with specific form of momenta/velocities (for example the singular momenta in landmark matching). One can explain this by understanding the relationship between geodesics on G and geodesics on Q.

Plan of the talk (2)

- Consider a higher-order variational principle in both spaces. The solution curves are called Riemannian cubics. Generalization of cubic polynomials and cubic splines to Riemannian manifolds.
\rightsquigarrow Interpolation problems where a certain degree of smoothness is required (piecewise geodesic interpolation leads to discontinuous velocities). This may be unnatural (shapes), or inconvenient (quantum control, camera configurations).
- Study the relationship between optimal curves on G and optimal curves on Q, for the variational principle defined on the respective spaces.
\rightsquigarrow Both variational principles (on G or on Q) may be interesting in applications.
\rightsquigarrow In geodesic shape matching one encounters geodesics on Diff with specific form of momenta/velocities (for example the singular momenta in landmark matching). One can explain this by understanding the relationship between geodesics on G and geodesics on Q.

Two main questions:

- Which cubics on Q can be lifted horizontally to cubics on G ?
- Which cubics on G project to cubics on Q ? (more difficult)

Group actions and normal metrics

Actions

- Lie group G, object manifold Q.
- Transitive group action $G \times Q \rightarrow Q,(g, q) \mapsto g q$
- Infinitesimal action $\xi_{Q}(q):=\partial_{\varepsilon=0} \exp (\varepsilon \xi) q$, where $\xi \in \mathfrak{g}$

Group actions and normal metrics

Actions

- Lie group G, object manifold Q.
- Transitive group action $G \times Q \rightarrow Q,(g, q) \mapsto g q$
- Infinitesimal action $\xi_{Q}(q):=\partial_{\varepsilon=0} \exp (\varepsilon \xi) q$, where $\xi \in \mathfrak{g}$

Metrics

- Right-invariant Riemannian metric γ_{G} on G; $\gamma_{G}\left(u_{g}, v_{g}\right)=\gamma_{e}\left(u_{g} g^{-1}, v_{g} g^{-1}\right)$, where γ_{e} restriction of γ_{G} to $T_{e} G \times T_{e} G$.
- Normal metric γ_{Q} on Q given by

$$
\gamma_{Q}\left(u_{q}, u_{q}\right)=\inf _{\left\{\xi \in \mathfrak{g} \mid \xi_{Q}(q)=u_{q}\right\}} \gamma_{e}(\xi, \xi) .
$$

- Will use raising/lowering bundle maps b and \sharp for both metrics. That is, $b: T G \rightarrow T^{*} G$ or $b: T Q \rightarrow T^{*} Q$; and $\sharp=b^{-1}$.

Group actions and normal metrics

Actions

- Lie group G, object manifold Q.
- Transitive group action $G \times Q \rightarrow Q,(g, q) \mapsto g q$
- Infinitesimal action $\xi_{Q}(q):=\partial_{\varepsilon=0} \exp (\varepsilon \xi) q$, where $\xi \in \mathfrak{g}$

Metrics

- Right-invariant Riemannian metric γ_{G} on G; $\gamma_{G}\left(u_{g}, v_{g}\right)=\gamma_{e}\left(u_{g} g^{-1}, v_{g} g^{-1}\right)$, where γ_{e} restriction of γ_{G} to $T_{e} G \times T_{e} G$.
- Normal metric γ_{Q} on Q given by

$$
\gamma_{Q}\left(u_{q}, u_{q}\right)=\inf _{\left\{\xi \in \mathfrak{g} \mid \xi_{Q}(q)=u_{q}\right\}} \gamma_{e}(\xi, \xi)
$$

- Will use raising/lowering bundle maps b and \sharp for both metrics. That is, $\mathrm{b}: T G \rightarrow T^{*} G$ or $b: T Q \rightarrow T^{*} Q$; and $\sharp=b^{-1}$.

Examples

- Lie group: $Q=G$, left multiplication; γ_{e}; obtain right-invariant metric.
- Unit sphere: $G=S O(3) ; Q=S^{2} ; \gamma_{e}(\boldsymbol{\Omega}, \boldsymbol{\Omega})=\boldsymbol{\Omega} \cdot \boldsymbol{\Omega}(\cong 2$-level QM system)
- Landmark matching: $G=\operatorname{Diff}(\Omega) ; Q=\mathbb{R}^{3} ; \gamma_{e}=\ldots$
- Image matching: $G=\operatorname{Diff}(\Omega) ; Q=\mathcal{F}(\Omega) ; \gamma_{e}$ inner product on $\mathfrak{X}(\Omega)$.
- Quantum mechanics: $G=S U(n+1), Q=\mathbb{C P}^{n} ; \gamma_{e}(A, B)=-2 \operatorname{tr}(A B)$

Horizontality

Horizontal space

- Lie algebra of the isotropy subgroup of $q \in Q$ denoted by \mathfrak{g}_{q} (vertical space)
- The horizontal space at q is \mathfrak{g}_{q}^{\perp}.
- Horizontal projection H_{q} orthogonal projection onto \mathfrak{g}_{q}^{\perp}.
- Normal metric can be written as $\gamma_{Q}\left(u_{q}, u_{q}\right)=\gamma_{e}\left(\mathrm{H}_{q}(\xi), \mathrm{H}_{q}(\xi)\right)$ for any ξ with $\xi_{Q}(q)=u_{q}$.

Horizontality

Horizontal space

- Lie algebra of the isotropy subgroup of $q \in Q$ denoted by \mathfrak{g}_{q} (vertical space)
- The horizontal space at q is \mathfrak{g}_{q}^{\perp}.
- Horizontal projection H_{q} orthogonal projection onto \mathfrak{g}_{q}^{\perp}.
- Normal metric can be written as $\gamma_{Q}\left(u_{q}, u_{q}\right)=\gamma_{e}\left(\mathrm{H}_{q}(\xi), \mathrm{H}_{q}(\xi)\right)$ for any ξ with $\xi_{Q}(q)=u_{q}$.

Examples

- Lie group: $\mathfrak{g}_{g}^{\perp}=\mathfrak{g}$
- Unit sphere: $\mathfrak{s o}(3)_{\mathbf{x}}=\{\boldsymbol{\Omega}$ with $\boldsymbol{\Omega} \times \mathbf{x}=0\} \Rightarrow\{\boldsymbol{\Omega}$ with $\boldsymbol{\Omega}=\lambda \mathbf{x}\}$. Therefore, $\mathfrak{s o}(3)_{\mathbf{x}}^{\perp}=\mathbf{x}^{\perp}$. (2-dimensional)

Horizontality

Horizontal space

- Lie algebra of the isotropy subgroup of $q \in Q$ denoted by \mathfrak{g}_{q} (vertical space)
- The horizontal space at q is \mathfrak{g}_{q}^{\perp}.
- Horizontal projection H_{q} orthogonal projection onto \mathfrak{g}_{q}^{\perp}.
- Normal metric can be written as $\gamma_{Q}\left(u_{q}, u_{q}\right)=\gamma_{e}\left(\mathrm{H}_{q}(\xi), \mathrm{H}_{q}(\xi)\right)$ for any ξ with $\xi_{Q}(q)=u_{q}$.

Examples

- Lie group: $\mathfrak{g}_{g}^{\perp}=\mathfrak{g}$
- Unit sphere: $\mathfrak{s o}(3)_{\mathbf{x}}=\{\boldsymbol{\Omega}$ with $\boldsymbol{\Omega} \times \mathbf{x}=0\} \Rightarrow\{\boldsymbol{\Omega}$ with $\boldsymbol{\Omega}=\lambda \mathbf{x}\}$. Therefore, $\mathfrak{s o l}(3)_{\mathbf{x}}^{\perp}=\mathbf{x}^{\perp}$. (2-dimensional)

Momentum map

- Denote by $J: T^{*} Q \rightarrow \mathfrak{g}^{*}$ the cotangent lift momentum map for the action of G and Q. Then $J^{\sharp}\left(\alpha_{q}\right) \in \mathfrak{g}_{q}^{\perp}$. Indeed,

$$
\gamma_{e}\left(J^{\sharp}\left(\alpha_{q}\right), \xi\right)=\left\langle J\left(\alpha_{q}\right), \xi\right\rangle_{\mathfrak{g}^{*} \times \mathfrak{g}}=\left\langle\alpha_{q}, \xi_{Q}(q)\right\rangle_{T^{*} Q \times T Q} .
$$

- For $S^{2}, J^{\sharp}(\mathbf{p}, \mathbf{x})=\mathbf{x} \times \mathbf{p}$. This is in $\mathbf{x}^{\perp}=\mathfrak{s o}(3)_{\mathbf{x}}^{\perp}$.

Riemannian submersion

- Fix a reference object $a \in Q$ and define the projection mapping

$$
\Pi: G \rightarrow Q, \quad g \mapsto g a
$$

This map is a Riemannian submersion. This means that vectors tangent to the object manifold Q can be measured by lifting them horizontally to $T G$ and measuring the resulting horizontal vectors using γ_{G}.

- $V_{g} G=\operatorname{ker} T_{g} \Pi$ and $H_{g} G=V_{g}^{\perp}$ give orthogonal decomposition of $T G$ into horizontal and vertical subbundles $T G=H G \oplus V G$.
- If $\Pi(g)=q$, then

$$
V_{g} G=\left(\mathfrak{g}_{q}\right) g, \quad H_{g} G=\left(\mathfrak{g}_{q}^{\perp}\right) g
$$

- A curve $g(t) \in G$ is horizontal if $\dot{g} \in H_{g} G$. This is equivalent to $\xi=\dot{g} g^{-1} \in \mathfrak{g}_{q}^{\perp}$.

Riemannian cubics

- Denote by D_{t} the covariant derivative of the Levi-Civita connection. In coordinates $\left(D_{t} \dot{q}\right)^{k}=\ddot{q}^{k}+\Gamma_{i j}^{k} \dot{q}^{i} \dot{q}^{j}$.
- Consider the second-order variational problem $\delta \mathcal{J}=0$ for

$$
\mathcal{J}[q]=\int_{0}^{1}\left\|D_{t} \dot{q}\right\|_{Q}^{2} \mathrm{dt},
$$

with respect to curves with fixed end-point velocities.

- The Euler-Lagrange equation is [Noakes et al. 1989], [Crouch \& Silva Leite 1995]

$$
D_{t}^{3} \dot{q}(t)+R\left(D_{t} \dot{q}(t), \dot{q}(t)\right) \dot{q}(t)=0
$$

where R is the curvature tensor $R(X, Y) Z:=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Y-\nabla_{[X, Y]} Z$.

- Solutions to this equation are called Riemannian cubics.

Cubics for normal metrics

Goal: Derive the equation for cubics in such a way that the horizontal generator of the curve appears. This will be helpful for analysing horizontal lifting properties.

- The horizontal generator of a curve $q(t) \in Q$ is the unique curve $\xi(t) \in \mathfrak{g}$ with $\dot{q}=\xi_{Q}(q)$ ("generator") and $\xi \in \mathfrak{g}_{q}^{\perp}$ ("horizontal").
- Define the map $\bar{J}: T Q \rightarrow \mathfrak{g}$ by $\bar{J}:=\sharp \circ J \circ b$, which "marries" G-action and metric. Then the horizontal generator of a curve $q(t) \in Q$ is given by $\bar{J}(\dot{q})$.
- Formula for the covariant derivative following from the horizontal lifting property of geodesics: $D_{t} \dot{q}=\left(\dot{\bar{J}}+\operatorname{ad}_{\bar{J}}^{\dagger} \bar{J}\right)_{Q}(q)$, where $\operatorname{ad}_{\nu}^{\dagger}=\sharp \circ \operatorname{ad}_{\nu}^{*} \circ$ 。 .
- Fact: $\dot{\bar{J}}+\operatorname{ad}_{\bar{J}}^{\dagger} \bar{J}$ is horizontal, that is, in \mathfrak{g}_{q}^{\perp}.
\rightsquigarrow Rewrite the Lagrangian:

$$
\left\|D_{t} \dot{q}\right\|_{Q}^{2}=\left\|\left(\dot{\bar{J}}+\operatorname{ad}_{\bar{J}}^{\dagger} \bar{J}\right)_{Q}(q)\right\|_{Q}^{2} \stackrel{\text { normal metric }}{=}\left\|\dot{\bar{J}}+\operatorname{ad}_{\bar{J}}^{\dagger}\right\|_{e}^{2}
$$

\rightsquigarrow Euler-Lagrange equation:

$$
\left[\left(\frac{\delta \bar{J}}{\delta q}\right)^{*}-\frac{D}{D t} \circ\left(\frac{\delta \bar{J}}{\delta \dot{q}}\right)^{*}\right]\left(\dot{\eta}^{b}+\left(\operatorname{ad}_{\bar{J}} \eta\right)^{b}-\operatorname{ad}_{\eta}^{*} \bar{J}^{b}\right)=0
$$

where $\eta:=\dot{\bar{J}}+\operatorname{ad}_{\bar{J}}^{\dagger} \bar{J}$ and $\frac{\delta \bar{J}}{\delta q}, \frac{\delta \bar{J}}{\delta \dot{q}}: T Q \rightarrow \mathfrak{g} \rightsquigarrow$ horizontal generator has appeared \rightsquigarrow Examples.

Cubics on Lie groups

$$
\left[\left(\frac{\delta \bar{J}}{\delta q}\right)^{*}-\frac{D}{D t} \cdot\left(\frac{\delta \bar{J}}{\delta \dot{q}}\right)^{*}\right]\left(\dot{\eta}^{\mathrm{b}}+\left(\operatorname{ad}_{\bar{J}} \eta\right)^{\mathrm{b}}-\operatorname{ad}_{\eta}^{*} \bar{J}^{\mathrm{J}}\right)=0,
$$

- A computation yields

$$
\left[\left(\frac{\delta \bar{J}}{\delta g}\right)^{*}-\frac{D}{D t} \circ\left(\frac{\delta \bar{J}}{\delta \dot{g}}\right)^{*}\right] \mu=\left(T R_{g^{-1}}\right)^{*}\left(-\partial_{t}-\operatorname{ad}_{\bar{J}}^{*}\right) \mu
$$

for any curves $g(t) \in G$ and $\mu(t) \in \mathfrak{g}^{*}$.

- The Euler-Lagrange equation is therefore

$$
\left(\partial_{t}+\operatorname{ad}_{\bar{J}}^{*}\right)\left[\dot{\eta}^{b}-\left(\operatorname{ad}_{\bar{J}} \eta\right)^{b}+\operatorname{ad}_{\eta}^{*} \bar{J}^{b}\right]=0
$$

where $\eta:=\dot{\bar{J}}+\operatorname{ad}_{\bar{J}}^{\dagger} \bar{J}$ and $\bar{J}:=\bar{J}(g, \dot{g})=\dot{g} g^{-1}$.

- If γ_{G} is bi-invariant this recovers the NHP equation [Noakes et al. 1989]

$$
\ddot{\bar{J}}+[\ddot{\bar{J}}, \bar{J}]=0 .
$$

- Alternative derivation on Lie groups proceeds via second-order Euler-Poincaré reduction: Lagrangian $L(g, \dot{g})=\frac{1}{2}\left\|D_{t} \dot{g}\right\|^{2}=\frac{1}{2}\left\|\left(\dot{\bar{J}}+\operatorname{ad}_{\bar{J}}^{\dagger} \bar{J}\right) g\right\|_{g}^{2}$ is right-invariant with reduced Lagrangian $\ell(\bar{J}, \dot{\bar{J}})=\frac{1}{2}\left\|\dot{\bar{J}}+\operatorname{ad}_{\bar{J}}^{\dagger} \bar{J}\right\|_{e}^{2}$. Second-order Euler-Poincaré equation is

$$
\left(\partial_{t}+\operatorname{ad}_{\bar{J}}^{*}\right)\left(\frac{\delta \ell}{\delta \bar{J}}-\partial_{t} \frac{\delta \ell}{\delta \dot{\bar{J}}}\right)=0
$$

For bi-invariance, $\ell(\bar{J}, \dot{\bar{J}})=\frac{1}{2}\|\dot{\bar{J}}\|_{e}^{2} \rightsquigarrow$ NHP equation.

Cubics on symmetric spaces

$\left[\left(\frac{\delta \bar{J}}{\delta q}\right)^{*}-\frac{D}{D t} \circ\left(\frac{\delta \bar{J}}{\delta \dot{q}}\right)^{*}\right]\left(\dot{\eta}^{b}+\left(\operatorname{ad}_{\bar{J}} \eta\right)^{b}-\operatorname{ad}_{\eta}^{*} \bar{J}^{b}\right)=0$,

Assume that γ_{G} is bi-invariant, and let Q be a symmetric space for G. This means that $\left[\mathfrak{g}_{q}^{\perp}, \mathfrak{g}_{q}^{\perp}\right] \subset \mathfrak{g}_{q}$ for all $q \in Q$.

- The Euler-Lagrange equation is equivalent to $\mathrm{H}_{q}(\dddot{\bar{J}}+2[\ddot{\bar{J}}, \bar{J}])=0$.
- In addition it is true for any curve $q(t) \in Q$ that $\mathrm{V}_{q}(\dddot{\bar{J}}+2[\ddot{\bar{J}}, \bar{J}])=0$.
- Therefore: A curve $q(t) \in Q$ is a Riemannian cubic $\Longleftrightarrow \ddot{\bar{J}}+2[\ddot{\bar{J}}, \bar{J}]=0$. Derived in a different way in [Crouch \& Silva Leite 1995].
- Recall that cubics on the group G satisfy the NHP equation $\dddot{\bar{J}}+[\ddot{\bar{J}}, \bar{J}]=0$.

Cubics on symmetric spaces

$$
\left[\left(\frac{\delta \bar{J}}{\delta q}\right)^{*}-\frac{D}{D t} \circ\left(\frac{\delta \bar{J}}{\delta \dot{q}}\right)^{*}\right]\left(\dot{\eta}^{b}+\left(\operatorname{ad}_{\bar{J}} \eta\right)^{b}-\operatorname{ad}_{\eta}^{*} \bar{J}^{b}\right)=0
$$

Assume that γ_{G} is bi-invariant, and let Q be a symmetric space for G. This means that $\left[\mathfrak{g}_{q}^{\perp}, \mathfrak{g}_{q}^{\perp}\right] \subset \mathfrak{g}_{q}$ for all $q \in Q$.

- The Euler-Lagrange equation is equivalent to $\mathrm{H}_{q}(\dddot{\bar{J}}+2[\ddot{\bar{J}}, \bar{J}])=0$.
- In addition it is true for any curve $q(t) \in Q$ that $\mathrm{V}_{q}(\dddot{\bar{J}}+2[\ddot{\bar{J}}, \bar{J}])=0$.
- Therefore: A curve $q(t) \in Q$ is a Riemannian cubic $\Longleftrightarrow \ddot{\bar{J}}+2[\ddot{\bar{J}}, \bar{J}]=0$. Derived in a different way in [Crouch \& Silva Leite 1995].
- Recall that cubics on the group G satisfy the NHP equation $\dddot{\bar{J}}+[\ddot{\bar{J}}, \bar{J}]=0$. \rightsquigarrow make use of similarity to analyse horizontal lifting properties.

Horizontal lifts of cubics on symmetric spaces

Goal: Find the cubics on Q that can be lifted horizontally to cubics on G.

- Recall the Riemannian submersion $\Pi: G \rightarrow Q, g \mapsto g a$ with reference object a.
- Let $q(t)$ be a curve in Q with $q(0)=a$. The curve defined by $g(0)=e$ and $\dot{g}=\bar{J}(\dot{q}) g$ is horizontal above $q(t)$.
- Therefore, we are looking for the curves $q(t)$, which satisfy $\dddot{\bar{J}}+2[\ddot{\bar{J}}, \bar{J}]=0$ (cubic on Q), and at the same time $\dddot{\bar{J}}+[\ddot{\bar{J}}, \bar{J}]=0$ (cubic on G).

Horizontal lifts of cubics on symmetric spaces

Goal: Find the cubics on Q that can be lifted horizontally to cubics on G.

- Recall the Riemannian submersion $\Pi: G \rightarrow Q, g \mapsto g a$ with reference object a.
- Let $q(t)$ be a curve in Q with $q(0)=a$. The curve defined by $g(0)=e$ and $\dot{g}=\bar{J}(\dot{q}) g$ is horizontal above $q(t)$.
- Therefore, we are looking for the curves $q(t)$, which satisfy $\dddot{\bar{J}}+2[\ddot{\bar{J}}, \bar{J}]=0$ (cubic on Q), and at the same time $\dddot{\bar{J}}+[\ddot{\bar{J}}, \bar{J}]=0$ (cubic on G).
Theorem: A curve $q(t) \in Q$ is a Riemannian cubic and can be lifted horizontally to a Riemannian cubic $g(t) \in G$ if and only if it satisfies $\dot{q}(t)=(\xi(t))_{Q}(q(t))$ for a curve $\xi(t) \in \mathfrak{g}$ of the form

$$
\xi(t)=\frac{u t^{2}}{2}+v t+w
$$

where u, v, w span an Abelian subalgebra that lies in $\mathfrak{g}_{q(0)}^{\perp}$.
Proof: $\Rightarrow \bar{J}$ solves $\quad \rightsquigarrow[\ddot{\bar{J}}, \bar{J}]=0 \rightsquigarrow$ it follows (SSP) that $[\bar{J}, \dot{\bar{J}}]=0 \rightsquigarrow$ from NHP
equation: $\ddot{\bar{J}}=$ constant $\rightsquigarrow \bar{J}$ is 2 nd order polynomial in t. Coefficients mutually commuting since $[\bar{J}, \dot{\bar{J}}]=[\bar{J}, \ddot{\bar{J}}]=0$, and horizontal since \bar{J} and $\dot{\bar{J}}$ as well as $\ddot{\bar{J}}$ are horizontal (SSP).
\Leftarrow Assume $q(0)=a$. Start by showing that $\xi(t)$ is horizontal at all times. This makes use of $\operatorname{Exp}(\operatorname{span}(u, v, w))$ being an Abelian subgroup, and bi-invariance of $\gamma_{G} . \rightsquigarrow$ Curve $g(0)=e$ and $\dot{g}=\xi g$ horizontal lift of $q(t)$. Both $g(t)$ and $q(t)$ are cubics.

Horizontal lifts of cubics on symmetric spaces (cont'd)

Theorem: A curve $q(t) \in Q$ is a Riemannian cubic and can be lifted horizontally to a Riemannian cubic $g(t) \in G$ if and only if it satisfies $\dot{q}(t)=(\xi(t))_{Q}(q(t))$ for a curve $\xi(t) \in \mathfrak{g}$ of the form

$$
\xi(t)=\frac{u t^{2}}{2}+v t+w
$$

where u, v, w span an Abelian subalgebra that lies in $\mathfrak{g}_{q(0)}^{\perp}$.

- The rank of a symmetric space is the dimension of the maximal Abelian Lie subalgebra of $\mathfrak{g}_{q}^{\perp} . \rightsquigarrow$ The bigger the rank, the more vectors are compatible with the Theorem.
- In rank-one symmetric spaces u, v, w are all collinear.

Corollary: In rank-one symmetric spaces (S^{2}, for example) the only cubics that can be lifted horizontally to cubics are geodesics composed with a cubic polynomial in time.
Proof: Integrate $\dot{q}=\left(\frac{a t^{2}}{2}+b t+c\right) d_{Q}(q)$. Find $q(t)=e^{\left(\frac{a t^{3}}{6}+\frac{b t^{2}}{2}+c t\right) d} q(0)$.

Horizontal lifts of cubics on symmetric spaces (cont'd)

Theorem: A curve $q(t) \in Q$ is a Riemannian cubic and can be lifted horizontally to a Riemannian cubic $g(t) \in G$ if and only if it satisfies $\dot{q}(t)=(\xi(t))_{Q}(q(t))$ for a curve $\xi(t) \in \mathfrak{g}$ of the form

$$
\xi(t)=\frac{u t^{2}}{2}+v t+w
$$

where u, v, w span an Abelian subalgebra that lies in $\mathfrak{g}_{q(0)}^{\perp}$.

- The rank of a symmetric space is the dimension of the maximal Abelian Lie subalgebra of $\mathfrak{g}_{q}^{\perp} . \rightsquigarrow$ The bigger the rank, the more vectors are compatible with the Theorem.
- In rank-one symmetric spaces u, v, w are all collinear.

Corollary: In rank-one symmetric spaces (S^{2}, for example) the only cubics that can be lifted horizontally to cubics are geodesics composed with a cubic polynomial in time.
Proof: Integrate $\dot{q}=\left(\frac{a t^{2}}{2}+b t+c\right) d_{Q}(q)$. Find $q(t)=e^{\left(\frac{a t^{3}}{6}+\frac{b t^{2}}{2}+c t\right) d} q(0)$.
\rightsquigarrow include non-horizontal curves on G.

Projections of non-horizontal geodesics

Stay in the symmetric space context for now. That is, γ_{G} bi-invariant and $\left[\mathfrak{g}_{q}^{\perp}, \mathfrak{g}_{q}^{\perp}\right] \subset \mathfrak{g}_{q}$.
Question: Which non-horizontal geodesics on G project to cubics on Q ?

- First, describe geodesics on G. Euler-Poincaré equation is $\dot{\xi}=0$, with reconstruction relation $\dot{g}=\xi g$.
- Let $q(t)$ be the projected curve $q(t)=\Pi(g(t))=g(t) a$. Decompose ξ into horizontal and vertical parts

$$
\xi=\mathrm{H}_{q}(\xi)+\mathrm{V}_{q}(\xi)=\bar{J}(\dot{q})+\bar{\sigma}
$$

Here we defined $\bar{\sigma}:=\mathrm{V}_{q}(\xi)$.

- Evolution equations are

$$
\dot{\bar{J}}=[\bar{\sigma}, \bar{J}], \quad \dot{\bar{\sigma}}=[\bar{J}, \bar{\sigma}] .
$$

\rightsquigarrow have rewritten the geodesic equation on G.

- Recall that in order for $q(t)$ to be a cubic $\ddot{\bar{J}}+2[\ddot{\bar{J}}, \bar{J}]=0$ must hold.

Theorem: The projection $q(t)$ of a geodesic $g(t)$ is a Riemannian cubic if and only if at time $t=0$

$$
[\bar{\sigma},[\bar{\sigma},[\bar{\sigma}, \bar{J}]]]+[\bar{J},[\bar{J},[\bar{J}, \bar{\sigma}]]]=0
$$

\section*{Projections of non-horizontal geodesics (cont'd) \quad| $\dot{J}=[\bar{\sigma}, \bar{J}], \quad \dot{\bar{\sigma}}=[\bar{J}, \bar{\sigma}]$. |
| :--- |}

Theorem: The projection $q(t)$ of a geodesic $g(t)$ is a Riemannian cubic if and only if at time $t=0$

$$
[\bar{\sigma},[\bar{\sigma},[\bar{\sigma}, \bar{J}]]]+[\bar{J},[\bar{J},[\bar{J}, \bar{\sigma}]]]=0
$$

Proof: Assume $q(0)=a$. We have $\bar{J}(t)=\operatorname{Ad}_{g(t)} \bar{J}(0)$ and $\bar{\sigma}(t)=\operatorname{Ad}_{g(t)} \bar{\sigma}(0) \rightsquigarrow$ if true at $t=0$, then true at all times. Plugging in the geodesic equation into the equation for cubics one finds

$$
\ddot{\bar{J}}+2[\ddot{\bar{J}}, \bar{J}]=[\bar{\sigma},[\bar{\sigma},[\bar{\sigma}, \bar{J}]]]+[\bar{J},[\bar{J},[\bar{J}, \bar{\sigma}]]] .
$$

Special cases:

- $\bar{\sigma}=0 \rightsquigarrow g(t)$ is horizontal geodesic, $q(t)$ is a geodesic.
- $[\bar{\sigma}, \bar{J}]=0 \rightsquigarrow q(t)$ is a geodesic due to $D_{t} \dot{q}=\dot{\bar{J}}_{Q}(q)=([\bar{\sigma}, \bar{J}])_{Q}(q)=0$.
- $[\bar{J},[\bar{J}, \bar{\sigma}]]=c \bar{\sigma},[\bar{\sigma},[\bar{\sigma}, \bar{J}]]=c \bar{J}$, for $c \in \mathbb{R}$.

Projections of non-horizontal geodesics (cont'd)

Consider $G=S O(3)$ and $Q=S^{2}$. A curve $\mathbf{x}(t) \in S^{2}$ is generated by a rotation vector $\boldsymbol{\Omega}=\overline{\mathbf{J}}+\overline{\boldsymbol{\sigma}}$. That is, $\dot{\mathbf{x}}=\boldsymbol{\Omega} \times \mathbf{x}$. The theorem is equivalent to $\left(\|\overline{\boldsymbol{\sigma}}\|^{2}-\|\overline{\mathbf{J}}\|^{2}\right) \overline{\mathbf{J}} \times \overline{\boldsymbol{\sigma}}$.

- $\overline{\mathbf{J}}=0$ or $\overline{\boldsymbol{\sigma}}=0 \rightsquigarrow$ trivial projected curves $\mathbf{x}(t)=\mathbf{x}(0)$, or projections of horizontal geodesics.
- $\|\overline{\boldsymbol{\sigma}}\|^{2}=\|\overline{\mathbf{J}}\|^{2} \rightsquigarrow$ for given inital velocity $\dot{\mathbf{x}}=\mathbf{v}$, the projection $\mathbf{x}(t)$ describes a constant speed rotation of $\mathbf{x}(0)$ around the axis

$$
\boldsymbol{\Omega}=\overline{\mathbf{J}}+\overline{\boldsymbol{\sigma}}=\mathrm{x} \times \dot{\mathrm{x}} \pm\|\dot{\mathrm{x}}\| \mathrm{x} .
$$

Include all cubics: Finding the obstruction term

Goal: Find the obstruction for the projection of a cubic to be again a cubic. We will use second-order Lagrange-Poincaré reduction for this [Cendra, Marsden, Ratiu 2001], [Gay-Balmaz, Holm, Ratiu 2011]. We still assume that γ_{G} is bi-invariant, but we drop the condition $\left[\mathfrak{g}_{q}^{\perp}, \mathfrak{g}_{q}^{\perp}\right] \subset \mathfrak{g}_{q}$.

- Fix reference object $a \in Q$. Stabilizer G_{a}, with Lie algebra $\mathfrak{g}_{a} . \rightsquigarrow$ will reduce by G_{a}.
- Right-action of G_{a},

$$
\psi: G \times G_{a} \rightarrow G, \quad(g, h)=g h .
$$

- Quotient space G / G_{a} is diffeomorphic to Q. Recall the projection map $\Pi: G \rightarrow Q$, $g \mapsto g a$.
\rightsquigarrow Principal bundle $\left(G, Q, G_{a}, \Pi, \psi\right)$.
- Introduce \mathfrak{g}_{a}-valued principal connection \mathcal{A},

$$
\mathcal{A}: T G \rightarrow \mathfrak{g}_{a}, \quad v_{g} \mapsto \mathcal{A}_{g}\left(v_{g}\right):=\mathrm{V}_{a}\left(g^{-1} v_{g}\right)
$$

- Adjoint bundle is the associated vector bundle $\tilde{\mathfrak{g}}_{a}:=\left(G \times \mathfrak{g}_{a}\right) / G_{a}$, where the quotient is taken wrt right-action of G_{a} on $G \times \mathfrak{g}_{a}$,

$$
\left(G \times \mathfrak{g}_{a}\right) \times G_{a} \rightarrow G \times \mathfrak{g}_{a}, \quad(g, \xi, h) \mapsto\left(g h, \operatorname{Ad}_{h}^{-1} \xi\right)
$$

- Induced linear connection with covariant derivative $D_{t}^{\mathcal{A}}$
- Need map $i: \tilde{\mathfrak{g}}_{a} \rightarrow \mathfrak{g},[g, \xi] \mapsto \operatorname{Ad}_{g} \xi$, shorthand $\sigma \mapsto \bar{\sigma}$

Include all cubics: Finding the obstruction term (cont'd)

Start by reviewing the geodesic case.

- First-order Lagrange-Poincaré reduction makes use of the bundle diffeomorphism

$$
\alpha_{\mathcal{A}}^{(1)}: T G / G_{a} \rightarrow T Q \times_{Q} \tilde{\mathfrak{g}}_{a}, \quad[g, \dot{g}] \mapsto(q, \dot{q}) \times[g, \mathcal{A}(\dot{g})] .
$$

- Reduced variables q, \dot{q}, σ.
- Geodesics on G arise as solutions to the kinetic energy action principle, where $L(g, \dot{g})=\frac{1}{2}\|\dot{g}\|_{G}^{2} . \rightsquigarrow$ Reduced Lagrangian $\ell(q, \dot{q}, \sigma)=\frac{1}{2}\|\dot{q}\|_{Q}^{2}+\frac{1}{2}\|\sigma\|_{\tilde{\mathfrak{g}}_{a}}^{2}$.
- Lagrange-Poincaré equations describing geodesics are

$$
D_{t} \dot{q}=\nabla_{\dot{q}} \bar{\sigma}_{Q}, \quad D_{t}^{\mathcal{A}} \sigma=0
$$

\rightsquigarrow this reveals the obstruction term for $q(t)$ to be a geodesic.

Include all cubics: Finding the obstruction term (cont'd)

Find the obstruction for a cubic to project to a cubic.

- Second-order Lagrange-Poincaré reduction uses bundle diffeomorphism $\alpha_{\mathcal{A}}^{(2)}: T^{(2)} G / G_{a} \rightarrow T^{(2)} Q \times_{Q} 2 \widetilde{\mathfrak{g}}_{a}$,

$$
[g, \dot{g}, \ddot{g}] \mapsto(q, \dot{q}, \ddot{q}) \times[g, \mathcal{A}(\dot{g})] \oplus D_{t}^{\mathcal{A}}[g, \mathcal{A}(\dot{g})]
$$

- Reduced variables $q, \dot{q}, \ddot{q}, \sigma, \dot{\sigma}$
- Lagrangian of Riemannian cubics is $L(g, \dot{g}, \ddot{g})=\frac{1}{2}\left\|D_{t} \dot{g}\right\|_{G}^{2}$ \rightsquigarrow reduced Lagrangian

$$
\ell(q, \dot{q}, \ddot{q}, \sigma, \dot{\sigma})=\frac{1}{2}\left\|D_{t} \dot{q}-\nabla_{\dot{q}} \bar{\sigma}_{Q}\right\|_{Q}^{2}+\frac{1}{2}\|\dot{\sigma}\|_{\mathfrak{g}_{a}}^{2}
$$

- The Lagrange-Poincaré equations are

$$
\begin{aligned}
& \begin{array}{l}
D_{t}^{3} \dot{q}+R\left(D_{t} \dot{q}, \dot{q}\right) \dot{q} \\
\quad+R\left(D_{t} \dot{q}, \bar{\sigma}_{Q}(q)\right) \dot{q}+R\left(\nabla_{\dot{q}} \bar{\sigma}_{Q}, \dot{q}-\bar{\sigma}_{Q}(q)\right) \dot{q} \\
\quad+\nabla_{\dot{q}}\left(i\left(\ddot{\sigma}+\operatorname{ad}_{\sigma}^{\dagger} \dot{\sigma}+i_{q}^{T} \partial_{t} \overline{\mathbf{J}}\left(V_{q}\right)\right)\right)_{Q}+F_{\sigma}^{T}\left(\mathcal{F}^{\nabla}\left(V_{q}^{b}, \dot{q}\right)\right)^{\#} \\
\left(D_{t}^{\mathcal{A}}+\operatorname{ad}_{\sigma}^{\dagger}\right)(\ddot{\sigma})_{Q}^{T} \cdot V_{q} \\
\left.\quad \partial_{t} \overline{\mathbf{J}}\left(V_{q}\right)\right)=0 .
\end{array}
\end{aligned}
$$

Thank you

