Optimal control of underactuated mechanical systems with symmetries

FOCUS PROGRAM ON GEOMETRY, MECHANICS AND DYNAMICS: the Legacy of Jerry Marsden.

The Fields Institute, Toronto, Canada, July 16, 2012

Outline

(1) Introduction and motivation

Euler-Lagrange equations on trivial principal bundles Optimal control problem
(2) Second-order Euler-Lagrange equations on trivial PRINCIPAL BUNDLES
(3 Optimal control of a homogeneous ball on a ROTATING PLATE

Outline

(1) Introduction and motivation

Euler-Lagrange equations on trivial principal bundles Optimal control problem
(2) SECOND-ORDER Euler-Lagrange Equations on trivial PRINCIPAL BUNDLES
(3) Optimal CONTROL OF A homogeneous ball on a ROTATING PLATE

Hamilton's PRINCIPLE

- $Q=M \times G$ (configuration manifold)

Hamilton's PRINCIPLE

- $Q=M \times G$ (configuration manifold)
- $T Q \simeq T M \times T G$

HAMILTON'S PRINCIPLE

The motion of the mechanical system is described by applying the Hamilton's principle,

$$
\delta \int_{0}^{T} L(q(t), \dot{q}(t), \xi(t), g(t)) d t=0
$$

for all variations $\delta q(t)$ where $\delta q(0)=\delta q(T)=0, q(t) \in M$ and $\delta \xi$ verifying $\delta \xi(t)=\dot{\eta}(t)-[\xi(t), \eta(t)]$, where $\eta(t)$ is an arbitrary curve on the Lie algebra with $\eta(0)=\eta(T)=0$ and $\eta=(\delta g) g^{-1}$.

Hamilton's PRINCIPLE

- $Q=M \times G$ (configuration manifold)
- $T Q \simeq T M \times T G$
- $L: T Q \rightarrow \mathbb{R}$ (Lagrangian function)

HAMILTON'S PRINCIPLE

The motion of the mechanical system is described by applying the Hamilton's principle,

$$
\delta \int_{0}^{T} L(q(t), \dot{q}(t), \xi(t), g(t)) d t=0
$$

for all variations $\delta q(t)$ where $\delta q(0)=\delta q(T)=0, q(t) \in M$ and $\delta \xi$ verifying $\delta \xi(t)=\dot{\eta}(t)-[\xi(t), \eta(t)]$, where $\eta(t)$ is an arbitrary curve on the Lie algebra with $\eta(0)=\eta(T)=0$ and $\eta=(\delta g) g^{-1}$.

Hamilton's PRINCIPLE

- $Q=M \times G$ (configuration manifold)
- $T Q \simeq T M \times T G$
- $L: T Q \rightarrow \mathbb{R}$ (Lagrangian function)
- $T G \simeq \mathfrak{g} \times G$ (right-trivialization)

HAMILTON'S PRINCIPLE

The motion of the mechanical system is described by applying the Hamilton's principle,

$$
\delta \int_{0}^{T} L(q(t), \dot{q}(t), \xi(t), g(t)) d t=0
$$

for all variations $\delta q(t)$ where $\delta q(0)=\delta q(T)=0, q(t) \in M$ and $\delta \xi$ verifying $\delta \xi(t)=\dot{\eta}(t)-[\xi(t), \eta(t)]$, where $\eta(t)$ is an arbitrary curve on the Lie algebra with $\eta(0)=\eta(T)=0$ and $\eta=(\delta g) g^{-1}$.

Hamilton's PRINCIPLE

- $Q=M \times G$ (configuration manifold)
- $T Q \simeq T M \times T G$
- $L: T Q \rightarrow \mathbb{R}$ (Lagrangian function)
- $T G \simeq \mathfrak{g} \times G$ (right-trivialization)
- $L: T M \times \mathfrak{g} \times G \rightarrow \mathbb{R}$.

HAMILTON'S PRINCIPLE

The motion of the mechanical system is described by applying the Hamilton's principle,

$$
\delta \int_{0}^{T} L(q(t), \dot{q}(t), \xi(t), g(t)) d t=0
$$

for all variations $\delta q(t)$ where $\delta q(0)=\delta q(T)=0, q(t) \in M$ and $\delta \xi$ verifying $\delta \xi(t)=\dot{\eta}(t)-[\xi(t), \eta(t)]$, where $\eta(t)$ is an arbitrary curve on the Lie algebra with $\eta(0)=\eta(T)=0$ and $\eta=(\delta g) g^{-1}$.

Euler-Lagrange equations on trivial PRINCIPAL BUNDLES

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)=\frac{\partial L}{\partial q}, \quad \xi=\dot{g} g^{-1} \\
& \frac{d}{d t}\left(\frac{\delta L}{\delta \xi}\right)=-\mathrm{ad}_{\xi}^{*}\left(\frac{\delta L}{\delta \xi}\right)+r_{g}^{*} \frac{\delta L}{\delta g},
\end{aligned}
$$

If the Lagrangian L is right-invariant the above equations are written as

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) & =\frac{\partial L}{\partial q} \\
\frac{d}{d t}\left(\frac{\delta L}{\delta \xi}\right) & =-\operatorname{ad}_{\xi}^{*}\left(\frac{\delta L}{\delta \xi}\right), \quad \xi=\dot{g} g^{-1}
\end{aligned}
$$

Euler-Lagrange equations on trivial principal BUNDLES FOR SYSTEMS WITH CONSTRAINTS

We suppose that the system is subject to some constraints equations, $\Phi^{\alpha}: T M \times \mathfrak{g} \times G \rightarrow \mathbb{R}$ with $\alpha=1, \ldots, m \leq n$. The equations of motion for this kind of systems are given using the Lagrange multipliers theorem defining the extended Lagrangian $\widetilde{L}=L+\lambda_{\alpha} \Phi^{\alpha}, \alpha=1, \ldots, m$.

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\frac{d}{d t}\left(\lambda_{\alpha} \frac{\partial \Phi^{\alpha}}{\partial \dot{q}}\right)= & \frac{\partial L}{\partial q}+\lambda_{\alpha} \frac{\partial \Phi^{\alpha}}{\partial q}, \quad \xi=\dot{g} g^{-1} \\
\frac{d}{d t}\left(\frac{\delta L}{\delta \xi}\right)+\lambda_{\alpha} \frac{d}{d t}\left(\frac{\delta \Phi^{\alpha}}{\delta \xi}\right)= & -\operatorname{ad}_{\xi}^{*}\left(\frac{\delta L}{\delta \xi}\right)-\operatorname{ad}_{\xi}^{*}\left(\lambda_{\alpha} \frac{\delta \Phi^{\alpha}}{\delta \xi}\right)+r_{g}^{*} \frac{\delta L}{\delta g} \\
& +r_{g}^{*}\left(\lambda_{\alpha} \frac{\delta \Phi^{\alpha}}{\delta g}\right)+\dot{\lambda}_{\alpha} \frac{\delta \Phi^{\alpha}}{\delta \xi} \\
\Phi^{\alpha}(q, \dot{q}, g, \xi)= & 0
\end{aligned}
$$

Euler-Lagrange equations on trivial principal BUNDLES FOR SYSTEMS WITH CONSTRAINTS

If the Lagrangian L an the constraints Φ^{α} are right-invariant the above equations are written as

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\frac{d}{d t}\left(\lambda_{\alpha} \frac{\partial \Phi^{\alpha}}{\partial \dot{q}}\right)=\frac{\partial L}{\partial q}+\lambda_{\alpha} \frac{\partial \Phi^{\alpha}}{\partial q} \\
& \frac{d}{d t}\left(\frac{\delta L}{\delta \xi}\right)+\frac{d}{d t}\left(\lambda_{\alpha} \frac{\delta \Phi^{\alpha}}{\delta \xi}\right)=-\operatorname{ad}_{\xi}^{*}\left(\frac{\delta L}{\delta \xi}\right)-\operatorname{ad}_{\xi}^{*}\left(\lambda_{\alpha} \frac{\delta \Phi^{\alpha}}{\delta \xi}\right), \\
& \xi=\dot{g} g^{-1}, \quad \Phi^{\alpha}(q, \dot{q}, g, \xi)=0
\end{aligned}
$$

OptIMAL CONTROL PROBLEM

Optimal control problem

- The first step for studying control systems with symmetries is to take as a configuration manifold a trivial principal bundle $Q=M \times G$.

Optimal control problem

- The first step for studying control systems with symmetries is to take as a configuration manifold a trivial principal bundle $Q=M \times G$.
- In what follows we assume that all the control systems are controllable, that is, for any two points x_{0} and x_{f} in the configuration space Q, there exists an admissible control $u(t) \in U \subset \mathbb{R}^{r}$ defined on some interval $[0, T]$ such that the system with initial condition x_{0} reaches the point x_{f} in time T.
- A control system is called underactuated if the number of control inputs is less than the dimension of the configuration space.

Underactuated systems

Optimal control problem

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{A}}\right)-\frac{\partial L}{\partial q^{A}} & =u_{a} \mu_{A}^{a}(q), \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \xi}\right)+a d_{\xi}^{*}\left(\frac{\partial L}{\partial \xi}\right) & =u_{a} \eta^{a}(q),
\end{aligned}
$$

where we denote by $\mathcal{B}^{a}=\left\{\left(\mu^{a}, \eta^{a}\right)\right\}, \mu^{a}(q) \in T_{q}^{*} M, \eta^{a}(q) \in \mathfrak{g}^{*}$, $a=1, \ldots, r$; and $A=1, \ldots, n$. Here, we are assuming that $\left\{\left(\mu^{a}, \eta^{a}\right)\right\}$ are independent elements of $\Gamma\left(T^{*} M \times \mathfrak{g}^{*}\right)$ and u_{a} are admissible controls. Taking this into account, the optimal control problem can be formulated as...

Optimal control problem

Finding trajectories $(q(t), \xi(t), u(t))$ of the state variables and the inputs satisfying the control equations, subject to initial conditions $(q(0), \dot{q}(0), \xi(0))$ and final conditions $(q(T), \dot{q}(T), \xi(T))$, and, moreover, extremizing the functional

$$
\mathcal{J}(q, \dot{q}, \xi, u)=\int_{0}^{T} C(q(t), \dot{q}(t), \xi(t), u(t)) d t
$$

Optimal control problem

We can reformulate this optimal control problem as a higher-order order variational problem subject to higher-order constraints by the following procedure: complete \mathcal{B}^{a} to a basis $\left\{\mathcal{B}^{a}, \mathcal{B}^{\alpha}\right\}$ of $\Gamma\left(T^{*} M \times \mathfrak{g}^{*}\right)$. Take its dual basis $\left\{\mathcal{B}_{a}, \mathcal{B}_{\alpha}\right\}$ on $\Gamma(T M \times \mathfrak{g})$. This basis induces coordinates $\left(q^{A}, \dot{q}, \xi^{a}, \xi^{\alpha}\right)$ on $T M \times \mathfrak{g}$. If we denote by $\mathcal{B}_{a}=\left\{\left(X_{a}, \chi_{a}\right)\right\} \in \Gamma(T M \times \mathfrak{g})$ (resp. $\left.\mathcal{B}_{\alpha}=\left\{\left(X_{\alpha}, \chi_{\alpha}\right)\right\} \in \Gamma(T M \times \mathfrak{g})\right)$, controlled equations are rewritten as

Optimal control problem

We can reformulate this optimal control problem as a higher-order order variational problem subject to higher-order constraints by the following procedure: complete \mathcal{B}^{a} to a basis $\left\{\mathcal{B}^{a}, \mathcal{B}^{\alpha}\right\}$ of $\Gamma\left(T^{*} M \times \mathfrak{g}^{*}\right)$. Take its dual basis $\left\{\mathcal{B}_{a}, \mathcal{B}_{\alpha}\right\}$ on $\Gamma(T M \times \mathfrak{g})$. This basis induces coordinates $\left(q^{A}, \dot{q}, \xi^{a}, \xi^{\alpha}\right)$ on $T M \times \mathfrak{g}$. If we denote by $\mathcal{B}_{a}=\left\{\left(X_{a}, \chi_{a}\right)\right\} \in \Gamma(T M \times \mathfrak{g})$ (resp. $\left.\mathcal{B}_{\alpha}=\left\{\left(X_{\alpha}, \chi_{\alpha}\right)\right\} \in \Gamma(T M \times \mathfrak{g})\right)$, controlled equations are rewritten as

Controlled Euler Lagrange equations

$$
\begin{aligned}
& \left(\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{a}}\right)-\frac{\partial L}{\partial q^{a}}\right) X_{a}(q)+\left(\frac{d}{d t}\left(\frac{\partial L}{\partial \xi}\right)+\left(a d_{\xi}^{*} \frac{\partial L}{\partial \xi}\right)\right) \chi_{a}(q)=u_{a} \\
& \left(\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{\alpha}}\right)-\frac{\partial L}{\partial q^{\alpha}}\right) X_{\alpha}(q)+\left(\frac{d}{d t}\left(\frac{\partial L}{\partial \xi}\right)+\left(a d_{\xi}^{*} \frac{\partial L}{\partial \xi}\right)\right) \chi_{\alpha}(q)=0
\end{aligned}
$$

Optimal control problem

The proposed optimal control problem is equivalent to a variational problem with second order constraints, where we define the Lagrangian $\widetilde{L}: T^{(2)} M \times \mathfrak{g}^{2} \rightarrow \mathbb{R}$ given, in the selected coordinates, by

$$
\widetilde{L}\left(q^{A}, \dot{q}^{A}, \ddot{q}^{A}, \xi^{i}, \dot{\xi}^{i}\right)=C\left(q^{A}, \dot{q}^{A}, \xi^{i}, F_{a}\left(q^{A}, \dot{q}^{A}, \ddot{q}^{A}, \xi^{i}, \dot{\xi}^{i}\right)\right)
$$

where C is the cost function and

$$
\begin{aligned}
F_{a}\left(q^{A}, \dot{q}^{A}, \ddot{q}^{A}, \xi^{i}, \dot{\xi}^{i}\right) & =\left(\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{a}}\right)-\frac{\partial L}{\partial q^{a}}\right) X_{a}(q) \\
& +\left(\frac{d}{d t}\left(\frac{\partial L}{\partial \xi}\right)+\left(a d_{\xi}^{*} \frac{\partial L}{\partial \xi}\right)\right) \chi_{a}(q)
\end{aligned}
$$

Optimal control problem

subjected to the second-order constraints:

$$
\begin{aligned}
\Phi^{\alpha}\left(q^{A}, \dot{q}^{A}, \ddot{q}^{A}, \xi^{i}, \dot{\xi}^{i}\right)= & \left(\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{\alpha}}\right)-\frac{\partial L}{\partial q^{\alpha}}\right) X_{\alpha}(q) \\
& +\left(\frac{d}{d t}\left(\frac{\partial L}{\partial \xi}\right)+\left(a d_{\xi}^{*} \frac{\partial L}{\partial \xi}\right)\right) \chi_{\alpha}(q)
\end{aligned}
$$

- A.M. Bloch. Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics Series, 24, Springer-Verlag, New York (2003).

Outline

(1) InTRODUCTION AND MOTIVATION

Euler-Lagrange equations on trivial principal bundles

 Optimal control problem(2) Second-order Euler-Lagrange equations on trivial PRINCIPAL BUNDLES
(3) Optimal CONTROL OF A HOMOGENEOUS BALL ON A ROTATING PLATE

Hamilton's PRINCIPLE

Now we derive the Euler-Lagrange equations for Lagrangians defined on $T^{(2)} Q \simeq T^{(2)} M \times 2 \mathfrak{g} \times G$.

- The Lie algebra structure of $2 \mathfrak{g}$ is given by
$\left[\left(\xi_{1}, \eta_{1}\right),\left(\xi_{2}, \eta_{2}\right)\right]=\left(\left[\xi_{1}, \xi_{2}\right],\left[\xi_{1}, \eta_{2}\right]-\left[\xi_{2}, \eta_{1}\right]\right) \in 2 \mathfrak{g}$.

Hamilton's PRINCIPLE

Now we derive the Euler-Lagrange equations for Lagrangians defined on $T^{(2)} Q \simeq T^{(2)} M \times 2 \mathfrak{g} \times G$.

- The Lie algebra structure of $2 \mathfrak{g}$ is given by
$\left[\left(\xi_{1}, \eta_{1}\right),\left(\xi_{2}, \eta_{2}\right)\right]=\left(\left[\xi_{1}, \xi_{2}\right],\left[\xi_{1}, \eta_{2}\right]-\left[\xi_{2}, \eta_{1}\right]\right) \in 2 \mathfrak{g}$.

Hamilton's PRINCIPLE

Finding the critical curves of the action defined by

$$
\mathcal{A}(c(t))=\int_{0}^{T} L(q, \dot{q}, \ddot{q}, g, \xi, \dot{\xi}) d t
$$

among all the curves $c(t) \in \mathcal{C}^{(2)}\left(T^{(2)} M \times 2 \mathfrak{g} \times G\right)$ satisfying the boundary conditions for arbitrary variations $\delta c=\left(\delta q, \delta q^{(1)}, \delta q^{(2)}, \delta g, \delta \xi, \delta \dot{\xi}\right)$, where $\delta q=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} q_{\epsilon}, \delta q^{(I)}=\frac{d^{\prime}}{d t^{\prime}} \delta q$, for $I=1,2$; and $\delta g=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} g_{\epsilon}$.
The corresponding variations $\delta \xi$ induced by δg are given by $\delta \xi=\dot{\eta}-[\xi, \eta]$ where $\eta:=\delta g g^{-1} \in \mathfrak{g}(\delta g=\eta g)$.

Second-order Euler-Lagrange equations on TRIVIAL PRINCIPAL BUNDLES

which splits into a M part (1a) and a G part (1b).

Higher-order Euler-Lagrange equations on TRIVIAL PRINCIPAL BUNDLES FOR SYSTEMS WITH CONSTRAINTS

The equations of motion given by the higher-order variational principle for $L: T^{(k)} M \times k \mathfrak{g} \times G \rightarrow \mathbb{R}$ with higher-order constraints $\phi^{\alpha}: T^{(k)} M \times k \mathfrak{g} \times G \rightarrow \mathbb{R}$ reads:

HigHer-ORDER EULER-LAGRANGE EQUATIONS ON TRIVIAL PRINCIPAL BUNDLES FOR SYSTEMS WITH CONSTRAINTS

The equations of motion given by the higher-order variational principle for $L: T^{(k)} M \times k \mathfrak{g} \times G \rightarrow \mathbb{R}$ with higher-order constraints $\phi^{\alpha}: T^{(k)} M \times k \mathfrak{g} \times G \rightarrow \mathbb{R}$ reads:

$$
\begin{aligned}
0 & =\sum_{l=0}^{k}(-1)^{\prime} \frac{d^{\prime}}{d t^{\prime}}\left(\frac{\partial L}{\partial q^{(l) i}}-\lambda_{\alpha} \frac{\partial \Phi^{\alpha}}{\partial \boldsymbol{q}^{(l) i}}\right), \\
0 & =\left(\frac{d}{d t}+a d_{\xi}^{*}\right) \sum_{l=0}^{k-1}(-1)^{\prime} \frac{d^{\prime}}{d t^{\prime}}\left(\frac{\partial L}{\partial \xi^{(l)}}-\lambda_{\alpha} \frac{\partial \Phi^{\alpha}}{\partial \xi^{(l)}}\right)-r_{g}^{*}\left(\frac{\partial L}{\partial g}-\lambda_{\alpha} \frac{\partial \Phi^{\alpha}}{\partial g}\right), \\
0 & =\Phi^{\alpha}(c(t)), \\
\dot{g} & =\xi g,
\end{aligned}
$$

Outline

(1) InTRODUCTION AND MOTIVATION

Euler-Lagrange equations on trivial principal bundles

 Optimal control problem(2) SECOND-ORDER Euler-Lagrange EQuations on trivial PRINCIPAL BUNDLES
(3) Optimal control of a homogeneous ball on a ROTATING PLATE

Optimal control of a homogeneous ball on a

ROTATING PLATE

- Neimark, Ju. Fufaev, N.A; Dynamics of nonholonomic systems Translations of Mathematical Monographs, Amer. Math. Soc., 33 (1972).
- Koon, Wang-Sang; Marsden, Jerrold E. Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction. SIAM J. Control Optim. 35 (1997), no. 3, 901929.
- Bloch, Anthony; Krishnaprasad, P. S; Marsden, Jerrold E; Murray, Richard M. Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136 (1996), no. 1, 2199.
- Bloch, A. M.J. Baillieul, P. Crouch and J. Marsden. Nonholonomic mechanics and control. Interdisciplinary Applied Mathematics, 24. Systems and Control. Springer-Verlag, New York, 2003.

Optimal Control of an homogeneous ball on A ROTATING PLATE

A (homogeneous) ball of radius $r>0$, mass m and inertia $m k^{2}$ about any axis rolls without sliding on a horizontal table which rotates with angular velocity Ω about a vertical axis x_{3} through one of its points. Apart from the constant gravitational force, no other external forces are assumed to act on the sphere.

Optimal Control of an homogeneous ball on

A ROTATING PLATE

A (homogeneous) ball of radius $r>0$, mass m and inertia $m k^{2}$ about any axis rolls without sliding on a horizontal table which rotates with angular velocity Ω about a vertical axis x_{3} through one of its points. Apart from the constant gravitational force, no other external forces are assumed to act on the sphere.

- (x, y) denotes the position of the point of contact of the sphere with the table.
$\bullet Q=\mathbb{R}^{2} \times S O(3)$ where may be parametrized Q by $(x, y, g), g \in S O(3)$, all measured with respect to the inertial frame.
- Let $\omega=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$ be the angular velocity vector of the sphere measured also with respect to the inertial frame.

Optimal Control of an homogeneous ball on

A ROTATING PLATE

- The potential energy is constant, so we may put $V=0$.

The nonholonomic constraints are

$$
\begin{aligned}
\dot{x}+\frac{r}{2} \operatorname{Tr}\left(\dot{g} g^{T} E_{2}\right) & =-\Omega(t) y \\
\dot{y}-\frac{r}{2} \operatorname{Tr}\left(\dot{g} g^{T} E_{1}\right) & =\Omega(t) x
\end{aligned}
$$

where $\left\{E_{1}, E_{2}, E_{3}\right\}$ is the standard basis of $\mathfrak{s o}(3)$.
The matrix $\dot{g} g^{T}$ is skew-symmetric therefore we may write

$$
\dot{g} g^{T}=\left(\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right)
$$

where $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ represents the angular velocity vector of the sphere measured with respect to the inertial frame.

Optimal Control of an Homogeneous ball on A ROTATING PLATE

Then, we may rewrite the constraints in the usual form:

$$
\begin{aligned}
\dot{x}-r \omega_{2} & =-\Omega(t) y, \\
\dot{y}+r \omega_{1} & =\Omega(t) x .
\end{aligned}
$$

Optimal Control of an homogeneous ball on A ROTATING PLATE

Then, we may rewrite the constraints in the usual form:

$$
\begin{aligned}
\dot{x}-r \omega_{2} & =-\Omega(t) y \\
\dot{y}+r \omega_{1} & =\Omega(t) x
\end{aligned}
$$

In addition, since we do not consider external forces the Lagrangian of the system corresponds with the kinetic energy

$$
K\left(x, y, \dot{x}, \dot{y}, \omega_{1}, \omega_{2}, \omega_{3}\right)=\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}+m k^{2}\left(\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}\right)\right) .
$$

Optimal Control of an homogeneous ball on A ROTATING PLATE

- $Q=\mathbb{R}^{2} \times S O(3)$ is the total space of a trivial principal $S O(3)$-bundle over \mathbb{R}^{2}
- the bundle projection $\phi: Q \rightarrow M=\mathbb{R}^{2}$ is just the canonical projection on the first factor.

Optimal Control of an homogeneous ball on

A ROTATING PLATE

- $Q=\mathbb{R}^{2} \times S O(3)$ is the total space of a trivial principal $S O(3)$-bundle over \mathbb{R}^{2}
- the bundle projection $\phi: Q \rightarrow M=\mathbb{R}^{2}$ is just the canonical projection on the first factor.
Therefore, we may consider the corresponding quotient bundle $E=T Q / S O(3)$ over $M=\mathbb{R}^{2}$.
- $T S O(3) \simeq \mathfrak{s o}(3) \times S O(3)$ by using right translation.
- The tangent action of $S O(3)$ on $T(S O(3)) \cong \mathfrak{s o (3)} \times S O(3)$ is the trivial action

$$
(\mathfrak{s o}(3) \times S O(3)) \times S O(3) \rightarrow \mathfrak{s o}(3) \times S O(3), \quad((\omega, g), h) \mapsto(\omega, g h)
$$

Optimal Control of an homogeneous ball on

A ROTATING PLATE

- $Q=\mathbb{R}^{2} \times S O(3)$ is the total space of a trivial principal $S O(3)$-bundle over \mathbb{R}^{2}
- the bundle projection $\phi: Q \rightarrow M=\mathbb{R}^{2}$ is just the canonical projection on the first factor.
Therefore, we may consider the corresponding quotient bundle $E=T Q / S O(3)$ over $M=\mathbb{R}^{2}$.
- $T S O(3) \simeq \mathfrak{s o}(3) \times S O(3)$ by using right translation.
- The tangent action of $S O(3)$ on $T(S O(3)) \cong \mathfrak{s o}(3) \times S O(3)$ is the trivial action

$$
(\mathfrak{s o}(3) \times S O(3)) \times S O(3) \rightarrow \mathfrak{s o}(3) \times S O(3), \quad((\omega, g), h) \mapsto(\omega, g h)
$$

Thus, the quotient bundle $T Q / S O(3)$ is isomorphic to the product manifold $T \mathbb{R}^{2} \times \mathfrak{s o}(3)$, and the vector bundle projection is $\tau_{\mathbb{R}^{2}} \circ p r_{1}$, where $p r_{1}: T \mathbb{R}^{2} \times \mathfrak{s o}(3) \rightarrow T \mathbb{R}^{2}$ and $\tau_{\mathbb{R}^{2}}: T \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are the canonical projections.

Optimal Control of an homogeneous ball on

A ROTATING PLATE

A section of $E=T Q / S O(3) \cong T \mathbb{R}^{2} \times \mathfrak{s o}(3) \rightarrow \mathbb{R}^{2}$ is a pair (X, f), where X is a vector field on \mathbb{R}^{2} and $f: \mathbb{R}^{2} \rightarrow \mathfrak{s o}(3)$ is a smooth map. Therefore, a global basis of sections of $T \mathbb{R}^{2} \times \mathfrak{s o}(3) \rightarrow \mathbb{R}^{2}$ is

$$
\begin{aligned}
& e_{1}=\left(\frac{\partial}{\partial x}, 0\right), \quad e_{2} \\
&=\left(\frac{\partial}{\partial y}, 0\right), \\
& e_{3}=\left(0, E_{1}\right), \quad e_{4}=\left(0, E_{2}\right), \quad e_{5}=\left(0, E_{3}\right) .
\end{aligned}
$$

Optimal Control of an homogeneous ball on

A ROTATING PLATE

A section of $E=T Q / S O(3) \cong T \mathbb{R}^{2} \times \mathfrak{s o}(3) \rightarrow \mathbb{R}^{2}$ is a pair (X, f), where X is a vector field on \mathbb{R}^{2} and $f: \mathbb{R}^{2} \rightarrow \mathfrak{s o}(3)$ is a smooth map. Therefore, a global basis of sections of $T \mathbb{R}^{2} \times \mathfrak{s o}(3) \rightarrow \mathbb{R}^{2}$ is

$$
\begin{aligned}
& e_{1}=\left(\frac{\partial}{\partial x}, 0\right), \quad e_{2}=\left(\frac{\partial}{\partial y}, 0\right), \\
& e_{3}=\left(0, E_{1}\right), \quad e_{4}=\left(0, E_{2}\right), \quad e_{5}=\left(0, E_{3}\right) .
\end{aligned}
$$

There exists a one-to-one correspondence between the space $\Gamma(E=T Q / S O(3))$ and the G-invariant vector fields on Q. If $\llbracket \cdot, \cdot \rrbracket$ is the Lie bracket on the space $\Gamma(E=T Q / S O(3))$, then the only non-zero fundamental Lie brackets are

$$
\llbracket e_{4}, e_{3} \rrbracket=e_{5}, \quad \llbracket e_{5}, e_{4} \rrbracket=e_{3}, \quad \llbracket e_{3}, e_{5} \rrbracket=e_{4}
$$

Optimal Control of an homogeneous ball on

A ROTATING PLATE

A section of $E=T Q / S O(3) \cong T \mathbb{R}^{2} \times \mathfrak{s o}(3) \rightarrow \mathbb{R}^{2}$ is a pair (X, f), where X is a vector field on \mathbb{R}^{2} and $f: \mathbb{R}^{2} \rightarrow \mathfrak{s o}(3)$ is a smooth map. Therefore, a global basis of sections of $T \mathbb{R}^{2} \times \mathfrak{s o}(3) \rightarrow \mathbb{R}^{2}$ is

$$
\begin{aligned}
e_{1} & =\left(\frac{\partial}{\partial x}, 0\right), \quad e_{2}
\end{aligned}=\left(\frac{\partial}{\partial y}, 0\right), \quad \begin{aligned}
e_{3} & =\left(0, E_{1}\right), \quad e_{4}=\left(0, E_{2}\right), \quad e_{5}=\left(0, E_{3}\right) .
\end{aligned}
$$

There exists a one-to-one correspondence between the space $\Gamma(E=T Q / S O(3))$ and the G-invariant vector fields on Q. If $\llbracket \cdot, \cdot \rrbracket$ is the Lie bracket on the space $\Gamma(E=T Q / S O(3))$, then the only non-zero fundamental Lie brackets are

$$
\llbracket e_{4}, e_{3} \rrbracket=e_{5}, \quad \llbracket e_{5}, e_{4} \rrbracket=e_{3}, \quad \llbracket e_{3}, e_{5} \rrbracket=e_{4} .
$$

Moreover, it follows that the Lagrangian function $L=K$ and the constraints are $S O(3)$-invariant. Consequently, L induces a Lagrangian function L^{\prime} on $E=T Q / S O(3) \simeq T \mathbb{R}^{2} \times \mathfrak{s o}(3)$.

Optimal Control of an homogeneous ball on

A ROTATING PLATE

We have a constrained system on $E=T Q / S O(3) \simeq T \mathbb{R}^{2} \times \mathfrak{s o}(3)$ and note that in this case the constraints are nonholonomic and affine in the velocities. The constraints define an affine subbundle of the vector bundle $E \simeq T \mathbb{R}^{2} \times \mathfrak{s o}(3) \rightarrow \mathbb{R}^{2}$ which is modeled over the vector subbundle \mathcal{D} generated by the sections

$$
\mathcal{D}=\operatorname{span}\left\{e_{5} ; r e_{1}+e_{4} ; r e_{2}-e_{3}\right\}
$$

Optimal Control of an homogeneous ball on

A ROTATING PLATE

We have a constrained system on $E=T Q / S O(3) \simeq T \mathbb{R}^{2} \times \mathfrak{s o}(3)$ and note that in this case the constraints are nonholonomic and affine in the velocities. The constraints define an affine subbundle of the vector bundle $E \simeq T \mathbb{R}^{2} \times \mathfrak{s o}(3) \rightarrow \mathbb{R}^{2}$ which is modeled over the vector subbundle \mathcal{D} generated by the sections

$$
\mathcal{D}=\operatorname{span}\left\{e_{5} ; r e_{1}+e_{4} ; r e_{2}-e_{3}\right\}
$$

After some computations the equations of motion for this constrained system are precisely

$$
\left.\begin{array}{rl}
\dot{x}-r \omega_{2} & =-\Omega(t) y \\
\dot{y}+r \omega_{1} & =\Omega(t) x \\
\dot{\omega}_{3} & =0
\end{array}\right\}
$$

together with

$$
\ddot{x}+\frac{k^{2} \Omega(t)}{r^{2}+k^{2}} \dot{y}=0, \quad \ddot{y}-\frac{k^{2} \Omega(t)}{r^{2}+k^{2}} \dot{x}=0
$$

Optimal Control of an homogeneous ball on A ROTATING PLATE

Assume full control over the motion of the center of the ball (the shape variables). The controlled system can be written as,

$$
\begin{aligned}
& \ddot{x}+\frac{k^{2} \Omega(t)}{r^{2}+k^{2}} \dot{y}=u_{1}, \\
& \ddot{y}-\frac{k^{2} \Omega(t)}{r^{2}+k^{2}} \dot{x}=u_{2}
\end{aligned}
$$

subject to

$$
\left.\begin{array}{rl}
\omega_{2}-\frac{1}{r} \dot{x} & =\frac{\Omega(t) y}{\Omega r} \\
\omega_{1}+\frac{1}{r} \dot{y} & =\frac{\Omega(t) x}{r} \\
\dot{\omega}_{3} & =0 .
\end{array}\right\}
$$

Optimal Control of an homogeneous ball on A ROTATING PLATE

Assume full control over the motion of the center of the ball (the shape variables). The controlled system can be written as,

$$
\begin{aligned}
& \ddot{x}+\frac{k^{2} \Omega(t)}{r^{2}+k^{2}} \dot{y}=u_{1}, \\
& \ddot{y}-\frac{k^{2} \Omega(t)}{r^{2}+k^{2}} \dot{x}=u_{2}
\end{aligned}
$$

subject to

$$
\left.\begin{array}{rl}
\omega_{2}-\frac{1}{r} \dot{x} & =\frac{\Omega(t) y}{r} \\
\omega_{1}+\frac{1}{r} \dot{y} & =\frac{\Omega(t) x}{r}, \\
\dot{\omega}_{3} & =0 .
\end{array}\right\}
$$

Now, consider the cost function

$$
\mathcal{C}=\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}\right),
$$

Plate ball problem

Plate ball Problem

Given $q_{0}, q_{f} \in \mathbb{R}^{2}, \dot{q}_{0} \in T_{q_{0}} \mathbb{R}^{2}, \dot{q}_{f} \in T_{q_{f}} \mathbb{R}^{2}, q=(x, y) \in \mathbb{R}^{2}$, $\omega_{0}, \omega_{f} \in \mathfrak{s o}(3)$ find an optimal control curve $(q(t), \omega(t), u(t))$ on the reduced space that steer the system from q_{0}, ω_{0} to q_{f}, ω_{f} minimizing

$$
\int_{0}^{1} \frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}\right) d t
$$

Plate ball Problem

We define the second order Lagrangian $\tilde{L}: T^{(2)} \mathbb{R}^{2} \times 2 \mathfrak{s o}(3) \rightarrow \mathbb{R}$ given by

$$
\begin{aligned}
& \tilde{L}\left(x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y}, \omega_{1}, \omega_{2}, \omega_{3}, \dot{\omega}_{1}, \dot{\omega}_{2}, \dot{\omega}_{3}\right)= \\
& \frac{1}{2}\left(\ddot{x}+\frac{k^{2} \Omega(t)}{r^{2}+k^{2}} \dot{y}\right)^{2}+\frac{1}{2}\left(\ddot{y}-\frac{k^{2} \Omega(t)}{r^{2}+k^{2}} \dot{x}\right)^{2}
\end{aligned}
$$

subject to second-order constraints $\Phi^{\alpha}: T^{(2)} \mathbb{R}^{2} \times 2 \mathfrak{s o}(3) \rightarrow \mathbb{R}$, $\alpha=1,2,3$.

$$
\begin{aligned}
& \Phi^{1}=\omega_{1}+\frac{1}{r} \dot{y}-\frac{\Omega(t) x}{r}, \\
& \Phi^{2}=\omega_{2}-\frac{1}{r} \dot{x}-\frac{\Omega(t) y}{r}, \\
& \Phi^{3}=\dot{\omega}_{3} .
\end{aligned}
$$

Plate ball Problem

We define the second order Lagrangian $\tilde{L}: T^{(2)} \mathbb{R}^{2} \times 2 \mathfrak{s o}(3) \rightarrow \mathbb{R}$ given by

$$
\begin{aligned}
& \tilde{L}\left(x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y}, \omega_{1}, \omega_{2}, \omega_{3}, \dot{\omega}_{1}, \dot{\omega}_{2}, \dot{\omega}_{3}\right)= \\
& \frac{1}{2}\left(\ddot{x}+\frac{k^{2} \Omega(t)}{r^{2}+k^{2}} \dot{y}\right)^{2}+\frac{1}{2}\left(\ddot{y}-\frac{k^{2} \Omega(t)}{r^{2}+k^{2}} \dot{x}\right)^{2}
\end{aligned}
$$

subject to second-order constraints $\Phi^{\alpha}: T^{(2)} \mathbb{R}^{2} \times 2 \mathfrak{s o}(3) \rightarrow \mathbb{R}$, $\alpha=1,2,3$.

$$
\begin{aligned}
\Phi^{1} & =\omega_{1}+\frac{1}{r} \dot{y}-\frac{\Omega(t) x}{r}, \\
\Phi^{2} & =\omega_{2}-\frac{1}{r} \dot{x}-\frac{\Omega(t) y}{r}, \\
\Phi^{3} & =\dot{\omega}_{3} .
\end{aligned}
$$

The optimal control problem is prescribed by solving the following system of 4-order differential equations (ODEs).

Plate ball problem

$$
\begin{aligned}
0 & =\lambda_{1} \frac{\Omega(t)}{r}+\frac{\dot{\lambda}_{2}}{r}+x^{(i v)}+\frac{k^{2} \Omega^{\prime \prime}(t) \dot{y}}{r^{2}+k^{2}}+\frac{2 k^{2} \Omega^{\prime}(t) \ddot{y}}{r^{2}+k^{2}}+\frac{2 k^{2} \Omega(t) \dddot{y}}{r^{2}+k^{2}}, \\
& +\frac{k^{2} \Omega^{\prime}(t) \dddot{y}}{r^{2}+k^{2}}-\frac{k^{4} \Omega^{2}(t) \ddot{x}}{\left(r^{2}+k^{2}\right)^{2}}-\frac{2 k^{4} \Omega^{\prime}(t) \Omega(t) \dot{x}}{\left(r^{2}+k^{2}\right)^{2}} \\
0 & =\lambda_{2} \frac{\Omega(t)}{r}+\frac{\dot{\lambda_{1}}}{r}+y^{(i v)}-\frac{k^{2} \Omega^{\prime \prime}(t) \dot{x}}{r^{2}+k^{2}}-\frac{3 k^{2} \Omega^{\prime}(t) \ddot{x}}{r^{2}+k^{2}}-\frac{2 k^{2} \Omega(t) \dddot{x}}{r^{2}+k^{2}}, \\
& -\frac{k^{4} \Omega^{2}(t) \ddot{y}}{\left(r^{2}+y^{2}\right)^{2}}-\frac{2 k^{4} \Omega(t) \Omega^{\prime}(t) \dot{y}}{\left(r^{2}+k^{2}\right)^{2}}, \\
0 & =\dot{\lambda}_{1}-\lambda_{2} \omega_{3}+\lambda_{3} \omega_{2}, \quad 0=\dot{\lambda}_{2}+\lambda_{1} \omega_{3}-\lambda_{3} \omega_{1}, \\
0 & =\dot{\lambda}_{3}-\lambda_{1} \omega_{2}+\lambda_{2} \omega_{1}, \quad 0=\omega_{2}-\frac{1}{r} \dot{x}-\frac{\Omega(t) y}{r}, \\
0 & =\omega_{1}+\frac{1}{r} \dot{y}-\frac{\Omega(t) x}{r}, \quad 0=\dot{\omega}_{3} .
\end{aligned}
$$

GEOMETRIC FORMALISM FOR OPTIMAL CONTROL PROBLEM OF UNDERACTUATED MECHANICAL SYSTEMS

A Geometric formalism for solve underactuated mechanical systems can be developed using the Skinnr-Rusk formalism. The idea is the following.

GEOMETRIC FORMALISM FOR OPTIMAL CONTROL PROBLEM OF UNDERACTUATED MECHANICAL SYSTEMS

A Geometric formalism for solve underactuated mechanical systems can be developed using the Skinnr-Rusk formalism. The idea is the following. \star The Skinner and Rusk formulation is a simultaneous mixed formulation of the mechanics between the Lagrangian and Hamiltonian formalism.

GEOMETRIC FORMALISM FOR OPTIMAL CONTROL PROBLEM OF UNDERACTUATED MECHANICAL SYSTEMS

A Geometric formalism for solve underactuated mechanical systems can be developed using the Skinnr-Rusk formalism. The idea is the following. \star The Skinner and Rusk formulation is a simultaneous mixed formulation of the mechanics between the Lagrangian and Hamiltonian formalism. \star Solve an optimal control problem is equivalent to solve a higher-order problem with higher-order constraints (under some regularity conditions).

GEOMETRIC FORMALISM FOR OPTIMAL CONTROL
 PROBLEM OF UNDERACTUATED MECHANICAL SYSTEMS

A Geometric formalism for solve underactuated mechanical systems can be developed using the Skinnr-Rusk formalism. The idea is the following. \star The Skinner and Rusk formulation is a simultaneous mixed formulation of the mechanics between the Lagrangian and Hamiltonian formalism. * Solve an optimal control problem is equivalent to solve a higher-order problem with higher-order constraints (under some regularity conditions). * Solve a higher-order problem with higher-order constraints is equivalent to solve a presymplectic Hamiltonian problem.

GEOMETRIC FORMALISM FOR OPTIMAL CONTROL

PROBLEM OF UNDERACTUATED MECHANICAL SYSTEMS

A Geometric formalism for solve underactuated mechanical systems can be developed using the Skinnr-Rusk formalism. The idea is the following.
\star The Skinner and Rusk formulation is a simultaneous mixed formulation of the mechanics between the Lagrangian and Hamiltonian formalism. \star Solve an optimal control problem is equivalent to solve a higher-order problem with higher-order constraints (under some regularity conditions). * Solve a higher-order problem with higher-order constraints is equivalent to solve a presymplectic Hamiltonian problem.

* With the Skinner-Rusk formalism we solve a presymplectic Hamiltonian problem and therefore we solve the optimal control problem for underactuated mechanical systems.

iiThank you!!

