Higher-order covariant Euler-Poincaré reduction
 (Work in progress)

M. Castrillón López
ICMAT(CSIC-UAM-UC3M-UCM)
Universidad Complutense de Madrid

Conference: The legacy of Jerry Marsden
Toronto, July 2012

CONTENTS

1. Introduction and first order
2. Higher-order. The space
3. Higher-order. The reduction
4. Noether conservation law
5. Example

REFERENCES

- M.C.L., P.L. García, T. Ratiu, Euler-Poincaré reduction on principal fiber bundles, Lett. Math. Phys. 58 (2001) 167-180.
- M.C.L., J. E. Marsden, Some remarks on Lagrangian and Poisson reduction for Field Theories, J. Geom. Phys. 48 (2003) 52-83.
- F. Gay-Balmaz, D. Holm, D. Meier, T. Ratiu, F. Vialard, Invariant higher-order variational problems, Comm. Math. Phys. 309 (2012), 413-458.
- S. Kouranbaeva, S. Shkoller, A variational approach to second-order multisymplectic field theory, J. Geom. Phys. 35 (2000), 333-366.
- J. Muñoz Masqué, Poincaré-Cartan Forms in Higher Order Variational Calculus on Fibred Manifolds, Rev. Iberoamericana Mat. 1 (1985), 85-126.

I.- INTRODUCTION and FIRST ORDER

- Reduction is an essential tool in variational equations

I.- INTRODUCTION and FIRST ORDER

- Reduction is an essential tool in variational equations
- In Mechanics ($L: T Q \rightarrow \mathbb{R}$) the first main example is Euler-Poincaré

$$
L: T G \rightarrow \mathbb{R} \quad \rightsquigarrow \quad l:(T G) / G=\mathfrak{g} \rightarrow \mathbb{R} .
$$

with equations

$$
\frac{d}{d t} \frac{\delta l}{\delta \sigma}=\operatorname{tad}_{\sigma}^{*} \frac{\delta l}{\delta \sigma} .
$$

or

$$
\left(\frac{d}{d t} \mp \mathrm{ad}_{\sigma}^{*}\right) \frac{\delta l}{\delta \sigma}=0
$$

I.- INTRODUCTION and FIRST ORDER

- Reduction is an essential tool in variational equations
- In Mechanics $(L: T Q \rightarrow \mathbb{R})$ the first main example is Euler-Poincaré

$$
L: T G \rightarrow \mathbb{R} \quad \rightsquigarrow \quad l:(T G) / G=\mathfrak{g} \rightarrow \mathbb{R} .
$$

with equations

$$
\frac{d}{d t} \frac{\delta l}{\delta \sigma}= \pm \operatorname{ad}_{\sigma}^{*} \frac{\delta l}{\delta \sigma} .
$$

or

$$
\left(\frac{d}{d t} \mp \mathrm{ad}_{\sigma}^{*}\right) \frac{\delta l}{\delta \sigma}=0 .
$$

- Further results: Lagrange-Poincaré, by stages, semidirect,...
- There is also the Hamiltonian picture of this formulation.

In Field Theories, the equivalent result takes place in principal bundles $\pi: P \rightarrow M$. The objects are (local) sections and the Lagrangian is defined in the phase bundle

$$
L: J^{1} P \rightarrow \mathbb{R} .
$$

In Field Theories, the equivalent result takes place in principal bundles $\pi: P \rightarrow M$. The objects are (local) sections and the Lagrangian is defined in the phase bundle

$$
L: J^{1} P \rightarrow \mathbb{R} .
$$

Geometry of covariant Euler-Poincaré:

In Field Theories, the equivalent result takes place in principal bundles $\pi: P \rightarrow M$. The objects are (local) sections and the Lagrangian is defined in the phase bundle

$$
L: J^{1} P \rightarrow \mathbb{R} .
$$

Geometry of covariant Euler-Poincaré:

- The BUNDLE:

$$
P \rightarrow M \quad \rightsquigarrow \quad\left(J^{1} P\right) / G=C \rightarrow M
$$

the bundle of connections (affine bundle whose sections are connections). Then $l: C \rightarrow \mathbb{R}$.

In Field Theories, the equivalent result takes place in principal bundles $\pi: P \rightarrow M$. The objects are (local) sections and the Lagrangian is defined in the phase bundle

$$
L: J^{1} P \rightarrow \mathbb{R}
$$

Geometry of covariant Euler-Poincaré:

- The BUNDLE:

$$
P \rightarrow M \quad \rightsquigarrow \quad\left(J^{1} P\right) / G=C \rightarrow M
$$

the bundle of connections (affine bundle whose sections are connections). Then $l: C \rightarrow \mathbb{R}$.

- The VARIATIONS:

$$
\begin{array}{llll}
s & \in \Gamma(P) & \rightsquigarrow & \delta s \text { free } \\
\sigma & \in & \Gamma(C) & \rightsquigarrow \\
\delta \sigma \text { gauge }
\end{array}
$$

Gauge vector fields in $P \rightarrow M$ (G-invariant and vertical vector fields) induce vector fields in $C \rightarrow M$. They can be seen as sections of the adjoint bundle $\tilde{\mathfrak{g}} \rightarrow M$.

Theorem Given a local section $s: U \rightarrow P$ of π and the section $\sigma: U \rightarrow C, \sigma=\left[j^{1} s\right]$, the following are equivalent:
1.-s satisfies the Euler-Lagrange equations for L,
2.-the variational principle

$$
\delta \int_{M} L\left(j_{x}^{1} s\right) d x=0
$$

holds, for arbitrary variations with compact support,
3.-the Euler-Poincaré equations hold:

$$
\operatorname{div}^{\sigma} \frac{\delta l}{\delta \sigma}=0
$$

4.-the variational principle

$$
\delta \int_{M} l(\sigma(x)) d x=0
$$

holds, using variations of the form

$$
\delta \sigma=\nabla^{\sigma} \eta
$$

where $\eta: U \rightarrow \tilde{\mathfrak{g}}$ is an arbitrary section of the adjoint bundle.

- Remark:

$$
\operatorname{div}^{\sigma} \frac{\delta l}{\delta \sigma}=0 \quad \Longleftrightarrow \quad\left(\operatorname{div}^{\mathcal{H}}+\operatorname{ad}_{\sigma^{\mathcal{H}}}^{*}\right) \frac{\delta l}{\delta \sigma}=0
$$

- Remark:

$$
\operatorname{div}^{\sigma} \frac{\delta l}{\delta \sigma}=0 \quad \Longleftrightarrow \quad\left(\operatorname{div}^{\mathcal{H}}+\operatorname{ad}_{\sigma \mathcal{H}}^{*}\right) \frac{\delta l}{\delta \sigma}=0
$$

- Remark: If $\sigma=\left[j^{1} s\right]$, then σ is flat $(\operatorname{Curv}(\sigma)=0)$ and the integral leaves of σ are the solutions s.

$$
\mathcal{E L}(L)(s)=0 \stackrel{\text { loc }}{\Longleftrightarrow}\left\{\begin{array}{l}
\mathcal{E P}(l)(\sigma)=0 \\
\operatorname{Curv}(\sigma)=0
\end{array}\right.
$$

- There are some topological "issues" (defects, phases,...)

II.- HIGHER-ORDER. THE SPACE

Higher order variational problems are found in important situations

- In Mechanics

$$
L: T^{(k)} Q \rightarrow \mathbb{R}
$$

(splines, optimal control...)

II.- HIGHER-ORDER. THE SPACE

Higher order variational problems are found in important situations

- In Mechanics

$$
L: T^{(k)} Q \rightarrow \mathbb{R}
$$

(splines, optimal control...)

- For Field Theories, they are found in KdV, Camassa-Holm,Relativity!
What about reduction in this context?

II.- HIGHER-ORDER. THE SPACE

Higher order variational problems are found in important situations

- In Mechanics

$$
L: T^{(k)} Q \rightarrow \mathbb{R}
$$

(splines, optimal control...)

- For Field Theories, they are found in

KdV, Camassa-Holm,Relativity!
What about reduction in this context?
In Mechanics, the basic instance is higher-order Euler-Poincaré

$$
L: T^{(k)} G \rightarrow \mathbb{R} \quad \rightsquigarrow \quad l:(T G) / G=\oplus^{k} \mathfrak{g} \rightarrow \mathbb{R} .
$$

with equations

$$
\left(\frac{d}{d t} \mp \mathrm{ad}_{\sigma}^{*}\right)\left(\sum_{j=0}^{k-1}(-1)^{j} \frac{d^{k}}{d t^{k}} \frac{\delta l}{\delta \sigma^{(j)}}\right)=0 .
$$

- We now consider a fiber bundle

$$
E \rightarrow M
$$

a Lagrangian $L: J^{k} E \rightarrow \mathbb{R}$ and the action

$$
\int_{M} L\left(j^{k} s\right) \mathbf{v}=0, \quad s \text { section. }
$$

- We now consider a fiber bundle

$$
E \rightarrow M
$$

a Lagrangian $L: J^{k} E \rightarrow \mathbb{R}$ and the action

$$
\int_{M} L\left(j^{k} s\right) \mathbf{v}=0, \quad s \text { section. }
$$

A section s is critical (solution of the variational problem) iff the Euler-Lagrange equations are satisfied

$$
\mathcal{E} \mathcal{L}_{k}(\mathcal{L})(s)=0 .
$$

Locally, for a fiber coordinate system $\left(x^{i}, y^{\alpha}\right)$ in E, we have

$$
\mathcal{E} \mathcal{L}_{k}(L)(s)=\sum_{j=0}^{k}(-1)^{j} \frac{d^{k}}{d x^{i_{1}} \cdots d x^{i_{j}}}\left(\frac{\partial L}{\partial y_{i_{1} \ldots i_{j}}^{\mu}} \circ j^{2 k} s\right) \otimes d y^{\mu}
$$

with $\left(x^{i}, y^{\mu}\right)$ fibred coordinates $\left(\mathbf{v}=d x^{1} \wedge \ldots \wedge d x^{n}\right)$.

- A covariant definition of $\mathcal{E} \mathcal{L}_{k}(L)$ as a fiber map from $J^{2 k} E \rightarrow V^{*} E$ requires the introduction of a connection ∇ in M.

We now assume that the configuration bundle is a G-principal bundle $P \rightarrow M$ and have a Lagrangian

$$
L: J^{k} P \rightarrow \mathbb{R}
$$

invariant with respect to the action of G

$$
j_{x}^{k} s \cdot g=j_{x}^{k}(s \cdot g)
$$

We now assume that the configuration bundle is a G-principal bundle $P \rightarrow M$ and have a Lagrangian

$$
L: J^{k} P \rightarrow \mathbb{R}
$$

invariant with respect to the action of G

$$
j_{x}^{k} s \cdot g=j_{x}^{k}(s \cdot g)
$$

We have a dropped Lagrangian

$$
l:\left(J^{k} P\right) / G \rightarrow \mathbb{R} .
$$

We now assume that the configuration bundle is a G-principal bundle $P \rightarrow M$ and have a Lagrangian

$$
L: J^{k} P \rightarrow \mathbb{R}
$$

invariant with respect to the action of G

$$
j_{x}^{k} s \cdot g=j_{x}^{k}(s \cdot g)
$$

We have a dropped Lagrangian

$$
\begin{gathered}
l:\left(J^{k} P\right) / G \rightarrow \mathbb{R} . \\
\left(J^{k} P\right) / G=?
\end{gathered}
$$

- In Mechanics

$$
\begin{aligned}
&(T G) / G \simeq \mathfrak{g} \rightsquigarrow\left(T^{(k)} G\right) / G \simeq \oplus^{k} \mathfrak{g}=T^{(k-1)} \mathfrak{g} \\
&\left(J^{1} P\right) / G \simeq C \quad \rightsquigarrow \quad\left(J^{k} P\right) / G \simeq ? ? ? ?
\end{aligned}
$$

- In Mechanics

$$
\begin{aligned}
&(T G) / G \simeq \mathfrak{g} \\
&\left(J^{1} P\right) / G \rightsquigarrow C \quad\left(T^{(k)} G\right) / G \simeq \oplus^{k} \mathfrak{g}=T^{(k-1)} \mathfrak{g} \\
& \rightsquigarrow \quad\left(J^{k} P\right) / G \simeq ? ? ? ?
\end{aligned}
$$

- We have that

$$
\left(J^{k} P\right) / G \neq J^{k-1} C
$$

(though valid for $M=\mathbb{R}$ or $k=1$).

- In Mechanics

$$
\begin{aligned}
&(T G) / G \simeq \mathfrak{g} \rightsquigarrow\left(T^{(k)} G\right) / G \simeq \oplus^{k} \mathfrak{g}=T^{(k-1)} \mathfrak{g} \\
&\left(J^{1} P\right) / G \simeq C \quad \rightsquigarrow \quad\left(J^{k} P\right) / G \simeq ? ? ? ?
\end{aligned}
$$

- We have that

$$
\left(J^{k} P\right) / G \neq J^{k-1} C
$$

(though valid for $M=\mathbb{R}$ or $k=1$).
Proposition 1 We have diagram of bundles

$$
\begin{array}{ccc}
J^{k-1}\left(J^{1} P\right) & \longrightarrow & J^{k-1} C \\
\downarrow & & \downarrow \\
J^{1} P & \longrightarrow & C
\end{array}
$$

Then, for $k>1$, we consider

$$
J^{k} P \hookrightarrow J^{k-1}\left(J^{1} P\right)
$$

then

$$
\left(J^{k} P\right) / G=C^{k-1} \hookrightarrow J^{k-1} C
$$

Proposition 2 If we consider the mapping

$$
\begin{aligned}
\Omega: J^{1} C & \rightarrow \wedge^{2} T^{*} M \otimes \tilde{\mathfrak{g}} \\
j_{x}^{1} \sigma & \mapsto \Omega_{x}^{\sigma}=\operatorname{Curv}(\sigma)_{x}
\end{aligned}
$$

and its prolongation

$$
\begin{aligned}
j^{r-1} \Omega: J^{r} C & \rightarrow J^{r-1}\left(\wedge^{2} T^{*} M \otimes \tilde{\mathfrak{g}}\right) \\
j_{x}^{r} \sigma & \mapsto j_{x}^{r-1} \Omega^{\sigma}
\end{aligned}
$$

then, for $k \geq 2$,

$$
C^{k}=\operatorname{ker} j^{k-1} \Omega
$$

Proposition 2 If we consider the mapping

$$
\begin{aligned}
\Omega: J^{1} C & \rightarrow \wedge^{2} T^{*} M \otimes \tilde{\mathfrak{g}} \\
j_{x}^{1} \sigma & \mapsto \Omega_{x}^{\sigma}=\operatorname{Curv}(\sigma)_{x}
\end{aligned}
$$

and its prolongation

$$
\begin{aligned}
j^{r-1} \Omega: J^{r} C & \rightarrow J^{r-1}\left(\wedge^{2} T^{*} M \otimes \tilde{\mathfrak{g}}\right) \\
j_{x}^{r} \sigma & \mapsto j_{x}^{r-1} \Omega^{\sigma}
\end{aligned}
$$

then, for $k \geq 2$,

$$
C^{k}=\operatorname{ker} j^{k-1} \Omega
$$

In other words

$$
\begin{aligned}
\left(J^{k} P\right) / G & =C^{k-1}=\operatorname{ker} j^{k-2} \Omega \\
& =\left\{j_{x}^{k-1} \sigma \in J^{k-1} C: j_{x}^{k-2} \Omega^{\sigma}=0\right\}
\end{aligned}
$$

Proposition 2 If we consider the mapping

$$
\begin{aligned}
\Omega: J^{1} C & \rightarrow \wedge^{2} T^{*} M \otimes \tilde{\mathfrak{g}} \\
j_{x}^{1} \sigma & \mapsto \Omega_{x}^{\sigma}=\operatorname{Curv}(\sigma)_{x}
\end{aligned}
$$

and its prolongation

$$
\begin{aligned}
j^{r-1} \Omega: J^{r} C & \rightarrow J^{r-1}\left(\wedge^{2} T^{*} M \otimes \tilde{\mathfrak{g}}\right) \\
j_{x}^{r} \sigma & \mapsto j_{x}^{r-1} \Omega^{\sigma}
\end{aligned}
$$

then, for $k \geq 2$,

$$
C^{k}=\operatorname{ker} j^{k-1} \Omega
$$

In other words

$$
\begin{aligned}
\left(J^{k} P\right) / G & =C^{k-1}=\operatorname{ker} j^{k-2} \Omega \\
& =\left\{j_{x}^{k-1} \sigma \in J^{k-1} C: j_{x}^{k-2} \Omega^{\sigma}=0\right\}
\end{aligned}
$$

Example $k=2$

$$
\left(J^{2} P\right) / G=C^{1}=\left\{j_{x}^{1} \sigma \in J^{1} C: \Omega_{x}^{\sigma}=0\right\}
$$

Proposition 3 The bundle

$$
J^{k} P \rightarrow J^{k-1} P
$$

is an affine subbundle of

$$
J^{k-1}\left(J^{1} P\right) \rightarrow J^{k-1} P
$$

(this last bundle is the prolongation of $J^{1} P \rightarrow P$.)

Proposition 3 The bundle

$$
J^{k} P \rightarrow J^{k-1} P
$$

is an affine subbundle of

$$
J^{k-1}\left(J^{1} P\right) \rightarrow J^{k-1} P
$$

(this last bundle is the prolongation of $J^{1} P \rightarrow P$.)

- Locally, if $\left(x^{i}, y^{\alpha}\right)$ are fiber coordinates in $P \rightarrow M$, we consider the induced coordinates $\left(x^{i}, y^{\alpha}, y_{j}^{\alpha}\right)$ in $J^{1} P$. Then the coordinates in $J^{k-1}\left(J^{1} P\right)$ are

$$
\left(x^{i}, y^{\alpha}, y_{j}^{\alpha} ; y_{; i_{1} \ldots i_{s}}^{\alpha}, y_{j ; i_{1} \ldots, i_{s}}^{\alpha}\right), \quad 1 \leq s \leq k-1,
$$

so that $J^{k} P \subset J^{k-1}\left(J^{1} P\right)$ is given by

$$
\begin{aligned}
y_{j}^{\alpha} & =y_{; j}^{\alpha} & \\
y_{i_{1} ; j i_{2} \ldots i_{s}}^{\alpha} & =y_{j ; i_{1} i_{2} \ldots i_{s}}^{\alpha} & 1 \leq s \leq k-1
\end{aligned}
$$

Proposition 4 The bundle

$$
\begin{array}{ccc}
C^{k-1} & \hookrightarrow & J^{k-1} C \\
\downarrow & & \downarrow \\
M & = & M
\end{array}
$$

is an affine subbundle.

III.- HIGHER ORDER. THE REDUCTION

Let $L: J^{k} P \rightarrow \mathbb{R}$ a G-invariant Lagrangian and

$$
l:\left(J^{k} P\right) / G=C^{k-1} \rightarrow \mathbb{R}
$$

the dropped Lagrangian.

III.- HIGHER ORDER. THE REDUCTION

Let $L: J^{k} P \rightarrow \mathbb{R}$ a G-invariant Lagrangian and

$$
l:\left(J^{k} P\right) / G=C^{k-1} \rightarrow \mathbb{R}
$$

the dropped Lagrangian.

- The reduced SECTIONS $\sigma^{(k-1)}=\left[j^{k} s\right]$ of $C^{k-1} \rightarrow M$ are (pointwise) FLAT connections. The compatibility condition is given at the beginning!

III.- HIGHER ORDER. THE REDUCTION

Let $L: J^{k} P \rightarrow \mathbb{R}$ a G-invariant Lagrangian and

$$
l:\left(J^{k} P\right) / G=C^{k-1} \rightarrow \mathbb{R}
$$

the dropped Lagrangian.

- The reduced SECTIONS $\sigma^{(k-1)}=\left[j^{k} s\right]$ of $C^{k-1} \rightarrow M$ are (pointwise) FLAT connections. The compatibility condition is given at the beginning!
- The VARIATIONS. For a (local) section s of $P \rightarrow M$ and any δs, consider the gauge vector field X (identified with a section η of $\tilde{\mathfrak{g}} \rightarrow M$) such that

$$
\left.X\right|_{s}=\delta s
$$

We have the prolongations:

$$
\begin{gathered}
j^{1} X \in \mathfrak{X}\left(J^{1} P\right), \quad j^{k} X \in \mathfrak{X}\left(J^{k} P\right) \\
j^{k-1}\left(j^{1} X\right) \in \mathfrak{X}\left(J^{k-1}\left(J^{1} P\right)\right)
\end{gathered}
$$

Lemma We have that

$$
j^{k-1}\left(j^{1} X\right)=j^{k} X \text { on } J^{k} P \subset J^{k-1}\left(J^{1} P\right)
$$

Then, as $j^{1} X$ projects to $\delta \sigma=\nabla^{\sigma} \eta$:
$j^{k-1}\left(j^{1} X\right)$ along $j^{k} s$ projects to $j^{k-1}(\delta \sigma)=j^{k-1}\left(\nabla^{\sigma} \eta\right)$ along $j^{k-1} \sigma$

Lemma We have that

$$
j^{k-1}\left(j^{1} X\right)=j^{k} X \text { on } J^{k} P \subset J^{k-1}\left(J^{1} P\right)
$$

Then, as $j^{1} X$ projects to $\delta \sigma=\nabla^{\sigma} \eta$:
$j^{k-1}\left(j^{1} X\right)$ along $j^{k} s$ projects to $j^{k-1}(\delta \sigma)=j^{k-1}\left(\nabla^{\sigma} \eta\right)$ along $j^{k-1} \sigma$

- Then the variations of the reduced sections of $C^{k-1} \rightarrow M$ are restriction of the jet prolongation of gauge vector fields to the subbundle $C^{k-1} \subset J^{k-1} C$.

Lemma We have that

$$
j^{k-1}\left(j^{1} X\right)=j^{k} X \text { on } J^{k} P \subset J^{k-1}\left(J^{1} P\right)
$$

Then, as $j^{1} X$ projects to $\delta \sigma=\nabla^{\sigma} \eta$:
$j^{k-1}\left(j^{1} X\right)$ along $j^{k} s$ projects to $j^{k-1}(\delta \sigma)=j^{k-1}\left(\nabla^{\sigma} \eta\right)$ along $j^{k-1} \sigma$

- Then the variations of the reduced sections of $C^{k-1} \rightarrow M$ are restriction of the jet prolongation of gauge vector fields to the subbundle $C^{k-1} \subset J^{k-1} C$.

Proposition Gauge transformations send flat connections to flat connections. Then, gauge vector fields (the jet prolongation) are tangent to the subbundle $C^{k-1} \subset J^{k-1} C$.

- The VARIATIONAL PRINCIPLE

How do we study the reduction of the variational principle?

1) Using Lagrange multipliers $C^{k-1} \subset J^{k-1} C$.
2) Extending the (dropped) Lagrangian to $J^{k-1} C$.

- The VARIATIONAL PRINCIPLE

How do we study the reduction of the variational principle?

1) Using Lagrange multipliers $C^{k-1} \subset J^{k-1} C$.
2) Extending the (dropped) Lagrangian to $J^{k-1} C$.

- We consider an extended Lagrangian

$$
\bar{l}: J^{k-1} C \rightarrow \mathbb{R}
$$

with constrained variations

$$
\delta \sigma=\nabla^{\sigma} \eta \quad \text { gauge vector fields }
$$

- The VARIATIONAL PRINCIPLE

How do we study the reduction of the variational principle?

1) Using Lagrange multipliers $C^{k-1} \subset J^{k-1} C$.
2) Extending the (dropped) Lagrangian to $J^{k-1} C$.

- We consider an extended Lagrangian

$$
\bar{l}: J^{k-1} C \rightarrow \mathbb{R}
$$

with constrained variations

$$
\delta \sigma=\nabla^{\sigma} \eta \quad \text { gauge vector fields }
$$

- For a variation

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \int_{M} \bar{l}\left(j^{k-1} \sigma_{\varepsilon}\right) \mathbf{v} & =\int_{M}\left\langle\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma), \nabla^{\sigma} \eta\right\rangle \mathbf{v} \\
& =\int_{M}\left\langle\operatorname{div}^{\sigma} \mathcal{E} \mathcal{L}_{k-1}(\bar{l}), \eta\right\rangle \mathbf{v}
\end{aligned}
$$

where the variation is admissible, i.e., $j^{k-1} \sigma_{\varepsilon} \in C^{k-1}, \forall x \in M$.

- The higher-order Euler-Poincaré equations are

$$
\mathcal{E} \mathcal{P}_{k-1}(\bar{l})(\sigma)=\operatorname{div}^{\sigma}\left[\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma)\right]=0,
$$

for a section σ such that $j_{x}^{k-1} \sigma \in C^{k-1}$, that is, for σ flat.

- The higher-order Euler-Poincaré equations are

$$
\mathcal{E} \mathcal{P}_{k-1}(\bar{l})(\sigma)=\operatorname{div}^{\sigma}\left[\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma)\right]=0
$$

for a section σ such that $j_{x}^{k-1} \sigma \in C^{k-1}$, that is, for σ flat.

- We recover the equivalence

$$
\mathcal{E} \mathcal{L}_{k}(L)(s)=0 \stackrel{l o c}{\Longleftrightarrow}\left\{\begin{array}{c}
\operatorname{div}^{\sigma}\left[\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma)\right]=0 \\
\operatorname{Curv}(\sigma)=0
\end{array}\right.
$$

- The higher-order Euler-Poincaré equations are

$$
\mathcal{E} \mathcal{P}_{k-1}(\bar{l})(\sigma)=\operatorname{div}^{\sigma}\left[\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma)\right]=0
$$

for a section σ such that $j_{x}^{k-1} \sigma \in C^{k-1}$, that is, for σ flat.

- We recover the equivalence

$$
\mathcal{E} \mathcal{L}_{k}(L)(s)=0 \stackrel{l o c}{\Longleftrightarrow}\left\{\begin{array}{c}
\operatorname{div}^{\sigma}\left[\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma)\right]=0 \\
\operatorname{Curv}(\sigma)=0
\end{array}\right.
$$

The complete result:

Theorem Given a local section $s: U \rightarrow P$ of π and the section $\sigma: U \rightarrow C, \sigma=\left[j^{1} s\right]$, the following are equivalent:
1.-s satisfies the Euler-Lagrange equations $\mathcal{E} \mathcal{L}_{k}(L)(s)=0$,
2.-the variational principle

$$
\delta \int_{M} L\left(j_{x}^{k} s\right) d x=0
$$

holds, for arbitrary variations with compact support, 3.-the Euler-Poincaré equations hold, for any extensión \bar{l}

$$
\mathcal{E P}_{k-1}(\bar{l})(\sigma)=\operatorname{div}^{\sigma}\left[\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma)\right]=0,
$$

4.-the variational principle

$$
\delta \int_{M} \bar{l}\left(j^{k-1} \sigma(x)\right) d x=0
$$

holds, using variations of the form

$$
\delta \sigma=\nabla^{\sigma} \eta
$$

where $\eta: U \rightarrow \tilde{\mathfrak{g}}$ is an arbitrary section of the adjoint bundle.

Remark

For $M=\mathbb{R}$ (Mechanics) we recover the existing result

$$
\left(\frac{d}{d t}+\mathrm{ad}_{\sigma}^{*}\right)\left(\sum_{j=0}^{k-1}(-1)^{j} \frac{d^{k}}{d t^{k}} \frac{\delta l}{\delta \sigma^{(j)}}\right)=0 .
$$

without any condition about the curvature of σ.

IV.- NOETHER CONSERVATION LAW

- Let Θ be a Poincaré-Cartan n-form of $L: J^{k} P \rightarrow \mathbb{R}$. Then for critical sections

$$
\left(j^{2 k-1} s\right)^{*} i_{Y} d \Theta=0, \quad \forall Y \in \mathfrak{X}\left(J^{2 k-1} P\right) .
$$

IV.- NOETHER CONSERVATION LAW

- Let Θ be a Poincaré-Cartan n-form of $L: J^{k} P \rightarrow \mathbb{R}$. Then for critical sections

$$
\left(j^{2 k-1} s\right)^{*} i_{Y} d \Theta=0, \quad \forall Y \in \mathfrak{X}\left(J^{2 k-1} P\right) .
$$

- In addition

$$
0=£_{j^{2 k-1} B^{*}} \Theta=i_{j^{2 k-1} B^{*}} d \Theta+d i_{j^{2 k-1} B^{*}} \Theta,
$$

for any $B \in \mathfrak{g}$, so that

$$
d\left(\left(j^{2 k-1} s\right)^{*} i_{j^{2 k-1} B^{*}} \Theta\right)=0,
$$

which is Noether Theorem.

Proposition The form

$$
J=i . \Theta
$$

is a \mathfrak{g}^{*}-valued $(n-1)$-form in $J^{2 k-1} P$ that projects to a $\tilde{\mathfrak{g}}^{*}$-valued $(n-1)$-form in $\left(J^{2 k-1} P\right) / G$. Using the volume form \mathbf{v} we have a section \mathcal{J} of $T M \otimes \tilde{\mathfrak{g}}^{*}$ in $\left(J^{2 k-1} P\right) / G$.

Proposition The form

$$
J=i . \Theta
$$

is a \mathfrak{g}^{*}-valued $(n-1)$-form in $J^{2 k-1} P$ that projects to a $\tilde{\mathfrak{g}}^{*}$-valued $(n-1)$-form in $\left(J^{2 k-1} P\right) / G$. Using the volume form \mathbf{v} we have a section \mathcal{J} of $T M \otimes \tilde{\mathfrak{g}}^{*}$ in $\left(J^{2 k-1} P\right) / G$.

Proposition For any section σ, we have that

$$
\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma)=\left(j^{2 k-2} \sigma\right)^{*} \mathcal{J}
$$

The equation (for σ flat)

$$
\operatorname{div}^{\sigma}\left[\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma)\right]=0
$$

is equivalent to

$$
d\left(\left(j^{2 k-1} s\right)^{*}\left(i_{j^{2 k-1} B^{*}} \Theta\right)\right)=0,
$$

for any integral leaf of σ.

Proposition The form

$$
J=i . \Theta
$$

is a \mathfrak{g}^{*}-valued $(n-1)$-form in $J^{2 k-1} P$ that projects to a $\tilde{\mathfrak{g}}^{*}$-valued $(n-1)$-form in $\left(J^{2 k-1} P\right) / G$. Using the volume form \mathbf{v} we have a section \mathcal{J} of $T M \otimes \tilde{\mathfrak{g}}^{*}$ in $\left(J^{2 k-1} P\right) / G$.

Proposition For any section σ, we have that

$$
\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma)=\left(j^{2 k-2} \sigma\right)^{*} \mathcal{J}
$$

The equation (for σ flat)

$$
\operatorname{div}^{\sigma}\left[\mathcal{E} \mathcal{L}_{k-1}(\bar{l})(\sigma)\right]=0
$$

is equivalent to

$$
d\left(\left(j^{2 k-1} s\right)^{*}\left(i_{j^{2 k-1} B^{*}} \Theta\right)\right)=0,
$$

for any integral leaf of σ.

- The Euler-Poincaré equation is equivalent to the higher order Noether conservation law.

V.- EXAMPLE

- We consider $M=\mathbb{R} \times \mathbb{R}$ with points $x=(t, x)$ and $P=M \times G$. The group G is endowed with an invariant Riemannian norm $\|\cdot\|$.

V.- EXAMPLE

- We consider $M=\mathbb{R} \times \mathbb{R}$ with points $x=(t, x)$ and $P=M \times G$. The group G is endowed with an invariant Riemannian norm $\|\cdot\|$.
- The Lagrangian

$$
\begin{gathered}
L: J^{2} P \rightarrow \mathbb{R} \\
j_{(t, x)}^{2} s \mapsto\left\|\frac{\nabla s_{t}}{\partial t}\right\|^{2}+\left\|\frac{\nabla s_{x}}{\partial x}\right\|^{2}+\lambda\left(\left\|s_{t}\right\|^{2}+\left\|s_{x}\right\|^{2}\right)
\end{gathered}
$$

where

$$
s_{t}=\frac{\partial s}{\partial t}, \quad s_{x}=\frac{\partial s}{\partial x}
$$

and $\lambda \in \mathbb{R}$.

V.- EXAMPLE

- We consider $M=\mathbb{R} \times \mathbb{R}$ with points $x=(t, x)$ and $P=M \times G$. The group G is endowed with an invariant Riemannian norm $\|\cdot\|$.
- The Lagrangian

$$
\begin{gathered}
L: J^{2} P \rightarrow \mathbb{R} \\
j_{(t, x)}^{2} s \mapsto\left\|\frac{\nabla s_{t}}{\partial t}\right\|^{2}+\left\|\frac{\nabla s_{x}}{\partial x}\right\|^{2}+\lambda\left(\left\|s_{t}\right\|^{2}+\left\|s_{x}\right\|^{2}\right)
\end{gathered}
$$

where

$$
s_{t}=\frac{\partial s}{\partial t}, \quad s_{x}=\frac{\partial s}{\partial x}
$$

and $\lambda \in \mathbb{R}$.

- This is a "model" of a two dimensional cubic spline in a group $(\lambda=0)$ or two dimensional elastica $(\lambda>0)$.
- For $M=\mathbb{R} \times S^{1}$, the "model" describes the evolution of a closed curve. (?)
- L is G-invariant and the (extended) reduced Lagrangian is

$$
\begin{gathered}
\bar{l}: J^{1} C \rightarrow \mathbb{R} \\
\bar{l}\left(j_{x}^{1} \sigma\right)=\left\|\frac{\partial \sigma}{\partial t}+\operatorname{ad}_{\sigma_{1}}^{*} \sigma\right\|^{2}+\left\|\frac{\partial \sigma}{\partial x}+\operatorname{ad}_{\sigma_{2}}^{*} \sigma\right\|^{2}+\lambda\|\sigma\|^{2}
\end{gathered}
$$

where $\sigma=\sigma_{1} d t+\sigma_{2} d x$ is a section of $C=T^{*} \mathbb{R}^{2} \otimes \mathfrak{g}$, and the norm in \mathfrak{g} is given by the invariant metric.

- L is G-invariant and the (extended) reduced Lagrangian is

$$
\begin{gathered}
\bar{l}: J^{1} C \rightarrow \mathbb{R} \\
\bar{l}\left(j_{x}^{1} \sigma\right)=\left\|\frac{\partial \sigma}{\partial t}+\operatorname{ad}_{\sigma_{1}}^{*} \sigma\right\|^{2}+\left\|\frac{\partial \sigma}{\partial x}+\operatorname{ad}_{\sigma_{2}}^{*} \sigma\right\|^{2}+\lambda\|\sigma\|^{2}
\end{gathered}
$$

where $\sigma=\sigma_{1} d t+\sigma_{2} d x$ is a section of $C=T^{*} \mathbb{R}^{2} \otimes \mathfrak{g}$, and the norm in \mathfrak{g} is given by the invariant metric.

- The reduced equations are a bit involved, but if the metric in G is bi-invariant, we get $(\lambda=0)$

$$
\left(\operatorname{div}+\operatorname{ad}_{\sigma}^{*}\right)\left(\partial_{t t} \sigma^{b}+\partial_{x x} \sigma^{b}\right)=0
$$

together with

$$
d \sigma+[\sigma, \sigma]=0
$$

FUTURE WORK

- Extension to other bundles and actions (higher-order Lagrange-Poincaré)
- Higher order semidirect product reduction
- The Hamiltonian picture (Lie-Poisson)
- Study of the problem of Lagrange
- Reduction under other symmetries (diffeomorphisms...)

REFERENCES

- M.C.L., P.L. García, T. Ratiu, Euler-Poincaré reduction on principal fiber bundles, Lett. Math. Phys. 58 (2001) 167-180.
- M.C.L., J. E. Marsden, Some remarks on Lagrangian and Poisson reduction for Field Theories, J. Geom. Phys. 48 (2003) 52-83.
- F. Gay-Balmaz, D. Holm, D. Meier, T. Ratiu, F. Vialard, Invariant higher-order variational problems, Comm. Math. Phys. 309 (2012), 413-458.
- S. Kouranbaeva, S. Shkoller, A variational approach to second-order multisymplectic field theory, J. Geom. Phys. 35 (2000), 333-366.
- J. Muñoz Masqué, Poincaré-Cartan Forms in Higher Order Variational Calculus on Fibred Manifolds, Rev. Iberoamericana Mat. 1 (1985), 85-126.

THANK YOU VERY MUCH JERRY

