Dirac structures

Henrique Bursztyn, IMPA

Geometry, mechanics and dynamics: the legacy of J. Marsden
Fields Institute, July 2012

Outline:

1. Mechanics and constraints (Dirac's theory)
2. "Degenerate" symplectic geometry: two viewpoints
3. Origins of Dirac structures
4. Properties of Dirac manifolds
5. Recent developments and applications

1. Phase spaces and constraints

\diamond Symplectic phase space with constraint submanifold $C \hookrightarrow M$
First class (coisotropic), second class (symplectic)...

1. Phase spaces and constraints

\diamond Symplectic phase space with constraint submanifold $C \hookrightarrow M$
First class (coisotropic), second class (symplectic)...
\diamond Dirac bracket on second class $C=\left\{x, \varphi^{i}(x)=0\right\}:$

$$
\{f, g\}_{\text {Dirac }}:=\{f, g\}-\left\{f, \varphi^{i}\right\} c_{i j}\left\{\varphi^{j}, g\right\}
$$

1. Phase spaces and constraints

\diamond Symplectic phase space with constraint submanifold $C \hookrightarrow M$
First class (coisotropic), second class (symplectic)...
\diamond Dirac bracket on second class $C=\left\{x, \varphi^{i}(x)=0\right\}:$

$$
\{f, g\}_{\text {Dirac }}:=\{f, g\}-\left\{f, \varphi^{i}\right\} c_{i j}\left\{\varphi^{j}, g\right\}
$$

Geometric meaning of relationship between brackets?

1. Phase spaces and constraints

\diamond Symplectic phase space with constraint submanifold $C \hookrightarrow M$
First class (coisotropic), second class (symplectic)...
\diamond Dirac bracket on second class $C=\left\{x, \varphi^{i}(x)=0\right\}:$

$$
\{f, g\}_{\text {Dirac }}:=\{f, g\}-\left\{f, \varphi^{i}\right\} c_{i j}\left\{\varphi^{j}, g\right\}
$$

Geometric meaning of relationship between brackets?
\diamond Intrinsic geometry of constraint submanifold $=$ presymplectic

1. Phase spaces and constraints

\diamond Symplectic phase space with constraint submanifold $C \hookrightarrow M$
First class (coisotropic), second class (symplectic)...
\diamond Dirac bracket on second class $C=\left\{x, \varphi^{i}(x)=0\right\}:$

$$
\{f, g\}_{\text {Dirac }}:=\{f, g\}-\left\{f, \varphi^{i}\right\} c_{i j}\left\{\varphi^{j}, g\right\}
$$

Geometric meaning of relationship between brackets?
\diamond Intrinsic geometry of constraint submanifold $=$ presymplectic
Questions:
Intrinsic geometry of constraints in Poisson phase spaces?

1. Phase spaces and constraints

\diamond Symplectic phase space with constraint submanifold $C \hookrightarrow M$
First class (coisotropic), second class (symplectic)...
\diamond Dirac bracket on second class $C=\left\{x, \varphi^{i}(x)=0\right\}:$

$$
\{f, g\}_{\text {Dirac }}:=\{f, g\}-\left\{f, \varphi^{i}\right\} c_{i j}\left\{\varphi^{j}, g\right\}
$$

Geometric meaning of relationship between brackets?
\diamond Intrinsic geometry of constraint submanifold $=$ presymplectic
Questions:
Intrinsic geometry of constraints in Poisson phase spaces?
Global structure behind "presymplectic foliations"?

2. Two viewpoints to symplectic geometry

nondegenerate $\omega \in \Omega^{2}(M)$	nondegenerate $\pi \in \Gamma\left(\wedge^{2} T M\right)$
$d \omega=0$	$[\pi, \pi]=0$
$i_{X_{f}} \omega=d f$	$X_{f}=\pi^{\sharp}(d f)$
$\{f, g\}=\omega\left(X_{g}, X_{f}\right)$	$\{f, g\}=\pi(d f, d g)$

2. Two viewpoints to symplectic geometry

nondegenerate $\omega \in \Omega^{2}(M)$	nondegenerate $\pi \in \Gamma\left(\wedge^{2} T M\right)$
$d \omega=0$	$[\pi, \pi]=0$
$i_{X_{f}} \omega=d f$	$X_{f}=\pi^{\sharp}(d f)$
$\{f, g\}=\omega\left(X_{g}, X_{f}\right)$	$\{f, g\}=\pi(d f, d g)$

Going degenerate: presymplectic and Poisson geometries...

3. Origins of Dirac structures

T. Courant's thesis (1990):

Unified approach to presymplectic / Poisson structures

3. Origins of Dirac structures

T. Courant's thesis (1990):

Unified approach to presymplectic / Poisson structures
Dirac structure: subbundle $L \subset \mathbb{T} M=T M \oplus T^{*} M$ such that
$\diamond L=L^{\perp}$

3. Origins of Dirac structures

T. Courant's thesis (1990):

Unified approach to presymplectic / Poisson structures
Dirac structure: subbundle $L \subset \mathbb{T} M=T M \oplus T^{*} M$ such that
$\diamond L=L^{\perp}$
$\diamond \llbracket \Gamma(L), \Gamma(L) \rrbracket \subset \Gamma(L) \quad$ (integrability)

3. Origins of Dirac structures

T. Courant's thesis (1990):

Unified approach to presymplectic / Poisson structures
Dirac structure: subbundle $L \subset \mathbb{T} M=T M \oplus T^{*} M$ such that
$\diamond L=L^{\perp}$
$\diamond \llbracket \Gamma(L), \Gamma(L) \rrbracket \subset \Gamma(L) \quad$ (integrability)

Courant bracket on $\Gamma(\mathbb{T} M)$:

$$
\llbracket(X, \alpha),(Y, \beta) \rrbracket=\left([X, Y], \mathcal{L}_{X} \beta-\mathcal{L}_{Y} \alpha-\frac{1}{2} d(\beta(X)-\alpha(Y))\right) .
$$

3. Origins of Dirac structures

T. Courant's thesis (1990):

Unified approach to presymplectic / Poisson structures

Dirac structure: subbundle $L \subset \mathbb{T} M=T M \oplus T^{*} M$ such that
$\diamond L=L^{\perp}$
$\diamond \llbracket \Gamma(L), \Gamma(L) \rrbracket \subset \Gamma(L) \quad$ (integrability)

Courant bracket on $\Gamma(\mathbb{T} M)$:

$$
\llbracket(X, \alpha),(Y, \beta) \rrbracket=\left([X, Y], \mathcal{L}_{X} \beta-\mathcal{L}_{Y} \alpha-\frac{1}{2} d(\beta(X)-\alpha(Y))\right) .
$$

Non-skew bracket: $\llbracket(X, \alpha),(Y, \beta) \rrbracket=\left([X, Y], \mathcal{L}_{X} \beta-i_{Y} d \alpha\right)$.

Examples

initial examples...

Examples

initial examples...

Another example...

$$
\begin{aligned}
& M=\mathbb{R}^{3}, \quad \text { coordinates }(x, y, z) \\
& L=\operatorname{span}\left\langle\left(\frac{\partial}{\partial y}, z d x\right),\left(\frac{\partial}{\partial x},-z d y\right),(0, d z)\right\rangle
\end{aligned}
$$

Examples

initial examples...

Another example...
$M=\mathbb{R}^{3}, \quad$ coordinates (x, y, z)
$L=\operatorname{span}\left\langle\left(\frac{\partial}{\partial y}, z d x\right),\left(\frac{\partial}{\partial x},-z d y\right),(0, d z)\right\rangle$
For $z \neq 0$, this is graph of $\pi=\frac{1}{z} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$:

$$
\{x, y\}=\frac{1}{z}, \quad\{x, z\}=0, \quad\{y, z\}=0
$$

singular Poisson versus smooth Dirac ...

4. Properties of Dirac manifolds

\diamond Lie algebroid...
\diamond Presymplectic foliation

4. Properties of Dirac manifolds

\diamond Lie algebroid...
\diamond Presymplectic foliation
Nondegenerate Poisson structure \rightleftarrows Symplectic structure
Poisson structure \rightleftarrows Symplectic foliation
Dirac structure \rightleftarrows Presymplectic foliation

4. Properties of Dirac manifolds

\diamond Lie algebroid...
\diamond Presymplectic foliation
Nondegenerate Poisson structure \rightleftarrows Symplectic structure
Poisson structure \rightleftarrows Symplectic foliation
Dirac structure \rightleftarrows Presymplectic foliation
\diamond Hamiltonian vector fields

4. Properties of Dirac manifolds

\diamond Lie algebroid...
\diamond Presymplectic foliation
Nondegenerate Poisson structure \rightleftarrows Symplectic structure
Poisson structure \rightleftarrows Symplectic foliation
Dirac structure \rightleftarrows Presymplectic foliation
\diamond Hamiltonian vector fields
\diamond Poisson algebra of admissible functions

4. Properties of Dirac manifolds

\diamond Lie algebroid...
\diamond Presymplectic foliation
Nondegenerate Poisson structure \rightleftarrows Symplectic structure
Poisson structure \rightleftarrows Symplectic foliation
Dirac structure \rightleftarrows Presymplectic foliation
\diamond Hamiltonian vector fields
\diamond Poisson algebra of admissible functions

Quotient Poisson manifolds...

4. Properties of Dirac manifolds

\diamond Lie algebroid...
\diamond Presymplectic foliation
Nondegenerate Poisson structure \rightleftarrows Symplectic structure
Poisson structure \rightleftarrows Symplectic foliation
Dirac structure \rightleftarrows Presymplectic foliation
\diamond Hamiltonian vector fields
\diamond Poisson algebra of admissible functions

Quotient Poisson manifolds...
Dirac structures $=$ "pre-Poisson"

Inducing Dirac structures on submanifolds

$$
\varphi: C \hookrightarrow(M, L)
$$

Inducing Dirac structures on submanifolds

$$
\begin{aligned}
& \varphi: C \hookrightarrow(M, L), \\
& L_{C}:=\frac{L \cap\left(T C \oplus T^{*} M\right)}{L \cap T C^{\circ}} \subset T C \oplus T^{*} C .
\end{aligned}
$$

Inducing Dirac structures on submanifolds

$\varphi: C \hookrightarrow(M, L)$,
$L_{C}:=\frac{L \cap\left(T C \oplus T^{*} M\right)}{L \cap T C^{\circ}} \subset T C \oplus T^{*} C$.
\diamond Smoothness issue
Try pulling back $\pi=x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$ to x-axis...

Inducing Dirac structures on submanifolds

$\varphi: C \hookrightarrow(M, L)$,
$L_{C}:=\frac{L \cap\left(T C \oplus T^{*} M\right)}{L \cap T C^{\circ}} \subset T C \oplus T^{*} C$.
\diamond Smoothness issue
Try pulling back $\pi=x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$ to x-axis...
\diamond Transversality condition:
Enough that $L \cap T C^{\circ}$ has constant rank.
\diamond Poisson-Dirac submanifolds of Poisson manifolds (M, π).
Pull-back of π to C is smooth and Poisson $\left(T C \cap \pi^{\sharp}\left(T C^{\circ}\right)=0\right)$
\diamond Poisson-Dirac submanifolds of Poisson manifolds (M, π).
Pull-back of π to C is smooth and Poisson $\left(T C \cap \pi^{\sharp}\left(T C^{\circ}\right)=0\right)$
"Leafwise symplectic submanifolds":
generalizes symplectic submanifolds to Poisson world...
\diamond Poisson-Dirac submanifolds of Poisson manifolds (M, π).
Pull-back of π to C is smooth and Poisson $\left(T C \cap \pi^{\sharp}\left(T C^{\circ}\right)=0\right)$
"Leafwise symplectic submanifolds":
generalizes symplectic submanifolds to Poisson world...
induced bracket extends Dirac bracket
\diamond Poisson-Dirac submanifolds of Poisson manifolds (M, π).
Pull-back of π to C is smooth and Poisson $\left(T C \cap \pi^{\sharp}\left(T C^{\circ}\right)=0\right)$
"Leafwise symplectic submanifolds":
generalizes symplectic submanifolds to Poisson world...
induced bracket extends Dirac bracket
\diamond Moment level sets
$J: M \rightarrow \mathfrak{g}^{*}$ Poisson map (=moment map), $C=J^{-1}(0) \hookrightarrow M$
Transversality ok e.g. if 0 is regular value, \mathfrak{g}-action free.
Moment level set inherits Dirac structure.
\diamond Poisson-Dirac submanifolds of Poisson manifolds (M, π).
Pull-back of π to C is smooth and Poisson $\left(T C \cap \pi^{\sharp}\left(T C^{\circ}\right)=0\right)$
"Leafwise symplectic submanifolds":
generalizes symplectic submanifolds to Poisson world...
induced bracket extends Dirac bracket
\diamond Moment level sets
$J: M \rightarrow \mathfrak{g}^{*}$ Poisson map (=moment map), $C=J^{-1}(0) \hookrightarrow M$
Transversality ok e.g. if 0 is regular value, \mathfrak{g}-action free.
Moment level set inherits Dirac structure.
Dirac geometry $=$ intrinsic geometry of constraints...

5. Recent developments and applications

\diamond Courant algebroids, twist by closed 3 -forms
\diamond Lie algebroids/groupoids, equivariant cohomology
\diamond Generalized symmetries and moment maps (e.g. G-valued ...)
\diamond Spinors and generalized complex geometry
\diamond Supergeometric viewpoint
Back to mechanics:
\diamond Lagrangian systems with constraints (nonholonomic), implicit Hamiltonian systems (e.g. electric circuits); generalizations to field theory (multi-Dirac)...
\diamond Geometry of nonholonomic brackets...
among others...

Twists by closed 3-forms

Twists by closed 3-forms

Consider closed 3-form $\phi \in \Omega_{c l}^{3}(M)$:

Twists by closed 3-forms

Consider closed 3-form $\phi \in \Omega_{c l}^{3}(M)$:
ϕ-twisted Courant bracket:

$$
\llbracket(X, \alpha),(Y, \beta) \rrbracket_{\phi}=\llbracket(X, \alpha),(Y, \beta) \rrbracket+i_{Y} i_{X} \phi .
$$

Twists by closed 3-forms

Consider closed 3-form $\phi \in \Omega_{c l}^{3}(M)$:
ϕ-twisted Courant bracket:

$$
\llbracket(X, \alpha),(Y, \beta) \rrbracket_{\phi}=\llbracket(X, \alpha),(Y, \beta) \rrbracket+i_{Y} i_{X} \phi .
$$

Then

- Dirac structures: modified integrability conditions, but similar properties...
- Twisted Poisson structure: $\frac{1}{2}[\pi, \pi]=\pi^{\sharp}(\phi)$

The Cartan-Dirac structure on Lie groups
G Lie group, $\langle\cdot, \cdot\rangle_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ Ad-invariant.

The Cartan-Dirac structure on Lie groups

G Lie group, $\langle\cdot, \cdot\rangle_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ Ad-invariant.
Cartan-Dirac structure:

$$
L_{G}:=\left\{\left.\left(u^{r}-u^{l}, \frac{1}{2}\left\langle u^{r}+u^{l}, \cdot\right\rangle_{\mathfrak{g}}\right) \right\rvert\, u \in \mathfrak{g}\right\} .
$$

This is ϕ_{G}-integrable, where $\phi_{G} \in \Omega^{3}(M)$ is the Cartan 3-form.

The Cartan-Dirac structure on Lie groups

G Lie group, $\langle\cdot, \cdot\rangle_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ Ad-invariant.
Cartan-Dirac structure:

$$
L_{G}:=\left\{\left.\left(u^{r}-u^{l}, \frac{1}{2}\left\langle u^{r}+u^{l}, \cdot\right\rangle_{\mathfrak{g}}\right) \right\rvert\, u \in \mathfrak{g}\right\} .
$$

This is ϕ_{G}-integrable, where $\phi_{G} \in \Omega^{3}(M)$ is the Cartan 3-form.
Singular foliation: Conjugacy classes
Leafwise 2-form (G.H.J.W. '97):

$$
\left.\omega\left(u_{G}, v_{G}\right)\right|_{g}:=\left\langle\frac{\operatorname{Ad}_{g}-\operatorname{Ad}_{g^{-1}}}{2} u, v\right\rangle_{\mathfrak{g}}
$$

The Cartan-Dirac structure on Lie groups

G Lie group, $\langle\cdot, \cdot\rangle_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ Ad-invariant.
Cartan-Dirac structure:

$$
L_{G}:=\left\{\left.\left(u^{r}-u^{l}, \frac{1}{2}\left\langle u^{r}+u^{l}, \cdot\right\rangle_{\mathfrak{g}}\right) \right\rvert\, u \in \mathfrak{g}\right\} .
$$

This is ϕ_{G}-integrable, where $\phi_{G} \in \Omega^{3}(M)$ is the Cartan 3-form.
Singular foliation: Conjugacy classes
Leafwise 2-form (G.H.J.W. '97):

$$
\left.\omega\left(u_{G}, v_{G}\right)\right|_{g}:=\left\langle\frac{\operatorname{Ad}_{g}-\operatorname{Ad}_{g^{-1}}}{2} u, v\right\rangle_{\mathfrak{g}}
$$

Compare with Lie-Poisson on $\mathfrak{g}^{*} \ldots$

Supergeometric viewpoint

Supergeometric viewpoint

$(E,\langle\cdot, \cdot\rangle)$	$(\mathcal{M},\{\cdot, \cdot\})$ deg. 2, symplectic N-manifold
$\llbracket \cdot, \cdot \rrbracket, \rho$	$\Theta \in C_{3}(\mathcal{M}),\{\Theta, \Theta\}=0$
$L \subset E, \quad L=L^{\perp}$	$\mathcal{L} \subset \mathcal{M}$ Lagrangian submanifold
Dirac structure $L, \llbracket \Gamma(L), \Gamma(L) \rrbracket \subseteq \Gamma(L)$	Lagrangian submf. $\mathcal{L}, \Theta \mid \mathcal{L} \equiv$ cont.

Supergeometric viewpoint

$(E,\langle\cdot, \cdot\rangle)$	$(\mathcal{M},\{\cdot, \cdot\})$ deg. 2, symplectic N-manifold
$\llbracket \cdot, \cdot \rrbracket, \rho$	$\Theta \in C_{3}(\mathcal{M}),\{\Theta, \Theta\}=0$
$L \subset E, L=L^{\perp}$	$\mathcal{L} \subset \mathcal{M}$ Lagrangian submanifold
Dirac structure $L, \llbracket \Gamma(L), \Gamma(L) \rrbracket \subseteq \Gamma(L)$	Lagrangian submf. $\mathcal{L},\left.\Theta\right\|_{\mathcal{L}} \equiv$ cont.

After all, everything is a Lagrangian submanifold...

