Dirac structures

Henrique Bursztyn, IMPA

Geometry, mechanics and dynamics: the legacy of J. Marsden
Fields Institute, July 2012
Outline:

1. Mechanics and constraints (Dirac’s theory)
2. “Degenerate” symplectic geometry: two viewpoints
3. Origins of Dirac structures
4. Properties of Dirac manifolds
5. Recent developments and applications
1. Phase spaces and constraints

- Symplectic phase space with constraint submanifold $C \hookrightarrow M$

 First class (coisotropic), second class (symplectic)...
1. Phase spaces and constraints

- Symplectic phase space with constraint submanifold $C \hookrightarrow M$
 First class (coisotropic), second class (symplectic)...

- Dirac bracket on second class $C = \{x, \varphi^i(x) = 0\}$:

$$\{f, g\}_{\text{Dirac}} := \{f, g\} - \langle f, \varphi^i \rangle c_{ij} \{\varphi^j, g\}$$
1. Phase spaces and constraints

- Symplectic phase space with constraint submanifold $C \hookrightarrow M$

 First class (coisotropic), second class (symplectic)...

- Dirac bracket on second class $C = \{x, \varphi^i(x) = 0\}$:

 $$\{f, g\}_{\text{Dirac}} := \{f, g\} - \{f, \varphi^i\} c_{ij} \{\varphi^j, g\}$$

 Geometric meaning of relationship between brackets?
1. Phase spaces and constraints

- Symplectic phase space with constraint submanifold $C \hookrightarrow M$

 First class (coisotropic), second class (symplectic)...

- Dirac bracket on second class $C = \{x, \varphi^i(x) = 0\}$:

 $$\{f, g\}_{\text{Dirac}} := \{f, g\} - \{f, \varphi^i\}c_{ij}\{\varphi^j, g\}$$

 Geometric meaning of relationship between brackets?

- Intrinsic geometry of constraint submanifold $= \text{presymplectic}$
1. Phase spaces and constraints

◊ Symplectic phase space with constraint submanifold $C \hookrightarrow M$

 First class (coisotropic), second class (symplectic)...

◊ Dirac bracket on second class $C = \{x, \varphi^i(x) = 0\}$:

$$\{f, g\}_{\text{Dirac}} := \{f, g\} - \{f, \varphi^i\}c_{ij}\{\varphi^j, g\}$$

Geometric meaning of relationship between brackets?

◊ Intrinsic geometry of constraint submanifold $= \text{presymplectic}$

Questions:
Intrinsic geometry of constraints in Poisson phase spaces?
1. Phase spaces and constraints

- Symplectic phase space with constraint submanifold $C \hookrightarrow M$

 First class (coisotropic), second class (symplectic)...

- Dirac bracket on second class $C = \{ x, \varphi^i(x) = 0 \}$:

 $\{ f, g \}_{\text{Dirac}} := \{ f, g \} - \{ f, \varphi^i \} c_{ij} \{ \varphi^j, g \}$

 Geometric meaning of relationship between brackets?

- Intrinsic geometry of constraint submanifold = presymplectic

Questions:

Intrinsic geometry of constraints in Poisson phase spaces?
Global structure behind “presymplectic foliations”?
2. Two viewpoints to symplectic geometry

<table>
<thead>
<tr>
<th>nondegenerate $\omega \in \Omega^2(M)$</th>
<th>nondegenerate $\pi \in \Gamma(\wedge^2 TM)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d\omega = 0$</td>
<td>$[\pi, \pi] = 0$</td>
</tr>
<tr>
<td>$i_{X_f}\omega = df$</td>
<td>$X_f = \pi^#(df)$</td>
</tr>
<tr>
<td>${f, g} = \omega(X_g, X_f)$</td>
<td>${f, g} = \pi(df, dg)$</td>
</tr>
</tbody>
</table>
2. Two viewpoints to symplectic geometry

<table>
<thead>
<tr>
<th>nondegenerate $\omega \in \Omega^2(M)$</th>
<th>nondegenerate $\pi \in \Gamma(\wedge^2 TM)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d\omega = 0$</td>
<td>$[\pi, \pi] = 0$</td>
</tr>
<tr>
<td>$i_{X_f} \omega = df$</td>
<td>$X_f = \pi^#(df)$</td>
</tr>
<tr>
<td>${f, g} = \omega(X_g, X_f)$</td>
<td>${f, g} = \pi(df, dg)$</td>
</tr>
</tbody>
</table>

Going degenerate: presymplectic and Poisson geometries...
3. Origins of Dirac structures

T. Courant’s thesis (1990):
Unified approach to presymplectic / Poisson structures
3. Origins of Dirac structures

T. Courant’s thesis (1990):
Unified approach to presymplectic / Poisson structures

Dirac structure: subbundle $L \subset TM = TM \oplus T^*M$ such that

- $L = L^\perp$
3. Origins of Dirac structures

T. Courant’s thesis (1990):
Unified approach to presymplectic / Poisson structures

Dirac structure: subbundle $L \subset TM = TM \oplus T^∗M$ such that

\(L = L^\perp \)

\([\Gamma(L), \Gamma(L)] \subset \Gamma(L) \) (integrability)
3. Origins of Dirac structures

T. Courant’s thesis (1990):
Unified approach to presymplectic / Poisson structures

Dirac structure: subbundle $L \subset \mathbb{T}M = TM \oplus T^*M$ such that

\[L = L^\perp \]

\[\left[\Gamma(L), \Gamma(L) \right] \subset \Gamma(L) \quad \text{(integrability)} \]

Courant bracket on $\Gamma(\mathbb{T}M)$:

\[\left[(X, \alpha), (Y, \beta) \right] = \left[[X, Y], \mathcal{L}_X \beta - \mathcal{L}_Y \alpha - \frac{1}{2} d(\beta(X) - \alpha(Y)) \right] . \]
3. Origins of Dirac structures

T. Courant’s thesis (1990):
Unified approach to presymplectic / Poisson structures

Dirac structure: subbundle $L \subset \mathbb{T}M = TM \oplus T^*M$ such that

\begin{itemize}
 \item $L = L^\perp$
 \item $[\Gamma(L), \Gamma(L)] \subset \Gamma(L)$ (integrability)
\end{itemize}

Courant bracket on $\Gamma(\mathbb{T}M)$:

$$
[(X, \alpha), (Y, \beta)] = ([X, Y], \mathcal{L}_X\beta - \mathcal{L}_Y\alpha - \frac{1}{2}d(\beta(X) - \alpha(Y))).
$$

Non-skew bracket: $[(X, \alpha), (Y, \beta)] = ([X, Y], \mathcal{L}_X\beta - i_Yd\alpha)$.
Examples

initial examples...
Examples

initial examples...

Another example...

\[M = \mathbb{R}^3, \quad \text{coordinates } (x, y, z) \]

\[L = \text{span}\left\langle \left(\frac{\partial}{\partial y}, zd\right), \left(\frac{\partial}{\partial x}, -zd\right), (0, dz) \right\rangle \]
Examples

initial examples...

Another example...

\(M = \mathbb{R}^3, \) coordinates \((x, y, z)\)

\(L = \text{span}\left\langle \left(\frac{\partial}{\partial y}, zdx \right), \left(\frac{\partial}{\partial x}, -zdy \right), (0, dz) \right\rangle \)

For \(z \neq 0 \), this is graph of \(\pi = \frac{1}{z} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} : \)

\[\{x, y\} = \frac{1}{z}, \quad \{x, z\} = 0, \quad \{y, z\} = 0. \]

\textit{singular Poisson versus smooth Dirac ...}
4. Properties of Dirac manifolds

- Lie algebroid...
- Presymplectic foliation
4. Properties of Dirac manifolds

- Lie algebroid...
- Presymplectic foliation

Nondegenerate Poisson structure \iff Symplectic structure
Poisson structure \iff Symplectic foliation
Dirac structure \iff Presymplectic foliation
4. Properties of Dirac manifolds

- Lie algebroid...
- Presymplectic foliation

Nondegenerate Poisson structure \Leftrightarrow Symplectic structure
 Poisson structure \Leftrightarrow Symplectic foliation
 Dirac structure \Leftrightarrow Presymplectic foliation

- Hamiltonian vector fields
4. Properties of Dirac manifolds

- Lie algebroid...
- Presymplectic foliation

Nondegenerate Poisson structure ⇐⇒ Symplectic structure
 Poisson structure ⇐⇒ Symplectic foliation
 Dirac structure ⇐⇒ Presymplectic foliation

- Hamiltonian vector fields
- Poisson algebra of admissible functions
4. Properties of Dirac manifolds

- Lie algebroid...
- Presymplectic foliation

Nondegenerate Poisson structure \iff Symplectic structure
 Poisson structure \iff Symplectic foliation
 Dirac structure \iff Presymplectic foliation

- Hamiltonian vector fields
- Poisson algebra of admissible functions

Quotient Poisson manifolds...
4. Properties of Dirac manifolds

- Lie algebroid...
- Presymplectic foliation

Nondegenerate Poisson structure ⇔ Symplectic structure
Poisson structure ⇔ Symplectic foliation
Dirac structure ⇔ Presymplectic foliation

- Hamiltonian vector fields

- Poisson algebra of admissible functions

Quotient Poisson manifolds...

Dirac structures = “pre-Poisson”
Inducing Dirac structures on submanifolds

\[\varphi : C \hookrightarrow (M, L), \]
Inducing Dirac structures on submanifolds

\[\varphi : C \hookrightarrow (M, L), \]

\[L_C := \frac{L \cap (TC \oplus T^*M)}{L \cap TC^0} \subset TC \oplus T^*C. \]
Inducing Dirac structures on submanifolds

\[\varphi : C \hookrightarrow (M, L), \]

\[L_C := \frac{L \cap (TC \oplus T^*M)}{L \cap TC^o} \subset TC \oplus T^*C. \]

◊ Smoothness issue

Try pulling back \(\pi = x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \) to \(x \)-axis...
Inducing Dirac structures on submanifolds

\[\varphi : C \hookrightarrow (M, L), \]

\[L_C := \frac{L \cap (TC \oplus T^*M)}{L \cap TC^\circ} \subset TC \oplus T^*C. \]

◊ Smoothness issue
Try pulling back \(\pi = x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \) to \(x \)-axis...

◊ Transversality condition:
Enough that \(L \cap TC^\circ \) has constant rank.
Poisson-Dirac submanifolds of Poisson manifolds \((M, \pi)\). Pull-back of \(\pi\) to \(C\) is smooth and Poisson \((TC \cap \pi^\#(TC^o) = 0)\).
Poisson-Dirac submanifolds of Poisson manifolds (M, π). Pull-back of π to C is smooth and Poisson ($\mathcal{T}C \cap \pi^\#(\mathcal{T}C^o) = 0$) "Leafwise symplectic submanifolds": generalizes symplectic submanifolds to Poisson world...
Poisson-Dirac submanifolds of Poisson manifolds \((M, \pi)\). Pull-back of \(\pi\) to \(C\) is smooth and Poisson \((TC \cap \pi^\#(TC^o) = 0)\)

“Leafwise symplectic submanifolds”:

generalizes symplectic submanifolds to Poisson world...

induced bracket extends Dirac bracket
◊ **Poisson-Dirac submanifolds** of Poisson manifolds (M, π). Pull-back of π to C is smooth and Poisson $(TC \cap \pi^\#(TC^o) = 0)$ “Leafwise symplectic submanifolds”: generalizes symplectic submanifolds to Poisson world...

induced bracket extends Dirac bracket

◊ **Moment level sets**

$J : M \to g^*$ Poisson map (=moment map), $C = J^{-1}(0) \hookrightarrow M$

Transversality ok e.g. if 0 is regular value, g-action free.

Moment level set inherits Dirac structure.
◊ **Poisson-Dirac submanifolds** of Poisson manifolds \((M, \pi)\).
Pull-back of \(\pi\) to \(C\) is smooth and Poisson \((TC \cap \pi^\#(TC^o) = 0)\)
“Leafwise symplectic submanifolds”:
generalizes symplectic submanifolds to Poisson world...
induced bracket extends Dirac bracket

◊ **Moment level sets**

\(J : M \to g^*\) Poisson map (=moment map), \(C = J^{-1}(0) \hookrightarrow M\)
Transversality ok e.g. if 0 is regular value, \(g\)-action free.
Moment level set inherits Dirac structure.

Dirac geometry = intrinsic geometry of constraints...
5. Recent developments and applications

- Courant algebroids, twist by closed 3-forms
- Lie algebroids/groupoids, equivariant cohomology
- Generalized symmetries and moment maps (e.g. G-valued ...)
- Spinors and generalized complex geometry
- Supergeometric viewpoint

Back to mechanics:

- Lagrangian systems with constraints (nonholonomic), implicit Hamiltonian systems (e.g. electric circuits); generalizations to field theory (multi-Dirac)...
- Geometry of nonholonomic brackets...

among others...
Twists by closed 3-forms
Twists by closed 3-forms

Consider closed 3-form $\phi \in \Omega^3_{cl}(M)$:
Twists by closed 3-forms

Consider closed 3-form $\phi \in \Omega^3_{cl}(M)$:

ϕ-twisted Courant bracket:

$$[(X, \alpha), (Y, \beta)]_{\phi} = [(X, \alpha), (Y, \beta)] + i_Y i_X \phi.$$
Twists by closed 3-forms

Consider closed 3-form $\phi \in \Omega^3_{cl}(M)$:

ϕ-twisted Courant bracket:

$$\left[\left[(X, \alpha), (Y, \beta) \right] \right]_\phi = \left[\left[(X, \alpha), (Y, \beta) \right] \right] + i_Y i_X \phi.$$

Then

- Dirac structures: modified integrability conditions, but similar properties...
- Twisted Poisson structure: $\frac{1}{2}[\pi, \pi] = \pi^\#(\phi)$
The Cartan-Dirac structure on Lie groups

G Lie group, $\langle \cdot, \cdot \rangle_g : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ Ad-invariant.
The Cartan-Dirac structure on Lie groups

\(G \) Lie group, \(\langle \cdot, \cdot \rangle_g : g \times g \to \mathbb{R} \) Ad-invariant.

Cartan-Dirac structure:

\[
L_G := \{ (u^r - u^l, \frac{1}{2} \langle u^r + u^l, \cdot \rangle_g) \mid u \in g \}.
\]

This is \(\phi_G \)-integrable, where \(\phi_G \in \Omega^3(M) \) is the Cartan 3-form.
The Cartan-Dirac structure on Lie groups

\(G \) Lie group, \(\langle \cdot, \cdot \rangle_g : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R} \) Ad-invariant.

Cartan-Dirac structure:

\[
L_G := \{ (u^r - u^l, \frac{1}{2} \langle u^r + u^l, \cdot \rangle_g) | u \in \mathfrak{g} \}.
\]

This is \(\phi_G \)-integrable, where \(\phi_G \in \Omega^3(M) \) is the Cartan 3-form.

Singular foliation: Conjugacy classes

Leafwise 2-form (G.H.J.W. '97):

\[
\omega(u_G, v_G)|_{g} := \left\langle \frac{\text{Ad}_g - \text{Ad}_{g^{-1}}}{2} u, v \right\rangle_g
\]
The Cartan-Dirac structure on Lie groups

\(G \) Lie group, \(\langle \cdot, \cdot \rangle_g : g \times g \to \mathbb{R} \) Ad-invariant.

Cartan-Dirac structure:

\[
L_G := \left\{ (u^r - u^l, \frac{1}{2}\langle u^r + u^l, \cdot \rangle_g) \mid u \in g \right\}.
\]

This is \(\phi_G \)-integrable, where \(\phi_G \in \Omega^3(M) \) is the Cartan 3-form.

Singular foliation: Conjugacy classes

Leafwise 2-form (G.H.J.W. ’97):

\[
\omega(u_G, v_G)|_g := \left\langle \frac{\text{Ad}_g - \text{Ad}_{g^{-1}}}{2} u, v \right\rangle_g
\]

Compare with Lie-Poisson on \(g^* \)...
Supergeometric viewpoint
Supergeometric viewpoint

\((E, \langle \cdot, \cdot \rangle) \)	\((\mathcal{M}, \{\cdot, \cdot\}) \) deg. 2, symplectic N-manifold	
\([\cdot, \cdot] \), \(\rho \)	\(\Theta \in C_3(\mathcal{M}), \{\Theta, \Theta\} = 0 \)	
\(L \subset E, \ L = L^\perp \)	\(\mathcal{L} \subset \mathcal{M} \) Lagrangian submanifold	
Dirac structure \(L, [\Gamma(L), \Gamma(L)] \subseteq \Gamma(L) \)	Lagrangian submf. \(\mathcal{L}, \Theta	_\mathcal{L} \equiv \text{cont.} \)
Supergeometric viewpoint

<table>
<thead>
<tr>
<th>$(E, \langle \cdot, \cdot \rangle)$</th>
<th>$(\mathcal{M}, {\cdot, \cdot})$ deg. 2, symplectic N-manifold</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\cdot, \cdot], \rho$</td>
<td>$\Theta \in C_3(\mathcal{M}), {\Theta, \Theta} = 0$</td>
</tr>
<tr>
<td>$L \subset E, \quad L = L^\perp$</td>
<td>$\mathcal{L} \subset \mathcal{M}$ Lagrangian submanifold</td>
</tr>
<tr>
<td>Dirac structure $L, [\Gamma(L), \Gamma(L)] \subseteq \Gamma(L)$</td>
<td>Lagrangian submf. $\mathcal{L}, \Theta</td>
</tr>
</tbody>
</table>

After all, everything is a Lagrangian submanifold...