Dirac structures

Henrique Bursztyn, IMPA

Geometry, mechanics and dynamics: the legacy of J. Marsden Fields Institute, July 2012

Outline:

- 1. Mechanics and constraints (Dirac's theory)
- 2. "Degenerate" symplectic geometry: two viewpoints
- 3. Origins of Dirac structures
- 4. Properties of Dirac manifolds
- 5. Recent developments and applications

♦ Symplectic phase space with constraint submanifold $C \hookrightarrow M$ First class (coisotropic), second class (symplectic)...

- ♦ Symplectic phase space with constraint submanifold $C \hookrightarrow M$ First class (coisotropic), second class (symplectic)...
- ♦ Dirac bracket on second class $C = \{x, \varphi^i(x) = 0\}$:

$${f,g}_{Dirac} := {f,g} - {f,\varphi^i}c_{ij}{\varphi^j,g}$$

- ♦ Symplectic phase space with constraint submanifold $C \hookrightarrow M$ First class (coisotropic), second class (symplectic)...
- ♦ Dirac bracket on second class $C = \{x, \varphi^i(x) = 0\}$:

$${f,g}_{Dirac} := {f,g} - {f,\varphi^i}c_{ij}{\varphi^j,g}$$

Geometric meaning of relationship between brackets?

- ♦ Symplectic phase space with constraint submanifold $C \hookrightarrow M$ First class (coisotropic), second class (symplectic)...
- ♦ Dirac bracket on second class $C = \{x, \varphi^i(x) = 0\}$:

$${f,g}_{Dirac} := {f,g} - {f,\varphi^i}c_{ij}{\varphi^j,g}$$

Geometric meaning of relationship between brackets?

◇ Intrinsic geometry of constraint submanifold = presymplectic

- ♦ Symplectic phase space with constraint submanifold $C \hookrightarrow M$ First class (coisotropic), second class (symplectic)...
- ♦ Dirac bracket on second class $C = \{x, \varphi^i(x) = 0\}$:

$${f,g}_{Dirac} := {f,g} - {f,\varphi^i}c_{ij}{\varphi^j,g}$$

Geometric meaning of relationship between brackets?

◇ Intrinsic geometry of constraint submanifold = presymplectic

Questions:

Intrinsic geometry of constraints in *Poisson* phase spaces?

- ♦ Symplectic phase space with constraint submanifold $C \hookrightarrow M$ First class (coisotropic), second class (symplectic)...
- ♦ Dirac bracket on second class $C = \{x, \varphi^i(x) = 0\}$:

$${f,g}_{Dirac} := {f,g} - {f,\varphi^i}c_{ij}{\varphi^j,g}$$

Geometric meaning of relationship between brackets?

◇ Intrinsic geometry of constraint submanifold = presymplectic

Questions:

Intrinsic geometry of constraints in *Poisson* phase spaces? Global structure behind "presymplectic foliations"?

2. Two viewpoints to symplectic geometry

nondegenerate $\omega \in \Omega^2(M)$	nondegenerate $\pi \in \Gamma(\wedge^2 TM)$
$d\omega = 0$	$[\pi,\pi]=0$
$i_{X_f}\omega=df$	$X_f = \pi^\sharp(df)$
$\{f,g\} = \omega(X_g,X_f)$	$\{f,g\}=\pi(d\!f,dg)$

2. Two viewpoints to symplectic geometry

nondegenerate $\omega \in \Omega^2(M)$	nondegenerate $\pi \in \Gamma(\wedge^2 TM)$
$d\omega = 0$	$[\pi,\pi]=0$
$i_{X_f}\omega=df$	$X_f = \pi^{\sharp}(df)$
$\{f,g\} = \omega(X_g,X_f)$	$\{f,g\}=\pi(d\!f,dg)$

Going degenerate: presymplectic and Poisson geometries...

T. Courant's thesis (1990):

Unified approach to presymplectic / Poisson structures

T. Courant's thesis (1990):

Unified approach to presymplectic / Poisson structures

Dirac structure: subbundle $L \subset \mathbb{T}M = TM \oplus T^*M$ such that

 $\diamond \quad L = L^{\perp}$

T. Courant's thesis (1990):

Unified approach to presymplectic / Poisson structures

Dirac structure: subbundle $L \subset \mathbb{T}M = TM \oplus T^*M$ such that

$$\diamond \quad L = L^{\perp}$$

 $\ \ \, \diamond \ \ \, \big[\![\Gamma(L),\Gamma(L)]\!] \subset \Gamma(L) \quad \ (\text{integrability})$

T. Courant's thesis (1990):

Unified approach to presymplectic / Poisson structures

Dirac structure: subbundle $L \subset \mathbb{T}M = TM \oplus T^*M$ such that

$$\diamond \quad L = L^{\perp}$$

 $\diamond \ \ \llbracket \Gamma(L), \Gamma(L) \rrbracket \subset \Gamma(L) \quad \ (\text{integrability})$

Courant bracket on $\Gamma(\mathbb{T}M)$:

 $\llbracket (X,\alpha), (Y,\beta) \rrbracket = ([X,Y], \mathcal{L}_X\beta - \mathcal{L}_Y\alpha - \frac{1}{2}d(\beta(X) - \alpha(Y))).$

T. Courant's thesis (1990):

Unified approach to presymplectic / Poisson structures

Dirac structure: subbundle $L \subset \mathbb{T}M = TM \oplus T^*M$ such that

- $\diamond \quad L = L^{\perp}$
- $\ \ \, {[\![} \Gamma(L), \Gamma(L){]\!]} \subset \Gamma(L) \quad \ (\text{integrability})$

Courant bracket on $\Gamma(\mathbb{T}M)$: $\llbracket (X, \alpha), (Y, \beta) \rrbracket = ([X, Y], \mathcal{L}_X \beta - \mathcal{L}_Y \alpha - \frac{1}{2} d(\beta(X) - \alpha(Y))).$

Non-skew bracket: $\llbracket (X, \alpha), (Y, \beta) \rrbracket = ([X, Y], \mathcal{L}_X \beta - i_Y d\alpha).$

Examples

 $initial\ examples...$

Examples

 $initial\ examples...$

Another example...

$$\begin{split} M &= \mathbb{R}^3, \quad \text{coordinates } (x, y, z) \\ L &= \text{span} \Big\langle (\frac{\partial}{\partial y}, z dx), (\frac{\partial}{\partial x}, -z dy), (0, dz) \Big\rangle \end{split}$$

Examples

 $initial\ examples...$

Another example...

$$\begin{split} M &= \mathbb{R}^3, \quad \text{coordinates } (x, y, z) \\ L &= \text{span} \Big\langle (\frac{\partial}{\partial y}, z dx), (\frac{\partial}{\partial x}, -z dy), (0, dz) \Big\rangle \end{split}$$

For $z \neq 0$, this is graph of $\pi = \frac{1}{z} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$:

$$\{x, y\} = \frac{1}{z}, \ \{x, z\} = 0, \ \{y, z\} = 0.$$

singular Poisson versus smooth Dirac ...

- ♦ Lie algebroid...
- ♦ Presymplectic foliation

- ♦ Lie algebroid…
- ♦ Presymplectic foliation

Nondegenerate Poisson structure \rightleftharpoons Symplectic structure Poisson structure \rightleftharpoons Symplectic foliation Dirac structure \rightleftharpoons Presymplectic foliation

- ♦ Lie algebroid…
- ♦ Presymplectic foliation

Nondegenerate Poisson structure \rightleftharpoons Symplectic structure Poisson structure \rightleftharpoons Symplectic foliation Dirac structure \rightleftharpoons Presymplectic foliation

♦ Hamiltonian vector fields

- \diamond Lie algebroid...
- ♦ Presymplectic foliation

Nondegenerate Poisson structure \rightleftharpoons Symplectic structure Poisson structure \rightleftharpoons Symplectic foliation Dirac structure \rightleftharpoons Presymplectic foliation

- ♦ Hamiltonian vector fields
- ♦ Poisson algebra of admissible functions

- ♦ Lie algebroid…
- ♦ Presymplectic foliation

Nondegenerate Poisson structure \rightleftharpoons Symplectic structure Poisson structure \rightleftharpoons Symplectic foliation Dirac structure \rightleftharpoons Presymplectic foliation

- ♦ Hamiltonian vector fields
- ♦ Poisson algebra of admissible functions

Quotient Poisson manifolds...

- ♦ Lie algebroid…
- ♦ Presymplectic foliation

Nondegenerate Poisson structure \rightleftharpoons Symplectic structure Poisson structure \rightleftharpoons Symplectic foliation Dirac structure \rightleftharpoons Presymplectic foliation

- ♦ Hamiltonian vector fields
- ♦ Poisson algebra of admissible functions

Quotient Poisson manifolds...

Dirac structures = "pre-Poisson"

 $\varphi: C \hookrightarrow (M,L),$

$$\varphi: C \hookrightarrow (M, L),$$
$$L_C := \frac{L \cap (TC \oplus T^*M)}{L \cap TC^{\circ}} \subset TC \oplus T^*C.$$

$$\varphi: C \hookrightarrow (M, L),$$
$$L_C := \frac{L \cap (TC \oplus T^*M)}{L \cap TC^\circ} \subset TC \oplus T^*C.$$

♦ Smoothness issue

Try pulling back $\pi = x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$ to x-axis...

$$\varphi: C \hookrightarrow (M, L),$$
$$L_C := \frac{L \cap (TC \oplus T^*M)}{L \cap TC^{\circ}} \subset TC \oplus T^*C.$$

♦ Smoothness issue

Try pulling back $\pi = x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$ to x-axis...

♦ Transversality condition:

Enough that $L \cap TC^{\circ}$ has constant rank.

♦ Poisson-Dirac submanifolds of Poisson manifolds (M, π) . Pull-back of π to C is smooth and Poisson $(TC \cap \pi^{\sharp}(TC^{\circ}) = 0)$ ♦ Poisson-Dirac submanifolds of Poisson manifolds (M, π) . Pull-back of π to C is smooth and Poisson $(TC \cap \pi^{\sharp}(TC^{\circ}) = 0)$ "Leafwise symplectic submanifolds":

generalizes symplectic submanifolds to Poisson world...

♦ Poisson-Dirac submanifolds of Poisson manifolds (M, π) . Pull-back of π to C is smooth and Poisson $(TC \cap \pi^{\sharp}(TC^{\circ}) = 0)$ "Leafwise symplectic submanifolds": generalizes symplectic submanifolds to Poisson world... induced bracket extends Dirac bracket ♦ Poisson-Dirac submanifolds of Poisson manifolds (M, π) . Pull-back of π to C is smooth and Poisson $(TC \cap \pi^{\sharp}(TC^{\circ}) = 0)$ "Leafwise symplectic submanifolds": generalizes symplectic submanifolds to Poisson world... induced bracket extends Dirac bracket

♦ Moment level sets

 $J: M \to \mathfrak{g}^*$ Poisson map (=moment map), $C = J^{-1}(0) \hookrightarrow M$ Transversality ok e.g. if 0 is regular value, \mathfrak{g} -action free. Moment level set inherits Dirac structure. ♦ Poisson-Dirac submanifolds of Poisson manifolds (M, π) . Pull-back of π to C is smooth and Poisson $(TC \cap \pi^{\ddagger}(TC^{\circ}) = 0)$ "Leafwise symplectic submanifolds": generalizes symplectic submanifolds to Poisson world... induced bracket extends Dirac bracket

♦ Moment level sets

 $J: M \to \mathfrak{g}^*$ Poisson map (=moment map), $C = J^{-1}(0) \hookrightarrow M$ Transversality ok e.g. if 0 is regular value, \mathfrak{g} -action free. Moment level set inherits Dirac structure.

Dirac geometry = intrinsic geometry of constraints...

5. Recent developments and applications

- \diamond Courant algebroids, twist by closed 3-forms
- ♦ Lie algebroids/groupoids, equivariant cohomology
- ♦ Generalized symmetries and moment maps (e.g. G-valued ...)
- \diamond Spinors and generalized complex geometry
- \diamond Supergeometric viewpoint

Back to mechanics:

- Lagrangian systems with constraints (nonholonomic), implicit Hamiltonian systems (e.g. electric circuits); generalizations to field theory (multi-Dirac)...
- ♦ Geometry of nonholonomic brackets...

among others...

Consider closed 3-form $\phi \in \Omega^3_{cl}(M)$:

Consider closed 3-form $\phi \in \Omega^3_{cl}(M)$:

 ϕ -twisted Courant bracket:

$$[\![(X,\alpha),(Y,\beta)]\!]_{\phi}=[\![(X,\alpha),(Y,\beta)]\!]+i_Yi_X\phi.$$

Consider closed 3-form $\phi \in \Omega^3_{cl}(M)$:

 ϕ -twisted Courant bracket:

$$[\![(X,\alpha),(Y,\beta)]\!]_{\phi}=[\![(X,\alpha),(Y,\beta)]\!]+ \underline{i_Y i_X \phi}.$$

Then

- Dirac structures: modified integrability conditions, but similar properties...
- Twisted Poisson structure: $\frac{1}{2}[\pi,\pi] = \pi^{\sharp}(\phi)$

The Cartan-Dirac structure on Lie groups G Lie group, $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ Ad-invariant.

The Cartan-Dirac structure on Lie groups

G Lie group, $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ Ad-invariant.

Cartan-Dirac structure:

$$L_G := \{ (u^r - u^l, \frac{1}{2} \langle u^r + u^l, \cdot \rangle_{\mathfrak{g}}) \mid u \in \mathfrak{g} \}.$$

This is ϕ_G -integrable, where $\phi_G \in \Omega^3(M)$ is the Cartan 3-form.

The Cartan-Dirac structure on Lie groups

G Lie group, $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ Ad-invariant.

Cartan-Dirac structure:

$$L_G := \{ (u^r - u^l, \frac{1}{2} \langle u^r + u^l, \cdot \rangle_{\mathfrak{g}}) \mid u \in \mathfrak{g} \}.$$

This is ϕ_G -integrable, where $\phi_G \in \Omega^3(M)$ is the Cartan 3-form.

Singular foliation: Conjugacy classes Leafwise 2-form (G.H.J.W. '97):

$$\omega(u_G, v_G)|_g := \left\langle \frac{\operatorname{Ad}_g - \operatorname{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

The Cartan-Dirac structure on Lie groups

G Lie group, $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ Ad-invariant.

Cartan-Dirac structure:

$$L_G := \{ (u^r - u^l, \frac{1}{2} \langle u^r + u^l, \cdot \rangle_{\mathfrak{g}}) \mid u \in \mathfrak{g} \}.$$

This is ϕ_G -integrable, where $\phi_G \in \Omega^3(M)$ is the Cartan 3-form.

Singular foliation: Conjugacy classes Leafwise 2-form (G.H.J.W. '97):

$$\omega(u_G, v_G)|_g := \left\langle \frac{\operatorname{Ad}_g - \operatorname{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

Compare with Lie-Poisson on \mathfrak{g}^* ...

Supergeometric viewpoint

Supergeometric viewpoint

$(E, \langle \cdot, \cdot \rangle)$	$(\mathcal{M}, \{\cdot, \cdot\})$ deg. 2, symplectic N-manifold
$\llbracket \cdot, \cdot rbracket, ho$	$\Theta \in C_3(\mathcal{M}), \{\Theta, \Theta\} = 0$
$L \subset E, L = L^{\perp}$	$\mathcal{L} \subset \mathcal{M}$ Lagrangian submanifold
Dirac structure L , $\llbracket \Gamma(L), \Gamma(L) \rrbracket \subseteq \Gamma(L)$	Lagrangian submf. $\mathcal{L}, \Theta _{\mathcal{L}} \equiv \text{cont.}$

Supergeometric viewpoint

$(E, \langle \cdot, \cdot \rangle)$	$(\mathcal{M}, \{\cdot, \cdot\})$ deg. 2, symplectic N-manifold
$\llbracket\cdot,\cdot rbracket, ho$	$\Theta \in C_3(\mathcal{M}), \{\Theta, \Theta\} = 0$
$L \subset E, L = L^{\perp}$	$\mathcal{L} \subset \mathcal{M}$ Lagrangian submanifold
Dirac structure L , $\llbracket \Gamma(L), \Gamma(L) \rrbracket \subseteq \Gamma(L)$	Lagrangian submf. $\mathcal{L}, \Theta _{\mathcal{L}} \equiv \text{cont.}$

After all, everything is a Lagrangian submanifold...