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Motivation: Classification of Kirchberg algebras

Theorem (Kirchberg—Phillips 2000)

A KK-equivalence between two stable Kirchberg algebras
lifts to a *-isomorphism.

(Kirchberg algebra = nuclear, separable, purely infinite, simple)
Theorem (Rosenberg—Schochet 1987)

Let A and B be separable C*-algebras.
If A belongs to the bootstrap class B, then there is
a short exact sequence of 7./2-graded Abelian groups

Ext! (Ky41(A), K+(B)) — KK.(A, B) - Hom (K, (A), K.(B)).
Corollary

K. strongly classifies stable Kirchberg algebras in B.
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Throughout this talk, X denotes an arbitrary finite To-space.
Definition

A Kirchberg X-algebra is a separable, nuclear, purely infinite
C*-algebra with a fixed homeomorphism Prim(A) ~ X.

» An open subset U C X gives an ideal A(U) of A.

» A *-homomorphism f: A — B is over X if f(A(U)) C B(V)
for all U € O(X).

We have bijections:

{ To-topologies on X}
Alexandrov topology( )/specialisation preorder
{partial orders on X}

reachability relation( )/Hasse diagram

{transitively reduced directed acyclic graphs with vertex set X}
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Kirchberg's theorem

Kirchberg constructed an X-equivariant version KK(X)
of Kasparov's KK-theory.

Theorem (Kirchberg)
A KK(X)-equivalence between two stable Kirchberg X-algebras
lifts to a *-isomorphism over X.

Goal: Find an invariant that detects KK(X)-equivalence!
(under appropriate bootstrap class assumptions)!

This problem depends heavily on the combinatorics of X.
Solutions have been established (and are expected to exist) only
for certain classes of spaces.
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Today, we make two extra assumptions that resolve these
intricacies: real rank zero and intermediate cancellation.
Lemma (Brown—Pedersen, Lin—-Rgrdam)

A Kirchberg X-algebra A has real rank zero iff the boundary map
Ko(J/1) — Ki(I) vanishes for all ideals | < J <1 A.

Definition (due to Lawrence G. Brown)

We say that A has intermediate cancellation if the following holds:
if p and g are projections in A which generate the same ideal and
which give rise to the same element in Ko(A), then p ~ g.

Lemma
A Kirchberg X-algebra A has intermediate cancellation iff
K1(J/1) — Ko(I) vanishes for all ideals | < J < A.

If both conditions hold, we say “A has vanishing boundary maps.”
This is automatic in the simple case.
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Proof of Lemma

Lemma
A Kirchberg X-algebra A has intermediate cancellation iff
Ki(J/1) — Ko(l) vanishes for all ideals | <t J < A.

Proof

Let / be an ideal in A.

By Pasnicu—Rgrdam, [/ contains a full projection.
By Rgrdam (Cuntz),

Ko(/) = {[p] | p is a full projection in I}
and, if p and g are full projections in / with [p] = [q] in Ko(/),

then p ~ q.
The claim becomes apparent (from the six-term exact sequence).
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Write Uy for the minimal open neighborhood of x € X.
Definition

XK(A) = (Ku(A(Ux))
XK(A) is a module over the integral incidence algebra ZX
(a “representation of X in Z/2-graded Abelian groups").

+ maps induced by inclusions.

Key Lemma
If A has vanishing boundary maps, the proj.dim.(XK(A)) < 1.

Relative homological algebra in KK(X) (a la Meyer—Nest) then
yields an exact universal coefficient sequence

Ext! (XK(A)[1], XK(B)) — KK, (X; A, B) = Hom (XK(A), XK(B)).

Corollary (via Kirchberg)

XK strongly classifies stable Kirchberg X-algebras in B(X)
with real rank zero and intermediate cancellation.
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Proof of Key Lemma in a special case

Key Lemma
If A has vanishing boundary maps, the proj.dim.(XK(A)) < 1.

Proof for X = e — e

Let (/ < A) be a Kirchberg X-algebra.

We have XK(A) = (K.(I) = Ki(A)).

If A has vanishing boundary maps, then i is injective.
We decompose

(Ke(h) = Ku(D) = (Kull) = Ka(A)) = (0= Ku(A/D)).

By the Horseshoe Lemma, it suffices to find length-one resolution
for submodule and quotient.

These can be obtained from resolutions of the groups K, (/) and
K«(A/I). The general argument uses induction.
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Classification for unital algebras

Definition
OK(A) = (K*(A(U))UE@)(X) + maps induced by inclusions.
For A unital, set OKT(A) = (OK(A), [14] € Ko(A)).

» OK(A) is a precosheaf on O(X).

» If A has vanishing boundary maps, OK(A) is a flabby cosheaf
and is naturally determined by XK(A).

Corollary (via Eilers—Restorff-Ruiz’'s meta-theorem)

QK™ strongly classifies unital Kirchberg X-algebras in B(X)
with real rank zero and intermediate cancellation.
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Theorem (via Arklint-B—Katsura)

A flabby pointed cosheaf is isomorphic to QK™ (O4) for some
Cuntz—Krieger algebra O over X with intermediate cancellation
iff it has “free quotients in odd degree and finite equal ranks.”

Corollary

Let | — A — B be an extension with A unital. Then A is a
Cuntz—Krieger algebra with intermediate cancellation iff

» the quotient B is a Cuntz—Krieger algebra with intermediate
cancellation,

> the ideal | is stably isomorphic to a Cuntz—Krieger algebra
with intermediate cancellation,

» the boundary map K.(B) — K.4+1(/) vanishes.

There is a version for unital purely infinite graph C*-algebras and a
“stable version” for purely infinite graph C*-algebras.
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Outlook on the general case

Universal coefficient theorems for KK(X) for certain spaces X have
been found by Bonkat, Restorff, Meyer—Nest, B—Kohler.
The methods fail for other spaces.

Conjecture

There is a UCT-invariant represented by a finite family of objects
in B(X) iff the poset X is derived equivalent to a Dynkin quiver.

Theorem (via Schwede—Shipley in stable homotopy theory)
B(X) ® Q 2 Der2/2 ue(QX)

countable

(QX is the rational incidence algebra of X.)
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