Graphical Gaussian models and their groups

Piotr Zwiernik

TU Eindhoven (j.w. Jan Draisma, Sonja Kuhnt)

Workshop on Graphical Models, Fields Institute, Toronto, 16 Apr 2012

Outline and references

Outline:

- 1. Invariance of statistical models under group actions.
- 2. The maximal group that leaves the graphical Gaussian model invariant.
- 3. Finite sample breakdown points for the maximum likelihood estimator in the class of graphical Gaussian models.

This links to:

- Composite transformation (exponential) families; equivariant decision theory.
- Work of Gérard Letac and Hélène Massam on Wishart distributions; and related work of Steen Andersson (and collaborators) on Lie groups for Gaussian models.
- Hypergraphs, clique hypergraphs, and other related combinatorial concepts.
 - "Groups and breakdowns" P. Laurie Davies, Ursula Gather.

Group invariance

Group invariance of models

- **Definition (Schervish):** Let \mathcal{P}_0 be a parametric family with parameter space Θ and sample space $(\mathcal{X}, \mathcal{B})$. Let *G* be a group of transformations on \mathcal{X} . We say that *G* leaves \mathcal{P}_0 invariant if for each $g \in G$ and each $\theta \in \Theta$ there exists $\theta^* \in \Theta$ such that $P_{\theta}(A) = P_{\theta^*}(gA)$ for every $A \in \mathcal{B}$.
- θ^* is unique and denoted by $\theta^* = g \cdot \theta$
- This induces the action of G on the model:

$$g \cdot P_{\theta}(A)$$
 := $P_{\theta}(g^{-1}A)$ = $P_{g \cdot \theta}(A)$

• If there is a density $f(x; \theta)$ then

$$f(x;\theta) = f(g \cdot x; g \cdot \theta).$$

Gaussian Transformation models

•
$$\mathcal{X} = \mathbb{R}^m, G \subseteq \operatorname{GL}_m(\mathbb{R})$$
 acts on \mathbb{R}^m : $g \cdot x := gx$

• density:
$$f(x;K) = (2\pi)^{-m/2} (\det K)^{1/2} \exp\{-\frac{1}{2}x^T K x\}$$

• $\Theta = S_m^+$ symmetric positive definite matrices

•
$$f(x;K) = f(gx;g^{-T}Kg^{-1})$$
 so G acts on S_m^+ : $g \cdot K := g^{-T}Kg^{-1}$

• **Definition:** Let $\mathcal{K} \subset \mathcal{S}_m^+$. The composite Gaussian *transformation family* induced by G and \mathcal{K} :

$$M(G,\mathcal{K}) \quad = \quad \{f(x; g^T K g) : g \in G, K \in \mathcal{K}\}.$$

• If $\mathcal{K} = \{K_0\}$ then Gaussian transformation family.

Gaussian graphical models

- undirected graph $\mathcal{G} = ([m], E), [m] := \{1, \dots, m\}$
- f(x; K), K such that $K_{ii} = 0$ if $(i, j) \notin E$
- Parameter space: $\mathcal{S}_{C}^{+} = \{K \in \mathcal{S}_{m}^{+} : K_{ii} = 0 \text{ if } (i,j) \notin E\}.$
- $\mathcal{S}_{G}^{+} \subseteq \mathcal{S}_{m}^{+}$ so $G \subseteq \operatorname{GL}_{m}(\mathbb{R})$ acts on \mathcal{S}_{G}^{+} : $g \cdot K := g^{-T}Kg^{-1}$.

Definition of the group G

• Definition:
$$G \subseteq \operatorname{GL}_m(\mathbb{R})$$
 such that $G \cdot \mathcal{S}_{\mathcal{G}}^+ = \mathcal{S}_{\mathcal{G}}^+$

•
$$K \in \mathcal{S}_{\mathcal{G}}^+ \implies g^{-T}Kg^{-1} \in \mathcal{S}_{\mathcal{G}}^+$$
 for all $g \in G$

Trivial example m = 2

• if
$$\mathcal{G} = 1 \bullet - \bullet 2$$
 then $G = \operatorname{GL}_2(\mathbb{R})$

• if
$$\mathcal{G} = 1 \bullet \bullet 2$$
 then $G = \left\{ \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}, \begin{bmatrix} 0 & * \\ * & 0 \end{bmatrix} \right\}$

• full graph
$$\Longrightarrow G = \operatorname{GL}_m(\mathbb{R})$$

• no edges \implies $G = T_m \cdot S_m$: T_m = diagonal matrices, S_m =permutation matrices

•
$$\mathcal{G}: \stackrel{2}{\bullet} - \stackrel{1}{\bullet} - \stackrel{3}{\bullet}$$

•
$$S_{\mathcal{G}} = \begin{bmatrix} * & * & * \\ * & * & 0 \\ * & 0 & * \end{bmatrix}$$
, $G = \left\{ G^0 = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix}$, $\begin{bmatrix} * & 0 & 0 \\ * & 0 & * \\ * & * & 0 \end{bmatrix} \right\}$

• if $K = [K_{ij}] \in S_{\mathcal{G}}$ and $g^{-1} = [g_{ij}] \in G^0$ then $g^{-T}Kg^{-1}$ equals

$$\begin{bmatrix} \text{too long} & g_{12} g_{22} K_{22} + g_{11} g_{22} K_{12} & g_{13} g_{33} K_{33} + g_{11} g_{33} K_{13} \\ g_{22} (g_{12} K_{22} + g_{11} K_{12}) & g_{22}^2 K_{22} & 0 \\ g_{33} (g_{13} K_{33} + g_{11} K_{13}) & 0 & g_{33}^2 K_{33} \end{bmatrix}$$

Preorder on the set of nodes

• the set of maximal cliques of \mathcal{G} : $\mathcal{C} \subseteq 2^{[m]}$

• define a preorder on [m] by:

 $i \preccurlyeq j$ iff $\forall_{C \in \mathcal{C}} \quad j \in C$ implies $i \in C$.

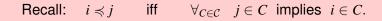
$$4 \bullet 1 = \{\{1, 2, 3\}, \{1, 2, 4\}\}\$$

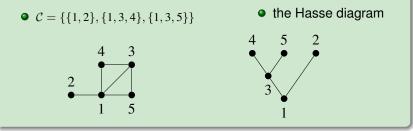
$$\bullet 1 \approx 2, \quad 1, 2 \preccurlyeq 3, \quad 1, 2 \preccurlyeq 4$$

Equivalently: $i \preccurlyeq j$ iff $N(j) \cup j \subseteq N(i) \cup i$.

The poset P_C

- equivalence relation on [m]: $i \sim j$ iff $i \preccurlyeq j$ and $j \preccurlyeq i$.
- the preorder \preccurlyeq gives a partial order on $[m]/\sim$
- the resulting poset: $\mathbf{P}_{\mathcal{C}} = ([m]/\sim,\preccurlyeq)$





G-orbits and generic \mathbf{x}_n

The connected component of the identity

• Recall:
$$\stackrel{2}{\bullet} - \stackrel{1}{\bullet} - \stackrel{3}{\bullet}$$
, $1 \leq 2, 3$
 $S_{\mathcal{G}} = \begin{bmatrix} * & * & * \\ * & * & 0 \\ * & 0 & * \end{bmatrix}$, $G = \left\{ G^{0} = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix}, \begin{bmatrix} * & 0 & 0 \\ * & 0 & * \\ * & * & 0 \end{bmatrix} \right\}$

 Proposition: Let G⁰ ⊆ G be the closed connected component of the identity matrix I. Then g ∈ G⁰ if and only if for every i, j ∈ [m]

$$g_{ij} \neq 0 \qquad \Longrightarrow \qquad j \preccurlyeq i.$$

The full group G

• Recall:
$$\stackrel{2}{\bullet} - \stackrel{1}{\bullet} - \stackrel{3}{\bullet}$$

$$G = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix}, \begin{bmatrix} * & 0 & 0 \\ * & 0 & * \\ * & * & 0 \end{bmatrix} \right\} \ni \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

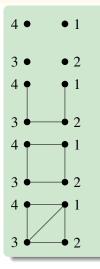
• Define $\widetilde{\mathcal{G}}$ as the induced graph on $[m]/\sim$.

- The coloring map $c : [m] / \sim \to \mathbb{N}, \ x \mapsto |x|.$
- For our example $\tilde{\mathcal{G}} = {}^{3} {}^{1,2} {}^{4} \bullet$

• **Theorem:** For every *G*

$$G = G^0 \rtimes \operatorname{Aut}(\widetilde{\mathcal{G}}, c).$$

Some examples



- $G^0 = T_4$
- $G = T_4 \rtimes S_4$
- $G^0: g_{12}, g_{43}$ can be non-zero
- $G \simeq G^0 \rtimes Z_2$
- $G^0 = T_4$
- $G \simeq T_4 \rtimes D_8$
- $G^0: g_{13}, g_{31}, g_{21}, g_{23}, g_{41}, g_{43}$ can be nonzero
- $G \simeq G^0 \rtimes Z_2$

Brief summary

We have:

- defined group invariance of models
 - (composite) transformation families
- identified the maximal group that leaves the graphical Gaussian model invariant

We will

- define finite sample breakdown points (fsbp)
- proceed with our algebraic and combinatorial analysis in order to analyse fsbp

High breakdown point

- a random sample: $\mathbf{x}_n = (x_1, \dots, x_n)$.
- robustness of the sample mean: $x_1 \to \infty \implies \bar{x} \to \infty$.
 - The finite sample breakdown point is zero.
- robustness of the sample median: $x_1 \to \infty \implies \text{med}(x) \to \infty$.
 - The finite sample breakdown point is $\approx 1/2$.

 Problem: Compute the finite sample breakdown point for the maximum likelihood estimator for the graphical Gaussian model.

Find bounds on the finite sample breakdown points

The maximum likelihood estimator

- sample covariance: $S_{\mathbf{x}_n} = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^T (x_i \bar{x})$
- log-likelihood: $\ell(K; \mathbf{x}_n) = \frac{n}{2} (\log \det K \langle S_{\mathbf{x}_n}, K \rangle),$ where $\langle S, K \rangle = \text{trace}(SK)$
- $\ell(K; g \cdot \mathbf{x}_n) = \ell(g^{-1} \cdot K; \mathbf{x}_n)$ modulo $\log \det(g^T g)$, where $g \cdot \mathbf{x}_n = (gx_1, \dots, gx_n)$

$$\widehat{K}_{\mathbf{x}_n}$$
 is *G*-equivariant: $\widehat{K}_{g \cdot \mathbf{x}_n} = g \cdot \widehat{K}_{\mathbf{x}_n} = g^{-T} \widehat{K}_{\mathbf{x}_n} g^{-T}$

Finite sample breakdown points

- (unbounded) pseudometric $D: S^+_{\mathcal{C}} \times S^+_{\mathcal{C}} \to \mathbb{R}$
 - $D(K,L) = |\log \det(KL^{-1})|$

•
$$G_1 = \{g : \det(gg^T) \neq 1\}$$

• $\mathbf{y}_{n,k}$ a random sample with k data points of \mathbf{x}_n altered

•
$$fsbp(\widehat{K}, \mathbf{x}_n, D) := \frac{1}{n} \min\{k : \sup_{\mathbf{y}_{n,k}} D(\widehat{K}_{\mathbf{x}_n}, \widehat{K}_{\mathbf{y}_{n,k}}) = \infty\}$$

• Theorem (Davies, Gather): $\frac{1}{10} \frac{1}{2} \frac{1}{2}$ where

$$\Delta_{\mathbf{x}_n} := \frac{1}{n} \max_k \{k : \exists A \subseteq [n], |A| = k \text{ and } g \in G_1 \text{ s.t. } gx_i = x_i \,\forall i \in A\}.$$

The link between $\Delta_{\mathbf{x}_n}$ and $\mathrm{fsbp}(\widehat{K}, \mathbf{x}_n, D)$

- Let $\Delta_{\mathbf{x}_n} = \frac{1}{n}(n-k)$. For |A| = n-k let $g \in G_1$ be s.t. $gx_i = x_i$ for $i \in A$ and $gx_i \neq x_i$ if $i \in [n] \setminus A$.
- Then $g^l x_i = x_i$ for $l \ge 1$ and $i \in A$.
- But $D(\widehat{K}_{\mathbf{x}_n}, \widehat{K}_{g^l \cdot \mathbf{x}_n}) = D(\widehat{K}_{\mathbf{x}_n}, g^l \cdot \widehat{K}_{\mathbf{x}_n}) = |\log \det(\widehat{K}_{\mathbf{x}_n} g^l \widehat{K}_{\mathbf{x}_n}^{-1} (g^T)^l)| = l |\log \det(gg^T)| \longrightarrow \infty$ since $g \in G_1$.

• So
$$fsbp(\widehat{K}, \mathbf{x}_n, D) \leq \frac{1}{n}k = 1 - \Delta_{\mathbf{x}_n}.$$

• For details on the sharper bound see: Davies, Gather, "The breakdown point – Examples and Counterexamples", 2007.

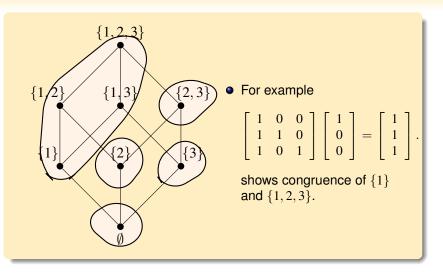
G-orbits and generic x.

G^0 -orbits in the sample space

- orbit of $x \in \mathbb{R}^m$: $\mathcal{O}_x := \{gx : g \in G\} \subseteq \mathbb{R}^m$
- G contains $T_m \implies x$ and ind(x) are in the same orbit
- \mathcal{O}_I : the subset of points in \mathbb{R}^m with support given by $I \subseteq [m]$
- Lemma: If $g \in G$ stabilizes every $x \in B \subseteq \mathbb{R}^m$ then there exists $g' \in G^0$ stabilizing all $x \in B$.
- **Theorem:** G^0 -orbits are in 1-1 correspondence with the up-sets of $\mathbf{P}_{\mathcal{C}}$:

$$\overline{\mathcal{O}}_I \quad := \quad \bigcup_{\uparrow J=I} \mathcal{O}_I \qquad ext{for all } I \in \mathbf{O}^{\uparrow}(\mathbf{P}_{\mathcal{C}}).$$

 $\overline{\mathcal{O}}_{[m]}$ is the unique dense orbit.



The generic case

• **Problem:** compute $\Delta_{gen} := \Delta_{\mathbf{x}_n}$ assuming that \mathbf{x}_n is *generic*:

- x_1, \ldots, x_n lie in the dense G^0 -orbit
- we remove some other measure zero subsets

• Example 1: $\overset{2}{\bullet} - \overset{1}{\bullet} - \overset{3}{\bullet}$

•
$$x_i = g_i[1, 0, 0]^T$$
; w.l.o.g. assume $x_1 = [1, 0, 0]^T$
• $G_{x_1} = \{g : g = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a & 0 \end{bmatrix} \}$

 $\begin{vmatrix} 0 & 0 & b \end{vmatrix}$ • if $ab \neq 1$ then $g \in G_1$ and no other point is stabilized; hence $\Delta_{\text{gen}} = 1/n$

Example 2: the four-cycle

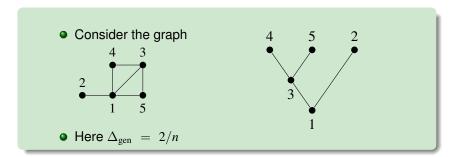
• $G^0 = T_4$ and generic points are stabilized only by I; hence $\Delta_{gen} = 0$

(G-orbits and generic \mathbf{x}_n

Bounds in the generic case

Theorem: If in the Hasse diagram of P_C every element covers at most one element (HD is a forest) then

$$\Delta_{\text{gen}} = \frac{1}{n}(\operatorname{rank}(\mathbf{P}_{\mathcal{C}})-1).$$



(G-orbits and generic \mathbf{x}_n

Further problems

Non-generic data sets

- Is there a closed form formula?
- Is there an algorithmic procedure for arbitrary data sets?

G-orbits in $\mathcal{S}_{\mathcal{G}}^+$

- Theorem (Letac, Massam): There is exactly one *G*-orbit in S⁺_G if and only if the Hasse diagram of the induced poset P_C for each connected component of *G* is a tree (every element covers at most one element). This happens exactly when *G* contains no 4-cycle or 4-chain as an induced subgraph.
- Provide the description of G-orbits in the general case

Thank you!

