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Introduction

combinatorics  social networks regulatory networks

We consider one of the most generally used model: no three
way interaction model. Model



Conditional Poisson Distribution

Let Z = (Z1, . . . ,Zl) be independent Bernoulli trials with proba-
bility of successes p = (p1, . . . ,pl). Define wk = pk/(1− pk ) for
∀k . Then Z follows a Conditional Poisson Distribution means,

P(Z1 = z1, . . . ,Zl = zl |SZ = c) ∝
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Sequential Importance Sampling (SIS)

Σ 6= ∅, the set of all tables satisfying marginal conditions.
p(X): Σ→ [0,1], target distribution, the uniform distribution over
Σ, p(X) = 1/|Σ|.
q(X) > 0 for all X ∈ Σ, the proposal distribution for sampling.
We have

E
[

1
q(X)

]
=
∑
X∈Σ

1
q(X)

q(X) = |Σ|

which can be estimated |Σ| by

|̂Σ| =
1
N

N∑
i=1

1
q(Xi)

,

where X1, . . . ,XN are tables drawn iid from q(X).



Sequential Importance Sampling (SIS)
How to get the probability of the whole table X?

Denote the columns of the table X as x1, · · · , xt . By the multipli-
cation rule we have

q(X = (x1, · · · , xt )) = q(x1)q(x2|x1) · · · q(xt |xt−1, . . . , x1).

We can easily compute q(xi |xi−1, . . . , x1) for i = 2,3, . . . , t using
Conditional Poisson distribution.

What if we have rejections?

Having rejections means that q(X): Σ∗ → [0,1] where Σ ( Σ∗.
The SIS estimator is still unbiased and consistent:

E
[
IX∈Σ

q(X)

]
=
∑

X∈Σ∗

IX∈Σ

q(X)
q(X) = |Σ|,

where IX∈Σ is an indicator function for the set Σ.



SIS for 2-way Table

Theorem [Chen et. al., 2005]
For the uniform distribution over all m × n 0-1 tables with given
row sums r1, . . . , rm and first column sum c1, the marginal distri-
bution of the first column is the same as the conditional distribu-
tion of Z given SZ = c1 with pi = ri/n.
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SIS for 2-way Tables with Structural Zero’s

A structural zero means a cell in the table that is fixed to be 0.
Example

Theorem [Yuguo Chen, 2007] ["Hand Waving" version]

Key: If (i ,1) is not a structural 0: change pi = ri/n to pi =
ri/(n − gi) where gi is the number of structural zeros in the ith
row; otherwise pi = 0. Theorem

[0]

[0] [0]

n=6

r2=2

p2=2/(6-2)
p3=0



SIS for 3-way Tables

Theorem ["Hand Waving" version]

For a cell (i0, j0, k0), 3 columns will go through it: (i0, j0, ·),
(i0, ·, k0), (·, j0, k0). Key: When generating (i0, j0, ·), let r =
(i0, ·, k0), c = (·, j0, k0), define rk0 = Xi0+k0 and ck0 = X+j0k0 ,
then set:

pk0 =
rk0 · ck0

rk0 · ck0 + (n − rk0 − gr
k0

)(m − ck0 − gc
k0

)
,

where gr
k0

, and gc
k0

are the numbers of structural zeros in r and
c, respectively. Theorem

A similar strategy can be used in multi-way tables. Theorem



Algorithm

Example: 3× 3× 3 Semimagic Cube
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Simulations - Semimagic Cubes (Table 2)

This tables lists the results from m ×m ×m tables with all
marginals equals to 1.

Dim m # tables Estimation cv2 δ

4 576 571.1472 0.27 100%

5 161280 161439.3 0.18 99.2%

6 812851200 819177227 0.45 98.8%

7 6.14794e+13 6.146227e+13 0.64 97.7%

8 1.08776e+20 1.099627e+20 1.00 96.5%

9 5.52475e+27 5.684428e+27 1.59 95.3%

10 9.98244e+36 9.73486e+36 1.73 93.3%

δ: acceptance rate



Simulations - Semimagic Cubes (Table 3)

We can also change marginal s.

Dimension m s Estimation cv2 δ

6 3 1.269398e+22 2.83 96.5%

7 3 2.365389e+38 25.33 96.7%

8 3 3.236556e+59 7.05 94.5%
4 2.448923e+64 11.98 94.3%

9 3 7.871387e+85 15.23 91.6%
4 2.422237e+97 14.00 93.4%

10 3 6.861123e+117 26.62 90%
4 3.652694e+137 33.33 93.8%
5 1.315069e+144 46.2 91.3%

δ: acceptance rate



Experiment - Sampson’s Dataset

• It is a dataset about the social interactions among a group
of monks recorded by Sampson.

• Data structure:
• Dimension: 18× 18× 10
• Rows/Columns: the 18 monks.
• Levels: 10 questions: liking (3 timepoints), disliking,

esteem, disesteem, positive influenc, negative influence,
praise and blame.

• Values: answers: 3 top choices were listed in original
dataset, ranks were recorded. We set these ranks as an
indicator (1 if in top three choices, 0 if not).

• N = 100000, estimator is 1.704774e + 117, cv2 = 621.4,
acceptance rate is 3%.



Problems Still Open

Our code performs good when marginals are close to each

other. But for the opposite case, the acceptance rate can

become very low.

How can we reduce rejection rate?

Possible idea: arrange the order of columns in different

ways?

How can Gale-Ryser Theorem be used for 3-way tables?



THANK YOU!

Questions?

Website for this paper:
http://arxiv.org/abs/1108.5939

http://arxiv.org/abs/1108.5939


Model

Let X = (Xijk ) of size (m, n, l), where m,n, l ∈ N and N =
{1,2, . . .}, be a table of counts whose entries are indepen-
dent Poisson random variables with parameters, {θijk}. Here
Xijk ∈ {0,1}. Consider the loglinear model,

log(θijk ) = λ+ λM
i + λN

j + λL
k + λMN

ij + λML
ik + λNL

jk (2)

for i = 1, . . . ,m, j = 1, . . . ,n, and k = 1, . . . , l where M, N,
and L denote the nominal-scale factors. This model is called no
three-way interaction model.

Notice that the sufficient statistics under the model in (2) are the
two-way marginals.

Back



Example for Structural Zero’s

How can structural zero’s come?
Different types of cancer separated by gender for Alaska in year
1989:

Type of cancer Female Male Total

Lung 38 90 128
Melanoma 15 15 30
Ovarian 18 [0] 18
Prostate [0] 111 111
Stomach 0 5 5

Total 71 221 292

The structural zeros’s are denoted by "[0]" Back



Theorem [2-way Tables with Structural Zero’s]

Define the set of structural zeros Ω as: Ω = {(i , j) : (i , j) is a
structural zero, i = 1, . . . ,m, j = 1, . . . ,n}

Theorem [Yuguo Chen, 2007]

For the uniform distribution over all m × n 0-1 tables with given
row sums r1, . . . , rm, first column sum c1, and the set of struc-
tural zeros Ω, the marginal distribution of the first column is the
same as the conditional distribution of Z given SZ = c1 with
pi = I[(i,1)/∈Ω]ri/(n − gi) where gi is the number of structural ze-
ros in the ith row.

Back



Theorem [SIS for 3-way Tables]

Theorem
For the uniform distribution over all m × n × l 0-1 tables with
structural zeros with given marginals rk = Xi0+k , ck = X+j0k
for k = 1,2, . . . , l , and a fixed marginal for the factor L, l0, the
marginal distribution of the fixed marginal l0 is the same as the
conditional distribution of Z given SZ = l0 with

pk :=
rk · ck

rk · ck + (n − rk − gr0
k )(m − ck − gc0

k )
,

where gr0
k is the number of structural zeros in the (r0, k)th column

and gc0
k is the number of structural zeros in the (c0, k)th column.

Back



Theorem [SIS for Multi-way Tables]

Theorem
For the uniform distribution over all d-way 0-1 contingency tables
X = (Xi1...id ) of size (n1 × · · · × nd ), where ni ∈ N for i = 1, . . .d
with marginals l0 = Xi01 ,...i

0
d−1+, and r j

k = Xi01 ...i
0
j−1+i0j+1...i

0
d−1k for

k ∈ {1, . . . ,nd}, the marginal distribution of the fixed marginal
l0 is the same as the conditional distribution of Z given SZ = l0
with

pk :=

∏d−1
j=1 r j

k∏d−1
j=1 r j

k +
∏d−1

j=1 (nj − r j
k − g j

k )

where g j
k is the number of structural zeros in the

(i01 , . . . , i
0
j−1, i

0
j+1, . . . , i

0
d−1, k)th column of X. Back


