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Motivation: learning Bayesian network structure

Bayesian networks (BN) are special graphical models widely used both in
statistics and artificial intelligence. They are described by acyclic directed
graphs, whose nodes correspond to (random) variables.

The original motivation for our research was learning BN structure from
data (= model selection) by a score-and-search method.

By a quality criterion, also called a score, is meant a real function Q of the
BN structure (= of a graph G , typically) and of the observed database D.

The value Q(G ,D) should say how much the BN structure given by G is
suitable to explain the occurrence of the database D.

The aim is to maximize G 7→ Q(G ,D) given the observed database D.

Examples of such criteria are Schwarz’s BIC criterion and Bayesian BDE score.

Here, the general aim is to develop a method for finding global maximum
of Q based on tools of linear programming (LP).
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Basic concepts: Bayesian network structure

N a non-empty finite set of variables
Xi , |Xi | ≥ 2 the individual sample spaces (for i ∈ N)

DAGS (N) collection of all acyclic directed graphs over N

The (discrete) Bayesian network (BN) is a pair (G ,P), where
G ∈ DAGS (N) and P is a probability distribution on the joint sample
space XN ≡

∏
i∈N Xi which (recursively) factorizes according to G .

Given G ∈ DAGS (N), (the statistical model of) a BN structure is the
class of all distributions P on XN that factorize according to G .

This statistical model can equivalently be defined in terms conditional
independence (CI) – thus, it is a special model of a CI structure.

Two different acyclic directed graphs over N may describe the same BN
structure; a common unique graphical representative of the equivalence
class of these graphs is so-called essential graph.
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Learning concepts: score-and-search method

Data are assumed to have the form of a complete database:

Provided the individual sample spaces Xi for i ∈ N are fixed,

x1, . . . , xd a sequence of elements of XN of the length d ≥ 1
called a database of the length d or a sample of the size d

DATA (N, d) the set of all databases over N of the length d

Definition (quality criterion)

Quality criterion or a score (for learning BN structure) is a real function

Q(G ,D) on DAGS (N)× DATA (N, d).

The value Q(G ,D) should somehow evaluate how the statistical model given by
G fits the database D (formal definition of statistical consistency is omitted).

Therefore, the aim is to maximize the function G 7→ Q(G ,D) given the observed

database D ∈ DATA (N, d). This was traditionally done by special search

methods, which however, in general, do not ensure finding a global maximizer.
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Learning concepts: technical requirements on criteria

Notation : Given an acyclic directed graph G over N and its node i ∈ N,

paG (i) ≡ {j ∈ N; j → i in G} is (called) the set of parents of i .

Definition (score equivalent and decomposable criterion)

A quality criterion Q will be named score equivalent if, for any database D,

Q(G ,D) = Q(H,D) whenever G ,H ∈ DAGS (N) are equivalent.

It will be called (additively) decomposable if it has the form

Q(G ,D) =
∑

i∈N qi |paG (i)(D{i}∪paG (i)) ,

where DA is the projection of D to the marginal space XA for A ⊆ N. The
terms qi |B(∗|∗) for i ∈ N and B ⊆ N \ {i} are called local scores.

Quality criteria used in practice are score equivalent and decomposable.
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Linear algebraic approach: imset
M. Studený (2005). Probabilistic Conditional Independence Structures.
Springer Verlag, London.

Definition (imset)

An imset u over N is an integer-valued function on P(N) ≡ {A; A ⊆ N},
the power set of N.

It can be viewed as a vector whose components are integers, indexed by
subsets of N. [= a lattice point in the Euclidean space RP(N)]

A trivial example of an imset is the zero imset, denoted by 0.

Given A ⊆ N, the symbol δA will denote this basic imset:

δA(B) =

{
1 if B = A,
0 if B 6= A,

for B ⊆ N.

Since {δA; A ⊆ N} is a linear basis of RP(N), any imset can be expressed as a

linear combination of these basic imsets (with integers as coefficients).
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Algebraic concepts: standard imset
The basic idea of the proposed algebraic approach was to represent the
BN structure given by an acyclic directed graph G by a certain vector uG

having integers as components, called the standard imset (for G ).

Definition (standard imset)

Given G ∈ DAGS (N), the standard imset for G is given by the formula:

uG = δN − δ∅ +
∑
i∈N
{ δpaG (i) − δ{i}∪paG (i) } .

Note that the terms in the above formula can both sum up and cancel each

other. Of course, it is a vector of an exponential length in |N|.

However, it follows from the definition that uG has at most 2 · |N|
non-zero values. In particular, the memory demands for representing
standard imsets are polynomial in |N|.
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Algebraic approach to learning

The standard imset is a unique representative of the BN structure.

Lemma (Studený 2005)

Given G ,H ∈ DAGS (N), uG = uH iff G and H are equivalent.

The point is that every reasonable quality criterion Q for learning BN
structure appears to be an affine function of the standard imset.

Theorem (Studený 2005)

Every score equivalent and decomposable criterion Q has the form

Q(G ,D) = sQD − 〈t
Q
D , uG 〉 for G ∈ DAGS (N), D ∈ DATA (N, d), d ≥ 1

where sQD ∈ R and the vector tQD ∈ RP(N) do not depend on G .

The vector tQD is called the data vector with respect to Q.

Milan Studený et al. (Prague) Integer programming approach to learning April 17, 2012 9 / 23



Algebraic approach to learning

The standard imset is a unique representative of the BN structure.

Lemma (Studený 2005)
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Geometric view on learning
M. Studený, J. Vomlel and R. Hemmecke (2010). A geometric view on
learning Bayesian network structures. International Journal of Approximate
Reasoning 51:578-586.

Definition (standard imset polytope)

Having fixed the set of variables N, let us put:

S ≡ { uG ; G ∈ DAGS (N) } ⊆ RP(N), P ≡ conv (S) .

The above polytope P will be called the standard imset polytope.

In the set S each BN structure is represented by just one vector! We have shown

S = ext(P). Thus, maximizing Q over BN structures is equivalent to finding an

optimum of an affine function over P.

However, to apply classic tools of LP, like the simplex method, one has to
have a polyhedral description of the domain P. An alternative approach
could be based is a characterization of geometric edges of P (= 2-faces).
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Technical problems with the direct LP approach

M. Studený and J. Vomlel (2011). On open questions in the geometric
approach to structural learning Bayesian nets. International Journal of
Approximate Reasoning 52:627-640.

The are at least two reasons why such a direct LP approach does not seem
to lead to a progress in solving practical learning tasks:

the number of inequalities in the conjectured outer description seems
to be super-exponential in |N|,
the description of most of the inequalities is implicit. To apply them
in practice one still would need to characterize them explicitly.

The reason is that most of the inequalities correspond to extreme supermodular

functions and one has to characterize these explicitly, which looks like a difficult

open theoretical problem.

The result of our preliminary analysis of the geometric edges was an
observation that P has a huge number of edges, and, at this stage, there is
no hope for their complete characterization.
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M. Studený and J. Vomlel (2011). On open questions in the geometric
approach to structural learning Bayesian nets. International Journal of
Approximate Reasoning 52:627-640.

The are at least two reasons why such a direct LP approach does not seem
to lead to a progress in solving practical learning tasks:

the number of inequalities in the conjectured outer description seems
to be super-exponential in |N|,
the description of most of the inequalities is implicit. To apply them
in practice one still would need to characterize them explicitly.

The reason is that most of the inequalities correspond to extreme supermodular

functions and one has to characterize these explicitly, which looks like a difficult

open theoretical problem.

The result of our preliminary analysis of the geometric edges was an
observation that P has a huge number of edges, and, at this stage, there is
no hope for their complete characterization.
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Integer programming approach

The idea is to apply advanced methods of linear optimization. The point is that

the considered polytope P is integral, that is, all its vertices are lattice points.

To apply the methods of integer programming (IP) one need not
necessarily find a completed outer (= facet) description of the polytope.

Definition (LP relaxation)

By an LP relaxation of a polytope P is meant a polyhedron R containing
the polytope (P ⊆ R), with the property that the lattice points contained
in P and R coincide (P ∩ Z∗ = R ∩ Z∗).

Then the maximization task can be re-formulated in the form of integer
programing (IP) problem:

min {〈tQD , u〉; u ∈ R , u ∈ Z∗} Recall: Q(G ,D) = sQD − 〈t
Q
D , uG 〉

There are software packages, which efficiently solve IP problems (CPLEX). In IP

is often advantageous to have a polytope, whose vertices are zero-one vectors.
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Milan Studený et al. (Prague) Integer programming approach to learning April 17, 2012 12 / 23



Integer programming approach

The idea is to apply advanced methods of linear optimization. The point is that

the considered polytope P is integral, that is, all its vertices are lattice points.

To apply the methods of integer programming (IP) one need not
necessarily find a completed outer (= facet) description of the polytope.

Definition (LP relaxation)

By an LP relaxation of a polytope P is meant a polyhedron R containing
the polytope (P ⊆ R), with the property that the lattice points contained
in P and R coincide (P ∩ Z∗ = R ∩ Z∗).

Then the maximization task can be re-formulated in the form of integer
programing (IP) problem:

min {〈tQD , u〉; u ∈ R , u ∈ Z∗} Recall: Q(G ,D) = sQD − 〈t
Q
D , uG 〉

There are software packages, which efficiently solve IP problems (CPLEX). In IP

is often advantageous to have a polytope, whose vertices are zero-one vectors.
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Transformation to the characteristic imset

M. Studený, R. Hemmecke, S. Lindner (2010). Characteristic imset: a simple
algebraic representative of a Bayesian network structure. In Proceedings of
the 5th PGM workshop, HIIT Publications, pp. 257-264.

Definition (characteristic imset)

Assume |N| ≥ 2. Given an acyclic directed graph G over N, let uG be the
corresponding standard imset. The characteristic imset for G is given by

cG (T ) = 1−
∑

S ,T⊆S⊆N
uG (S) for T ⊆ N, |T | ≥ 2.

Clearly, the characteristic imset is obtained from the standard one by an
invertible affine transformation. In particular, every score equivalent and
decomposable criterion is an affine function of the characteristic imset!

The motivation for the terminology was that, if G is a forest, then cG is the (zero

extension of the) characteristic vector of its edge-set.
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Characteristic imset: basic observation

Theorem (Studený, Hemmecke, Lindner 2010)

Assume |N| ≥ 2. Given an acyclic directed graph G over N one has

cG (A) ∈ {0, 1} for any A ⊆ N, |A| ≥ 2 .

The above-mentioned affine transformation maps lattice points to lattice points.

Since there is no lattice point in the interior of 0-1 hypercube, there is no lattice

point in the interior of the standard imset polytope P!

The characteristic imset is also much closer to the graphical description
than the standard imset. There is a simple polynomial algorithm for
getting the essential graph on basis of the characteristic imset.

Definition (characteristic imset polytope)

Characteristic imset polytope is the convex hull of the set of characteristic
imsets: C = conv({cG ; G ∈ DAGS (N)})
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Characteristic imset: directly from the graph

Theorem (equivalent definition of a characteristic imset)

Let cG be the characteristic imset for an acyclic directed graph G over N.
For S ⊆ N, |S | ≥ 2 one has

cG (S) = 1 iff there exists some i ∈ S with S \ {i} ⊆ paG (i).

Corollary (crucial components of the characteristic imset)

Let i , j (and k) are distinct nodes in G . Then:

there is an edge between distinct nodes i , j ∈ G if and only if cG ({i , j}) = 1,

there is an immorality i → k ← j in G if and only if cG ({i , j , k}) = 1 and
cG ({i , j}) = 0.

The characteristic imset cG is determined uniquely by its values for sets of
cardinality 2 and 3.

However, the values cG (S) for |S | ≥ 4 do not depend linearly on them.
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Overview of methods for getting the global optimimum
Traditional score-and-search methods, like the greedy equivalence search
(GES) algorithm, do not guarantee to find the global maximum of Q.

T. Silander, P. Myllymäki (2006). A simple approach for finding the globally
optimal Bayesian network structure. In Proceedings of the 22th UAI
conference, AUAI Press, pp. 445-452. method of dynamic programming

C.P. de Campos, Z. Zeng, Q. Ji (2009). Structure learning Bayesian
networks using constraints. In Proceedings of the 26th ICML conference, pp.
113-120. general branch-and-bound principle

T. Jaakkola, D. Sontag, A. Globerson, and M. Meila (2010). Learning
Bayesian network structure using LP relaxations. In Proceedings of the 13th
International Conference on AI and Statistics, pp. 358-365. ILP approach

J. Cussens (2010). Maximum likelihood pedigree reconstruction using integer
programming. In Proceedings of CBMB workshop, pp. 9-19. ILP approach

J. Cussens (2011). Bayesian network learning with cutting planes. In
Proceedings of the 27th UAI conference, pp. 153-160. ILP approach

Milan Studený et al. (Prague) Integer programming approach to learning April 17, 2012 16 / 23



Overview of methods for getting the global optimimum
Traditional score-and-search methods, like the greedy equivalence search
(GES) algorithm, do not guarantee to find the global maximum of Q.
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Milan Studený et al. (Prague) Integer programming approach to learning April 17, 2012 16 / 23



Straightforward zero-one encoding for a directed graph

Both (Jaakkola et al. 2010) and (Cussens 2010, 2011) used a simple
zero-one vector ηG to encode a directed graph G over N.

The vector has components indexed by pairs (i |B), where i ∈ N and
B ⊆ N \ {i}. More specifically:

Definition (straightforward zero-one code of a directed graph)

Let G be a(n acyclic) directed graph over N. Then we put

ηG (i |B) = 1 iff B = paG (i), ηG (i |B) = 0 otherwise.

The main difference: different equivalent graphs have different representatives!

Their vectors are even longer than ours; have |N| · 2|N|−1 components.

They also turned the BN learning task into a linear optimization problem.
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LP relaxation offered by Jaakkola et al.

Their polyhedron J was given by the following constraints:

simple non-negativity constraints η(i |B) ≥ 0 for every (i |B),

equality constraints
∑

B⊆N\{j} η(j |B) = 1 for any j ∈ N,

cluster inequalities, which correspond to sets

C ⊆ N, |C | ≥ 2 (called clusters): 1 ≤
∑
i∈C

∑
B⊆N\C

η(i |B) .

The cluster inequalities encode acyclicity restrictions to G . The inequality
for C means that the induced subgraph GC has at least one initial node.

There could be non-integral vertices of J.

An interesting observation (which is not difficult to show) is that the only
lattice points in J are the codes of acyclic directed graphs over N.

Thus, their polyhedron is an LP relaxation of the convex hull of the set of codes.
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Milan Studený et al. (Prague) Integer programming approach to learning April 17, 2012 18 / 23



LP relaxation offered by Jaakkola et al.

Their polyhedron J was given by the following constraints:

simple non-negativity constraints η(i |B) ≥ 0 for every (i |B),

equality constraints
∑

B⊆N\{j} η(j |B) = 1 for any j ∈ N,

cluster inequalities, which correspond to sets

C ⊆ N, |C | ≥ 2 (called clusters): 1 ≤
∑
i∈C

∑
B⊆N\C

η(i |B) .

The cluster inequalities encode acyclicity restrictions to G . The inequality
for C means that the induced subgraph GC has at least one initial node.

There could be non-integral vertices of J.

An interesting observation (which is not difficult to show) is that the only
lattice points in J are the codes of acyclic directed graphs over N.

Thus, their polyhedron is an LP relaxation of the convex hull of the set of codes.
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Comparison with Jaakkola et al.’s approach

M. Studený, D. Haws (2011). On polyhedral approximations of polytopes for
learning Bayes nets, research report n. 2303, Institute of Information Theory
and Automation of the ASCR, http://arxiv.org/abs/1107.4708.

We have observed that the standard imset uG is an affine (many-to-one)
function of ηG and the characteristic imset cG is even its linear function:

cG (T ) =
∑
(i |B)

ηG (i |B) · δ[ i ∈ T & T \ {i} ⊆ B ] for T ⊆ N.

Therefore, we have three ways of algebraic representation of Bayes nets:

ηG −→ uG ←→ cG .

Our aim was to transform Jaakkola et al.’s linear constraints to our framework(s)

and to compare them with our constraints.
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M. Studený, D. Haws (2011). On polyhedral approximations of polytopes for
learning Bayes nets, research report n. 2303, Institute of Information Theory
and Automation of the ASCR, http://arxiv.org/abs/1107.4708.

We have observed that the standard imset uG is an affine (many-to-one)
function of ηG and the characteristic imset cG is even its linear function:

cG (T ) =
∑
(i |B)

ηG (i |B) · δ[ i ∈ T & T \ {i} ⊆ B ] for T ⊆ N.

Therefore, we have three ways of algebraic representation of Bayes nets:

ηG −→ uG ←→ cG .

Our aim was to transform Jaakkola et al.’s linear constraints to our framework(s)

and to compare them with our constraints.
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Recent findings: inequalities translation

A positive finding was that the cluster inequalities can easily be
transformed to the framework of standard imsets. They come to
inequalities we already knew from our former analysis. Specifically, they
correspond to certain extreme supermodular functions:∑

T⊆N

mC (T ) · u(T ) ≥ 0 where mC (T ) = max {0, |C ∩ T | − 1} for T ⊆ N.

It was a slightly tough technical problem to transform Jaakkola et al.s’
non-negativity and equality constraints. We found out that they are
transformed to certain already known inequalities for the standard imset
polytope and that the transformation raises the number of inequalities!

The consequence of the above observations is that the polyhedron
conjectured in (Studený, Vomlel 2011) to be an outer description of the
standard imset polytope P is indeed its LP relaxation.
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Towards LP relaxation of the characteristic imset polytope

We have also transformed Jaakkola et al.’s inequalities in the framework of
characteristic imsets.

Our question has been whether the transformed inequalities define an LP
relaxation of the characteristic imset polytope.

This appeared to be related to the unimodularity of the respective
transformation-defining matrix. We have succeeded to confirm the
conjecture that it is indeed the case.

Nevertheless, although we got an LP relaxation of the characteristic imset
polytope, this particular one does not seem to be ideal for practical
purposes, for the high number of inequalities.
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LP relaxation for an extended vector-code

S. Lindner (2012). Discrete optimization in machine learning - learning
Bayesian network structures and conditional independence implication. PhD
thesis, TU Munich.

Both (Cussens 2010) and (Lindner 2012) used another trick: they added
some additional components to their vector codes. These additional
components correspond to ordered pairs of variables.

The point was that only a polynomial number of additional components
(in |N|) was added, but this step allowed them overcome technical
problems (= to prove they get an LP relaxation of what they want).

Cussens extended the ηG -vector and used the new components to encode a total
order of variables in N consonant with the arrows in (acyclic directed) graph G .

Lindner considered an extension of the characteristic imset cG . She used the

additional components to encode the direction of arrows in an acyclic directed

graph G inducing cG .
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Milan Studený et al. (Prague) Integer programming approach to learning April 17, 2012 22 / 23



LP relaxation for an extended vector-code

S. Lindner (2012). Discrete optimization in machine learning - learning
Bayesian network structures and conditional independence implication. PhD
thesis, TU Munich.

Both (Cussens 2010) and (Lindner 2012) used another trick: they added
some additional components to their vector codes. These additional
components correspond to ordered pairs of variables.

The point was that only a polynomial number of additional components
(in |N|) was added, but this step allowed them overcome technical
problems (= to prove they get an LP relaxation of what they want).

Cussens extended the ηG -vector and used the new components to encode a total
order of variables in N consonant with the arrows in (acyclic directed) graph G .

Lindner considered an extension of the characteristic imset cG . She used the

additional components to encode the direction of arrows in an acyclic directed

graph G inducing cG .
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Conclusions

Both (Cussens 2010, 2011) and (Lindner 2012) have done some practical
computational experiments with this new ILP approach. They, unlike
(Jaakkola et al. 2010), used some ILP software packages.

My future research direction in this area is as follows: consider an
extension of the characteristic imset cG with additional components
encoding the direction of arrows in the respective essential graph!

Actually, the idea is to encode the arrows in a graph which falls within a
special wider class of graph, involving both all acyclic directed graphs
inducing cG (= equivalent to G ) and the respective essential graph for G .

The essential graph can then be obtained by an additional simple auxiliary
ILP problem (of polynomial complexity in |N|).

Of course, I plan to work on it in cooperation with colleagues (abroad).
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