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Introduction

∙ Graphical Markov models use graphs to capture conditional

independence statements of sets of random variables.

∙ Nodes of the graph correspond to random variables and edges to

dependencies.

∙ Unobserved variables are related to Marginalisation and selection

variables to conditioning.
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Independence model

independence model J over a set V : a set of triples ⟨X,Y ∣Z⟩

where X,Y, Z ⊂ V .

⟨X,Y ∣Z⟩ interpreted as ”X is independent of Y given Z”.

A graph induces an independence model by the use of a separation

criterion .

Example: Probabilistic conditional independence:

⟨X,Y ∣Z⟩ ∈ JP ⇔ X ⊥⊥ Y ∣Z ⇔

fXY Z(x, y, z) =
fXZ(x,z)fY Z(y,z)

fZ(z)
.
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Marginal and Conditional independence models

independence model J after marginalisation over M :

�(J ;M,∅) = {⟨A,B ∣D⟩ ∈ J : (A ∪ B ∪D) ∩M = ∅}

independence model after conditioning on C :

�(J ;∅, C) = {⟨A,B ∣D⟩ : ⟨A,B ∣D ∪ C⟩ ∈

J and (A ∪ B ∪D) ∩ C = ∅}.

independence model after marginalisation over M and

conditioning on C :

�(J ;M,C) = {⟨A,B ∣D⟩ : ⟨A,B ∣D ∪ C⟩ ∈

J and (A ∪ B ∪D) ∩ (M ∪ C) = ∅}
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Stability

T : a family of graphs

J T = {J G}G∈T : a family of independence models

T stable (under marginalisation and conditioning) with respect to

J T :

For G = (V,E) ∈ T and M,C ⊂ V :

∃H ∈ T s.t. J H = �(J G;M,C).
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Stability of DAGs using d-separation

DAGs are not stable :

h i k lj lh ji k

(a) (b)

(a) A DAG, which shows DAGs are not stable under marginalisation.

(∕ ∕∘ ∈ M .) (b) A DAG, which shows DAGs are not stable under

conditioning. ( □∘ ∈ C .)
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Stable Mixed graphs

∙ Mixed graph : a graph containing three types of edges denoted

by arrows ≻, arcs ≺ ≻, and lines .

∙ Multiple edges of different types allowed, multiple edges of the

same type not allowed ⇒ Up to four edges as a multiple edge

between any two nodes.

∙ Mixed graphs contain DAGs

∙ We look for stable subclasses of mixed graphs:

MC (Koster 2002), Ancestral (Richardson and Spirtes 2002),

Summary (Wermuth 2011), and Ribbonless graphs.
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The m-separation

∙ m-connecting path given C : all its collider nodes are in

C ∪ an(C) and all its non-collider nodes are outside C .

∙ A⊥mB ∣C if there is no m-connecting path between A and B

given C .
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Example.

k j h

i

j ∈ ant(i) ⇒ ⟨k, j, ℎ⟩ m-connecting given i

⇒ k⊥mℎ ∣ i does not hold.
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Ribbonless graphs

A ribbon is a graph containing a collider V-configuration ⟨ℎ, i, j⟩ s.t.

1. no j≺ ≻ℎ if ℎ≺ ≻i≺ ≻j; no j ℎ if ℎ ≻i≺ j; no ℎ ≻j

if ℎ ≻i≺ ≻j;

2. i or a descendant of i is the endpoint of a line or on a

direction-preserving cycle.

Ribbonless graph (RG): an LMG that does not contain ribbons.
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example

h i j

k l

h

i j

Two ribbons
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Polynomial algorithm for generating RGs from DAGs or RGs

∙ m ∈ M : nodes to be marginalised over.

∙ C : nodes to be conditioned on.

∙ s ∈ C ∪ an(C).

∙ We apply the following table to all V-configurations repeatedly until

no other edge can be generated

∙ The generated graph is denoted by �RG(H,M,C).
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1 i≺ m≺ j generates i≺ j

2 i≺ m j generates i≺ j

3 i≺ ≻m j generates i≺ j

4 i≺ m ≻ j generates i≺ ≻j

5 i≺ m≺ ≻ j generates i≺ ≻j

6 i m≺ j generates i j

7 i m j generates i j

8 i≺ ≻s≺ j generates i≺ j

9 i≺ ≻s≺ ≻ j generates i≺ ≻j

10 i ≻s≺ j generates i j
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Example

l h j ik l h k ij

step 1

l h k ij
l h k ij

step 5 step 8

l h k ij

il

step 2
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Important properties of �RG

∙ The set of RGs is the exact image of �RG.

– RGs are probabilistic, i.e., there is a probability distribution

faithful to them.

∙ �RG(�RG(H,M,C),M1, C1) = �RG(H,M ∪M1, C ∪C1).

∙ A⊥mB ∣C2 in �RG(H,M,C1) ⇔ A⊥mB ∣C1 ∪ C2 in H :

– �(Jm(H);M,C) = Jm(�RG(H;M,C)).

– RGs are stable.

– Undirected graphs and bidirected graphs are stable.
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Summary graphs

A summary graph has no arrowheads pointing to lines and no

direction-preserving cycles.

An SG (b) An MG that is not an SG.
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Polynomial algorithm for generating SGs from DAGs or SGs

�SG: Label the nodes in an(C).

1. Generate an RG.

2. Remove all edges (arrows or arcs) with an arrowhead pointing to

a node in an(C), and replace these by the edge with the

arrowhead removed (line or arrow).
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Example

h

k

i

j

h k j

□∘ ∈ C generated RG, □ ∈ an(C)

h k j

step 2

18



Important properties of �SG

∙ The set of SGs is the exact image of �SG.

∙ �SG(�SG(H,M,C),M1, C1) = �SG(H,M ∪M1, C ∪ C1).

∙ A⊥mB ∣C2 in �SG(H,M,C1) ⇔ A⊥mB ∣C1 ∪ C2 in H :

– �(Jm(H);M,C) = Jm(�SG(H;M,C)).

– SGs are stable.
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Ancestral graphs

An ancestral graph has

no arrowheads pointing to lines,

no direction-preserving cycles,

no bow: An arc with one endpoint that is an ancestor of the other

endpoint.

An AG. An SG that is not ancestral.
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Polynomial algorithm for generating AGs from DAGs or AGs

�AG:

1. Generate an SG.

2. Generate j ≻i or i≺ ≻j for j ≻k≺ ≻i or j≺ ≻k≺ ≻i

when k ∈ an(i).

3. Remove j≺ ≻i in the case that j ∈ an(i), and replace it by

j ≻i.
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Example

h

j

k

i

h

j
i

the generated SG
h

j
i

h j i

step 2
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Important properties of �AG

∙ The set of AGs is the exact image of �AG.

∙ �AG(�AG(H,M,C),M1, C1) = �AG(H,M ∪M1, C ∪C1).

∙ A⊥mB ∣C2 in �AG(H,M,C1) ⇔ A⊥mB ∣C1 ∪ C2 in H :

– �(Jm(H);M,C) = Jm(�AG(H;M,C)).

– AGs are stable.
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Stable mixed graphs in R

The algorithms have been implemented in R and available under the

ggm package.

RG for �RG

SG for �SG

AG for �AG
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The relationship between stable mixed graphs

DAG SG AGRG

SG.AG
a

RG.SG
aa

RG

a
SG

a
AG

M

C

an(C)
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Ribbonless, summary, or ancestral graphs?

∙ Ancestral graphs have the simplest structure among these three

types of graphs.

∙ Ribbonless graphs have the simplest generating algorithm.

∙ AGs are used when the generating DAG is not known but a set of

conditional independencies is known.

∙ In the Gaussian case maximal AGs are identified, the models are

curved exponential families, and conditional fitting algorithm for

maximum likelihood estimation exists.

∙ By moving towards AGs we lose information:
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Distortions

Summary graphs are more alerting to distortions than ancestral

graphs when dealing with following the effects in multivariate

regression systems after marginalisation and conditioning.

2

3

1

2 1 2 1

DAG generated SG generated AG

Y1 = �Y2 + �Y3 + �1, Y2 = Y3 + �2, Y3 = �3,

E(Y1 ∣Y2) = (� + �)Y2.
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