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Frequentist inference (estimation, goodness-of-fit testing, model
selection) in log-linear models relies on the maximum likelihood
estimator (MLE).

The MLE may not exist due to sampling zeros.

Nonexistence of the MLE largely ignored in practice. Important issue,
particular in large and sparse tables.
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Motivating Pathological Example

Consider a 23 table and the model [12][13][23]

A. Rinaldo Maximum Likelihood Estimation in Loglinear Models 3/32



Log-Linear Models
Maximum Likelihood Estimation

Numerical procedures

Motivating Pathological Example

Zero margin: MLE does not exist!

0 1
0 4

2 3
2 2
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Motivating Pathological Example

Haberman’s example (1974). Positive margins and nonexistent MLE.

0 1
2 4

2 3
2 0

loglin routine in R
Warning message: Algorithm did not converge ...

stop("This should not happen")

glm routine in R
fitted rates numerically 0

PROC CATMOD routine in SAS
If you want zero frequencies that PROC CATMOD would normally treat
as structural zeros to be interpreted as sampling zeros, simply
insert a one-line statement into the data step that changes each

zero to a very small number (such as 1E-20).

Always perfect fit to the data. The p-value is always 1.
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Outline

Background on log-linear models and exponential families.

Existence of the MLE.

Parameter estimability under a nonexistent MLE.

Computation of extended MLE.
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Log-Linear Models

Consider the exponential family tPθ, θ P RIu over a finite set of cells I:

Pθptiuq � exp tpθ, aiq � φpθqu , θ P Rd , i P I,

with ai P Ndzt0u and φpθq � log
�°

i exp tpθ, aiqu
�
.

Model specified by a |I| � d design matrix A, whose i-th row is aJi .

Observe a number N (possibly random) of cells tL1, . . . , LNu, with Lj P I,
all j .
The corresponding contingency table is the random vector n P NI

npiq � |tj : Lj � iu|, i P I.

A. Rinaldo Maximum Likelihood Estimation in Loglinear Models 5/32



Log-Linear Models
Maximum Likelihood Estimation

Numerical procedures

Log-Linear Models

Consider the exponential family tPθ, θ P RIu over a finite set of cells I:

Pθptiuq � exp tpθ, aiq � φpθqu , θ P Rd , i P I,

with ai P Ndzt0u and φpθq � log
�°

i exp tpθ, aiqu
�
.

Model specified by a |I| � d design matrix A, whose i-th row is aJi .

Observe a number N (possibly random) of cells tL1, . . . , LNu, with Lj P I,
all j .
The corresponding contingency table is the random vector n P NI

npiq � |tj : Lj � iu|, i P I.

A. Rinaldo Maximum Likelihood Estimation in Loglinear Models 5/32



Log-Linear Models
Maximum Likelihood Estimation

Numerical procedures

Log-Linear Models

Log-linear model analysis (see, e.g. Haberman, 1974 and Bishop et al.,
2007) is concerned with modeling the distribution of n by assuming that

m :� Epnq ¡ 0,
µ :� logpmq PM � RI , where M � RpAq is the log-linear subspace.

Sampling constraints: let N �M be a linear subspace of M of
dimension m   d : sampling subspace.

Conditional Poisson sampling: tnpiq, i P Iu have the conditional
distribution of |I| independent Poisson random variables with means
texppµpiqq, i P Iu given that ΠNn � c for some known c P RI .
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Conditional Poisson Sampling Schemes: Examples

Poisson Likelihood: N � t0u. The log-likelihood is

pn, µq �
¸

i

exppµpiqq �
¸

i

log pnpiqq!, µ PM.

Product Multinomial Likelihood: N � spanpχ1, . . . , χmq, where the χj ’s
are the indicator functions of a partition of I. The sampling constrains
are pn, χjq � Nj ¡ 0 for all j .
The log-likelihood is

m̧

j�1

��¸
iPBj

npiq log
mpiq
pm, χjq

� log Nj ! �
¸
iPBj

log npiq!

�, µ PM,

well defined only on

tµ PM : pχj , exppµqq � Nj , j � 1, . . . , ru �M.

Poisson-Multinomial likelihood (Lang, 2005): a combination of the two.
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Example: Hierarchical Log-Linear Models

Let X1, . . . ,XK be discrete random variables, each Xk supported on finite
set Ik of labels. Then I �

�K
k�1 Ik .

A hierarchical log-linear model ∆ is a simplicial complex: class of
subsets of t1, . . . ,K u such that S P ∆ and T � S implies T P ∆).
Graphical models are special cases.

There log-linear subspaces are of ANOVA-type and there are canonical
ways of constructing A (see Lauritzen, 1996, Appendix B).

Inferential tasks: estimation, goodness-of-fit testing and model selection.
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Example: Hierarchical Log-Linear Models

Mildew fungus example: 26 sparse table. Source: Edwards (2000).

1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F
1 1 1 0 0 0 0 3 0 1 0

2 0 1 0 0 0 1 0 0
2 1 1 0 1 0 7 1 4 0

2 0 0 0 2 1 3 0 11
2 1 1 16 1 4 0 1 0 0 0

2 1 4 1 4 0 0 0 1
2 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0
A B C
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Example: Network Models – the β-Model

Let Gv be the set of simple graphs on v nodes.

β-Model: edges are independent and occurs with probabilities

eβi�βj

1� eβi�βj
, i � j, β � pβ1, . . . , βv q P Rv .

The probability of a graph x P Gn is

exp

#
v̧

i�1

diβi � ψpβq

+
, β P Rv ,

where dpxq � d � pd1, . . . , dv q is the (ordered) degree sequence of x .
It is a log-linear model under product multinomial sampling.
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Exponential Family Representation

It is more convenient to represent the log-linear model likelihood in
exponential form, with densities

pθpnq � exp
!
pAJn, θq � ψpθq

)
νpnq, θ P Rd ,

where n P SpN , cq :� tx P NI : ΠN x � cu and the base measure is

νpxq � 1xPSpN ,cq
¹
iPI

1
xpiq!

, x P NI .

It is a family of order d �m, where m � dimpN q ¡ 0. Minimality: replace
A with full-rank A1 such that RpA1q �MaN :�MXN c .

Better log-likelihood model parametrization for product-multinomial
sampling:

pn, βq �
m̧

j�1

Nj logpexpβ , χjq �
¸
iPI

log npiq!, β PMaN .
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Three views of Log-Linear Models

1 The exponential family natural parametrization: Rd�m.
2 The log-linear model parametrization: MaN � RI .

3 Connection with Algebraic Geometry (see, e.g., Drton et al. 2008).
Let M � texpµ, µ PMu: intersection of a real toric variety in RI with the
positive orthant.
The model is parametrized by

V � M X tx P RI : ΠN x � cu.

Interpretable parametrization: (conditional) expected cell counts.
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Maximum Likelihood Estimation

In log-linear models inference relies on MLE:pθ � argsupθPRd�m pθpnq

The MLEs pµ PMaN and pm P V are similarly defined.

If the supremum is not achieved the MLE does not exist. Instead
supremum is realized in the limit

tθnu � Rd�m : }θn} Ñ 8
tµnu �MaN : }µn} Ñ 8
tmnu � V : mnpiq Ñ 0, for some i

Far from being a just numerical issue. Existent MLE needed to
get correct asymptotic approximations to various goodness-of-fit testing
statistics in regular and double-asymptotic setting;
obtain standard errors for the model parameters;
obtain proper posteriors under improper priors and adequate Bayesian
inference;
carry out conditional inference.

Nonexistence of the MLE leads to issues of estimability and assessment
of the model complexity.
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Maximum Likelihood Estimation

Well known issue in theory: Haberman (1974), Aickin (1979), Glonek et
al. (1988), Verbeek (1992) Glonek, Lauritzen (1996).

Haberman’s pathological example (1974).

[12][13][23]
0

0

In 2K table with positive entries set 2 cells to zero at random. Under the
model of no-3-way interactions, a zero margin will occur with probability

k
2k � 1

� 0, for large K ,

and a nonexistent MLE leaving all margins positive with probability

2k�1 � k
2k � 1

�
1
2
, for large K .
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Maximum Likelihood Estimation: Goals

1 Characterize patterns of sampling zeros leading to the nonexistence of
the MLE.

2 Statistical consequence of a nonexistent MLE.
3 Algorithms.
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Basics of Discrete Exponential Families

See Barndorff-Nielsen (1974), Brown (1986), Jensen (1989),
Letác (1992), Csiszár and Matúš (2001,2003,2005,2008).

The distribution of T � AJn belongs to the family E � tPθ, θ P Θu, with

Pθptq � exp txθ, ty � ψpθquµptq, θ P Θ � Rd�m.

whose support T � Rd and base measure µ depend on the sampling
scheme.
The set P � convhullpT q is called the convex support of E .

It is a polyhedron.

11/4/09 9:03 PMModel Viewer

Page 1 of 2http://www.javaview.de/services/modelViewer/index.html

 

Home Demos Applications Tutorial Download Help Feedback

      

Model Viewer: A Web-Based Geometry Viewer

Visualize and study your own geometry models using this web service which is based on
JavaView. The model files may reside on your local computer or somewhere on the internet.
Simply, browse your local disk or type the URL of a model using the form below.

JavaView v.3.95
www.javaview.de

Loading http://www.javaview.de/models/primitive/Dodecahedron_Demo.jvx ...

In the display, use the right mouse to get help or to open the control panel.

no file selectedChoose File

Type or browse a file from your local disk and press <upload>: upload

Currently, the file formats described in data formats are supported which include JavaView's JVX,
BYU, Sun's OBJ, Mathematica graphics MGS, Maple graphics MPL, STL, WRL, DXF (some
formats are partially supported only). You may also upload gzip- or zip-compressed files which
must have an extension like .jvx.gz or .mpl.zip.

Your uploaded file will remain on the server for at most 3 hours!

Applications:

Apply any of the algorithms implemented in JavaView to your own models.

intpPq � tEθrT s, θ P Θu: mean value space.

intpPq and Θ are homeomorphic: mean value parametrization.

Existence of the MLE

The MLE exists if and only if t P intpPq.
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See Barndorff-Nielsen (1974), Brown (1986), Jensen (1989),
Letác (1992), Csiszár and Matúš (2001,2003,2005,2008).
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scheme.
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Extended Exponential Families: Geometric Construction

For every face F of P, construct the exponential family of distributions EF

for the sample points in F with convex support F . Note that EF depends
on dimpF q   d parameters only.

The extended exponential family is E � E Y tEF : F is a face of Pu.
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Within E , the MLE always exists.

Extended Exponential Family

The extended exponential family is the closure of the original family.
Geometrically, this corresponds to taking the closure of the mean value

space, i.e. including the boundary of P.
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Convex Supports (Mean Value Parametrization)

Poisson sampling scheme: marginal cone CA � conepAq (Eriksson et al.,

2006)

Multinomial sampling scheme: marginal polytope convhullpAq

Product multinomial sampling scheme: Minkowksi sum of convex

polytopes � ... �
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Model Viewer: A Web-Based Geometry Viewer

Visualize and study your own geometry models using this web service which is based on
JavaView. The model files may reside on your local computer or somewhere on the internet.
Simply, browse your local disk or type the URL of a model using the form below.

JavaView v.3.95
www.javaview.de

Loading http://www.javaview.de/models/primitive/Dodecahedron_Demo.jvx ...

In the display, use the right mouse to get help or to open the control panel.

no file selectedChoose File

Type or browse a file from your local disk and press <upload>: upload

Currently, the file formats described in data formats are supported which include JavaView's JVX,
BYU, Sun's OBJ, Mathematica graphics MGS, Maple graphics MPL, STL, WRL, DXF (some
formats are partially supported only). You may also upload gzip- or zip-compressed files which
must have an extension like .jvx.gz or .mpl.zip.

Your uploaded file will remain on the server for at most 3 hours!

Applications:

Apply any of the algorithms implemented in JavaView to your own models.

Poisson-multinomial: Miknowksi sum of polyhedral cone and convex

polytopes � ... �
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Convex Supports (Mean Value Parametrization)

intpPq homeomorphic to V , with homeomorpism given by

x P V ÞÑ AJx P P,

known as the moment map.

Homeomorphism extended to the boundaries.

clpV q is also a mean value parametrization of E .
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Maximum Likelihood Estimation: Existence

Existence of the MLE (assume minimality)

The MLE of θ (or of µ or of m) exists (and is unique) if and only if
AJn P ripCAq and satisfy the moment equations

∇ψppθq � AJn

or, equivalently,

pm � pmppθq � V X tx ¥ 0 : AJx � AJnu.

Application of standard theory of exponential families. Haberman (1974)
first to derive it.

Results apply to more general conditional Poisson sampling under
additional condition.
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Maximum Likelihood Estimation: Existence

Need more explicit result to characterize problematic zero entries in the table.

Facial sets (Geiger et al., 2006). A set F � I for which, for some c P Rd ,

pai , cq � 0 i P F
pai , cq   0 i R F ,

where ai is the i-th row of A is called a facial set of CA.

Facial sets captures combinatorial structure of CA and of clpV q.
The following are equivalent

t P ripF q
t P cone ptai , i P Fuq
t � AJm, for one m P clpV q with supppmq � F .

Existence of the MLE

The MLE does not exists if and only if ti : npiq � 0u � Fc , for a facial set F .
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Examples: Likelihood Zeros – polymake

22 table and the model [12][13][23].
CA has 16 facets, 12 of which correspond to null margins.

0
0
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33 table and the model r12sr13sr23s.
CA has 207 facets, 27 of which correspond to null margins.
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Examples: Likelihood Zeros – polymake

4� 3� 6 table and the model r12sr13sr23s.
CA has 153,858 facets, 54 of which correspond to null margins.
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Examples: Likelihood Zeros – polymake

24 table and the non-graphical model r12sr13sr14sr23sr34s.
CA has 56 facets, 24 of which correspond to zero margins.

0 0
0

0

0
0
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Examples: Likelihood Zeros – polymake

34 table and the 4-cycle model r12sr14sr23sr34s.
CA has 1,116 facets, 16 of which correspond to zero margins.
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Example: The β-Model

For the β-model, the convex support is the polytope of degree
sequences: Pv � Rv .

The MLE is not defined whenever di � 0 or di � v � 1 for some i .
These are 2v (easy) cases in total; many more...

The combinatorial complexity of Pv is large.
Example the f -vector of P8 is (Stanley, 1991)

p334982, 1726648, 3529344, 3679872, 2074660, 610288, 81144, 3322q.

The number of facets and of vertices of P4, P5, P6 and P7 are 22, 60,
224 and 882 and 46, 332, 2874 and 29874, respectively.

Cayley Trick: Represent β-model as a log-linear model under
product-multinomial constraints. Use a higher-dimensional marginal
cone in Rp

v
2q�v with smaller complexity.
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Example: The β-Model

When v � 4, there are 14 facial sets corresponding to the facets of P4, 8
of which associated to a degree of 0 or 3.

2

For v � 5, example of a facial set for which the degrees are bounded
away from 0 and 4.

2

For v � 6, example of a facial set for which the degrees are bounded
away from 0 and 5.

2
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Parameter Estimability

Assume the Poisson scheme and suppose that the MLE does not exist.

AJn P ripF q, for some random face F of CA of random dimension dF .

Maximum likelihood estimation well-defined in EF .

What can we do (estimate)?

Let LF to be the subspace generated by the normal cone to F .
Equivalence relation on Rd : θ1

LF� θ2 if and only if θ1 � θ2 P LF .
Set θLF for the equivalence class containing θ and ΘLF � tθLF , θ P Rdu.

Let F the facial set associated to F and let πF : RI Ñ RF be the
coordinate projection:

x ÞÑ txpiq : i P Fu.
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Parameter Estimability

Parameter Estimability

(i) The family EF is non-identifiable: any two points θ1
LF� θ2 specify the

same distribution.

(ii) The family EF is parametrized by ΘLF , or, equivalently, by πF pMq and is
of order dF .

(iii) The set ΘLF is a dF -dimensional dimensional vector space comprised of
parallel affine subspaces of Rd of dimension dimpLF q � d � dF . It is
isomorphic to πF pMq.

For product multinomial sampling schemes, replace

LF with LF � tζ : Aζ P N u;

πF pMq with πF pMaN q.
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Parameter Estimability

For the extended family EF with corresponding facial set F
MX pN � LF q

c is estimable
πF pV q is estimable

where LF , F and their dimension dF are random.

Extended MLEs:
Natural parametrization: Reparametrize EF using a new design mantrix AF
with RpAF q �MX pN � LF q

c . The extended MLE of the natural
parameter is the MLE (which exists and is unique) of the corresponding
family.
Mean value parametrization: The extended MLE is the unique point

pm � bdpV q X tx ¥ 0 : AJx � AJnu,

where suppppmq � F .

Correct model complexity: the adjusted number of degrees of freedom is

|F | � dF .
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Parameter Estimability: Examples

23 table and the model r12sr13sr23s

0
0

dF � |F | � 6: saturated model for EF !
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Parameter Estimability: Examples

33 table and the model r12sr13sr23s

0

0 0
0 0
0

0 0
0

dF � |F | � 18: saturated model for EF !
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Parameter Estimability: Examples

33 table and the model r12sr13sr23s. The red zeros are not likelihood zeros.

0
0 0

0 0

0 0
0

dF � 18, |F | � 21: the number of adjusted degrees of freedom is 3.
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Parameter Estimability: Examples

33 table and the model r12sr13sr23s

0 0
0 0
0 0

0 0
0 0

0 0

0 0
0 0

0 0

The MLE exists!
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Parameter Estimability: Mildew Fungus Example

1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F
1 1 1 0 0 0 0 3 0 1 0

2 0 1 0 0 0 1 0 0
2 1 1 0 1 0 7 1 4 0

2 0 0 0 2 1 3 0 11
2 1 1 16 1 4 0 1 0 0 0

2 1 4 1 4 0 0 0 1
2 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0
A B C
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Parameter Estimability: Mildew Fungus Example

MIM (Edwards, 2000) selected optimal model using a greedy stepwise
backward model selection procedure based on testing individual edges.

The final model is biologically plausible.
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Parameter Estimability: Mildew Fungus Example

Sequence of models found by MIM. Red boxes indicate zero margins (MLE
does not exist).

Model Unadjusted d.f. Adjusted d.f.
[ABCDEF] 0 0

[ABCEF] [ABCDE] 16 3

[BCEF] [ABCDE] 24 6

[BCEF] [ABCE] [ABCD] 32 12

[BCEF] [ABCE] [ABD] 36 17

[BCEF] [AD] [ABCE] 38 18

[CEF] [AD] [ABCE] 42 22

[CEF] [AD] [BCE] [ABE] 46 27

[CEF] [AD] [ABE] 48 29

[CEF] [AD] [BE] [AB] 50 31

[CF][CE][AD] [BE] [AB] 52 37
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Extended Maximum Likelihood Estimation: Numerical Procedures

How to compute the extended MLE?

If AJn P ripF q, for some face of CA, then

(non-zero) points in the normal cone to F are directions of recession of
the negative log-likelihood;

the Fisher information Ipθq matrices for EF are singular.

ζJIpθqζ � 0, @ζ P LF ,@θ P Rd .

Two-step procedure:

Step 1
Identify the facial set F and compute a basis for πF

�
MX pN � LF q

c�.
To compute F :

Given t � AJn, determine the facial set F of rows of A which span the
face F of CA such that t P ripF q.

Step 2
Optimize the restricted likelihood function for the extended family.
When F is available, this is equivalent to maximizing the likelihood of a
log-linear model with structural zeros along F . (Easy)
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Algorithms for Extended Maximum Likelihood Estimation

Step 1 (finding Fq is the important one.

Let A� and A0 the sub-matrix of A corresponding to positive and zero
entries of n.

Identifying Fc is equivalent to finding of a vector c P Rd such that:
A�c � 0;
A0c ¥ 0;
the set supppAcq has maximal cardinality.

This can be done with repeated iterations of LP (see also Geyer, 2009)
or with non-linear methods.
For large problems, they can be computationally intensive.

Relevance to exact inference: knowledge of F can help finding Markov
bases.
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Reducible Hierarchical Log-Linear Models

For reducible hierarchical log-linear models both tasks can be carried out
in parallel over appropriate sub-models.

A hierarchical log-linear model (simplicial complex) is reducible if it can
be obtained as the direct join of two sub simplicial complex (see
Lauritzen, 1996). Apply the definition recursively.

Theoretical justification: reducible models are defined by cuts
(Barndorff-Nielsen, 1974).

Old idea: Hara et al. (2011), Engsrtöm et al. (2011), Sullivant (2007),
Eriksson et al. (2006), Dobra and Sullivant (2004), Badsberg and
Malvestuto (2001), Frydenberg (1990), Leimer (1993), Tarjan (1985).
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Still lots of work ahead...

The validity/applicability of model selection based on adjusted degree of
freedom has to be investigated, especially in the double asymptotic
framework.

Computationally efficient methods for model selection for large tables
still lacking.
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Still lots of work ahead...

Thank you

Fienberg S. E. and Rinaldo, A. (2011). Maximum Likelihood Estimation
in Log-linear Models, http://arxiv.org/abs/1104.3618

Rinaldo, A., Petrović, S. and Fienberg, S. E. (2011). Maximum Likelihood
Estimation in Network Models, http://arxiv.org/abs/1105.6145

Rinaldo, A., Fienberg, S. E. and Zhou, Y. (2009). On the Geometry of
Discrete Exponential Families with Application to Exponential Random
Graph Models, Electronic Journal of Statistics, 3, 446–484.
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9 nodes: sufficient statistics are the number of edges and triangles.
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Entropy plot over the mean value space.
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Entropy plot over the natural parameter space.
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Entropy plots of the natural space and mean value spaces.
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Entropy plots of the natural space space with superimposed
the normal fan and of the mean value space.
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