Positive Definite Completion Problems For DAG Models

Bala Rajaratnam
Stanford University
(Joint work with Emanuel Ben-David)

Fields Institute: Workshop on Graphical Models

April 16, 2012

Outline

1 Introduction

- Matrix completion problems
- Positive definite completion problems in Graphical Models
- Motivation

2 Preliminaries

- Graph theoretic notation and terminology
- Gaussian DAG models

3 The positive definite completion problems for DAGs

- Preliminary definitions
- Positive definite completion in $\mathrm{P}_{\mathcal{D}}$
- Positive definite completion in $\mathrm{PD}_{\mathcal{D}}$
- Completable DAGs
- Computing the inverse and determinant of the completed matrix

Matrix completion problems

- A matrix completion problem: asks whether for a given pattern the unspecified entries of each incomplete matrix can be chosen in such a way that the resulting conventional matrix is of a desired type.
- An $n \times n$ pattern \mathscr{P} : a subset of positions in an $n \times n$ matrix in which the entries are present.
- A (symmetric) incomplete matrix Υ : the entries corresponding to the positions in \mathscr{P} specified, the rest unspecified (free to be chosen).

■ Positive definite completion problem: asks which incomplete matrices have positive definite completions, with or without additional features.

Example

- A 4×4 pattern:

$$
\mathscr{P}=\{\{1,1\},\{2,2\},\{4,4\},\{1,4\},\{2,3\}\}
$$

- An incomplete matrix:

$$
\Upsilon=\left(\begin{array}{cccc}
3.0 & ? & ? & 2.00 \\
? & 6.25 & 4.00 & ? \\
? & 4.00 & ? & ? \\
2.0 & ? & ? & 2.25
\end{array}\right)
$$

- A positive definite completion of Υ

$$
\left(\begin{array}{llll}
3.0 & 1.50 & 3.50 & 2.00 \\
1.5 & 6.25 & 4.00 & 3.00 \\
3.5 & 4.00 & 6.25 & 3.00 \\
2.0 & 3.00 & 3.00 & 2.25
\end{array}\right)
$$

The Grone et al’s Theorem (1984)

- Υ is a partial positive definite matrix if $\Upsilon_{C}>0$ for each clique C of \mathcal{G}.
- A chordal (decomposable) graph is an undirected graph \mathcal{G} that has no induced cycle of length greater than or equal to 4 .

Theorem

Every incomplete matrix Υ corresponding to a given pattern \mathscr{P} has a positive definite completion iff
1Υ is a partial positive definite matrix.
12 The pattern \mathscr{P} considered as a set of edges, forms a chordal (or equivalently decomposable) graph \mathcal{G}.

Grone et al.'s theorem (1984) has had a significant impact in graphical models research.

Remarks

- Υ has a unique positive definite completion $\Sigma=\Sigma(\Upsilon)$ if we require

$$
\Sigma_{i j}^{-1}=0 \quad \forall\{i, j\} \in \mathscr{P} .
$$

- Equivalently, positive definite completion in the space of covariance matrices corresponding to a concentration graph model is unique.
- When \mathcal{G} is decomposable
- $\Sigma(\Upsilon)$ can be completed via a polynomial time process.
- There exists an explicit one-to-one mapping $\varphi: \Upsilon \mapsto \Sigma(\Upsilon)^{-1}$.
- The Jacobian of the mapping φ can be explicitly computed [Dawid \& Lauritzen (1993), Roverato (2000), Letac \& Massam (2007)].

Applications in Graphical Models

Positive definite completion problems frequently arise (explicitly or implicitly) in the study of Graphical Models. For example:

■ Maximum likelihood estimation for Gaussian graphical models, Dempster (1972).

- Hyper-Markov laws for decomposable graphs, Dawid \& Lauritzen (1993).
- Wishart distributions for decomposable graphs, Letac \& Massam (2007).
- Flexible covariance estimation for decomposable graphs, Rajaratnam, Massam et al. (2008).
- Wishart distributions for decomposable covariance graph models, Khare \& Rajaratnam (2011).
- Generalized hyper Markov laws for directed acyclic graphs, Ben-David \& Rajaratnam (2012).

Motivation for current work

■ DAG models (or Bayesian networks): one of the widely used classes of graphical models.

Completion problems for DAGs

In the DAG setting, we consider positive definite completions of incomplete matrices specified by a directed acyclic graph \mathcal{D}. Here the incomplete matrices are desired to be completed in

- the space of covariance, or
- the space of inverse covariance / concentration matrices corresponding to the DAG model.
- The need for studying this new class of problems naturally arises when studying spaces of covariance \& concentration matrices corresponding to DAG models, Ben-David \& Rajaratnam (2011).

Graph theoretic notation

- An undirected graph UG: denoted by $\mathcal{G}=(V, \mathscr{V})$

■ An (undirected) edge in \mathscr{V} : denoted by an unordered pair $\{i, j\}$

- A directed acyclic graph DAG: denoted by $\mathcal{D}=(V, \mathscr{E})$
- A (directed) edge in \mathscr{E} : denoted by a ordered pair (i, j)
- $(i, j) \in \mathscr{E}$: denoted by $i \rightarrow j$, say i a parent of j
- The set of parents of j : denoted by $\operatorname{pa}(j)=\{i: i \rightarrow j\}$
- The family of j : denoted by $\mathrm{fa}(j)=\mathrm{pa}(j) \cup\{j\}$
- The undirected version of \mathcal{D} : denoted by \mathcal{D}^{u}
- An immorality in \mathcal{D} : an induced subgraph of the form $i \rightarrow j \leftarrow k$
- The moral graph of \mathfrak{D} : denoted by \mathcal{D}^{m}

Basic definitions

- A perfect DAG is a $\mathrm{DAG} \mathcal{D}$ that has no immoralities, i.e., $\mathcal{D}^{u}=\mathcal{D}^{m}$
- A DAG is parent ordered if $i \rightarrow j \Longrightarrow i>j$
- For a parent ordered DAG \mathcal{D}, i is a predecessor of j if

$$
i>j \quad \text { but } \quad i \nrightarrow j \quad \text { (notational convenience) }
$$

- The set of predecessors of j is denoted by $\operatorname{pr}(j)$

Remarks

- If \mathcal{D} is perfect then \mathcal{D}^{u} is decomposable

■ If \mathcal{G} is decomposable, then it has a perfect DAG version \mathcal{D}

- We can assume w.l.o.g. that each DAG \mathcal{D} is parent ordered

Gaussian DAG models

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)$ be a random vector in \mathbb{R}^{p}, with $p=|V|$.
■ \mathbf{X} obeys the ordered Markov property w.r.t. \mathcal{D} if

$$
X_{i} \Perp \mathbf{X}_{\mathrm{pr}(i) \backslash \mathrm{pa}(i)} \mid \mathbf{X}_{\mathrm{pa}(i)} \quad \forall i \in V
$$

■ The Gaussian DAG model $\mathscr{N}(\mathcal{D})$ is the family of multivariate normal distributions $\mathrm{N}_{p}(\mu, \Sigma), \mu \in \mathbb{R}^{p}, \Sigma>0$ that obey the ordered Markov property w.r.t. \mathcal{D}.

- For an undirected graph \mathcal{G}, the Gaussian UG model $\mathscr{N}(\mathcal{G})$ is the family of Gaussian Markov random fields over \mathcal{G}.

Remark

- A key observation: $\mathrm{N}_{p}(\mu, \Sigma) \in \mathscr{N}(\mathcal{D})$ iff $\Sigma>0$ and

$$
\Sigma_{\mathrm{pr}(j), j}=\Sigma_{\mathrm{pr}(j), \mathrm{pa}(j)}\left(\Sigma_{\mathrm{pa}(j)}\right)^{-1} \Sigma_{\mathrm{pa}(j), j} \quad \forall j \in V, \quad \text { (Andersson (1998)) }
$$

Examples

(a)

(b)

■ Let \mathcal{G} be given by Figure (a). If $\left(X_{1}, \ldots, X_{4}\right) \in \mathbb{R}^{4}$ obeys the local Markov property w.r.t. \mathcal{G}, then

$$
X_{1} \Perp X_{4} \mid\left(X_{2}, X_{3}\right) \quad \text { and } \quad X_{2} \Perp X_{3} \mid\left(X_{1}, X_{4}\right)
$$

■ Let \mathcal{D} be given by Figure (b). If $\left(X_{1}, \ldots, X_{4}\right)$ obeys the ordered Markov property w.r.t. \mathcal{D}, then

$$
X_{1} \Perp X_{4} \mid\left(X_{2}, X_{3}\right) \quad \text { and } \quad X_{2} \Perp X_{3} \mid X_{4}
$$

Preliminary notation

Let $\mathcal{D}=(V, \mathscr{E})$ be a DAG.

- A \mathcal{D}-incomplete matrix is a symmetric function

$$
\Gamma:\{i, j\} \mapsto \Gamma_{i j} \in \mathbb{R}, \text { s.t. } \Gamma_{i j}=\Gamma_{j i} \quad \forall(i, j) \in \mathscr{E} .
$$

- Γ is partially positive definite, denoted by $\Gamma>_{\mathcal{D}} 0$, if $\Gamma_{C}>0$ for each clique C of \mathcal{D}^{u}.
- The space of covariance and the inverse-covariance matrices over \mathcal{D} are defined as

$$
\operatorname{PD}_{\mathcal{D}}=\left\{\Sigma: \mathrm{N}_{p}(0, \Sigma) \in \mathscr{N}(\mathcal{D})\right\} \quad \text { and } \quad \mathrm{P}_{\mathcal{D}}=\left\{\Omega: \Omega^{-1} \in \mathrm{PD}_{\mathcal{D}}\right\} .
$$

- Similar spaces for an undirected graph \mathcal{G} are

$$
\mathrm{PD}_{\mathcal{G}}=\left\{\Sigma: \mathrm{N}_{p}(0, \Sigma) \in \mathscr{N}(\mathcal{G})\right\} \quad \text { and } \quad \mathrm{P}_{\mathcal{G}}=\left\{\Omega: \Omega^{-1} \in \mathrm{PD}_{\mathcal{G}}\right\} .
$$

A few observations

- Let $\mathcal{L}_{\mathcal{D}}$ denote the linear space of all lower triangular matrices with unit diagonal entries such that

$$
L \in \mathcal{L}_{\mathcal{D}} \Longrightarrow L_{i j}=0 \quad \forall(i, j) \notin \mathscr{E} .
$$

Then $\Omega \in \mathrm{P}_{\mathcal{D}} \Longleftrightarrow \exists L \in \mathcal{L}_{\mathcal{D}}$ and a diagonal matrix Λ, with strictly positive diagonal entries s.t. in the modified Cholesky decomposition $\Omega=L \Lambda L^{\prime}$, Wermuth (1980).
■ $\mathrm{PD}_{\mathcal{D}} \subseteq \mathrm{PD}_{\mathcal{D}^{m}}$, Wermuth (1980).
■ $\mathrm{PD}_{\mathcal{D}}=\mathrm{PD}_{\mathcal{D}^{u}} \Longleftrightarrow \mathcal{D}$ is a perfect DAG.

Convention

Unless otherwise stated, hereafter $\mathcal{G}=(V, \mathscr{V})$ denotes the undirected version of $\mathcal{D}=(V, \mathscr{E})$.

A formal definition of matrix completion

Let $\mathcal{M} \subseteq \mathrm{S}_{p}(\mathbb{R})$, the space of $p \times p$ symmetric matrices.

- We say that a \mathcal{D}-incomplete matrix Γ can be completed in \mathcal{M} if

$$
\exists T \in \mathcal{M} \quad \text { s.t. } \quad T_{i j}=\Gamma_{i j} \quad \forall(i, j) \in \mathscr{E}
$$

- We refer to T as a completion of Γ in \mathcal{M}, or
- simply a completion of Γ, if \mathcal{M} is the whole space $S_{p}(\mathbb{R})$.

Positive definite completion in $\mathrm{P}_{\mathcal{D}}$

- Let $\mathrm{I}_{\mathcal{D}}$ denote the set of \mathcal{D}-incomplete matrices.

Proposition

Let Γ be a \mathcal{D}-incomplete matrix in $\mathrm{I}_{\mathcal{D}}$. If $\Gamma_{11} \neq 0$, then

- Part (a) Almost everywhere (w.r.t. Lebesgue measure on $\mathrm{I}_{\mathcal{D}}$), there exist a unique lower triangular matrix $L \in \mathcal{L}_{\mathcal{D}}$ and a unique diagonal matrix $\Lambda \in \mathbb{R}^{p \times p}$ s.t.

$$
\widehat{\Gamma}=L \Lambda L^{\prime} \quad \text { is a completion of } \quad \Gamma
$$

- Part (b) The matrix $\widehat{\Gamma}$ is the unique positive definite completion of Γ in $\mathrm{P}_{\mathcal{D}}$ iff the diagonal entries of Λ are all strictly positive.

Sketch of the proof

1 Set $L_{i j}=0$ for each $(i, j) \notin \mathscr{E}$.
2 Set $\Lambda_{11}=\Gamma_{11}, L_{i 1}=\Lambda_{11}^{-1} \Gamma_{i 1}$ for each $i \in \mathrm{pa}(1)$ and $\operatorname{set} j=1$.
3 If $j<p$, then set $j=j+1$ and proceed to step $i v$), otherwise L and Λ are constructed such that they satisfy the condition in part (a).

4 Set $\Lambda_{j j}=\Gamma_{j j}-\sum_{k=1}^{j-1} \Lambda_{k k} L_{j k}^{2}$ and proceed to the next step.
5 For each $i \in \operatorname{pa}(j)$ if $\Lambda_{j j} \neq 0$, then set
$L_{i j}=\Lambda_{j j}^{-1}\left(\Gamma_{i j}-\sum_{k=1}^{j-1} \Lambda_{k k} L_{i k} L_{j k}\right)$, and return to step iii). If $\Lambda_{j j}=0$, then no completion of Γ exists that satisfies the condition in part (a). Consequently, Γ cannot also be completed in $\mathrm{P}_{\mathcal{D}}$.

Example

Let \mathcal{D} and Γ be given as follows:

$$
\Gamma=\left(\begin{array}{cccccc}
1 & * & * & -3 & * & 4 \\
* & -1 & -2 & * & -5 & 2 \\
* & -2 & -2 & -10 & * & * \\
-3 & * & -10 & 56 & 3 & * \\
* & -5 & * & 3 & -30 & * \\
4 & 2 & * & * & * & 13
\end{array}\right)
$$

Now by applying the completion process to Γ we obtain

$$
\Lambda=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & -3 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad L=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
-3 & 0 & -5 & 1 & 0 & 0 \\
0 & 5 & 0 & -1 & 1 & 0 \\
4 & -2 & 0 & 0 & 0 & 1
\end{array}\right),
$$

Example continued

This yields the completed matrix $\widehat{\Gamma}$ given as follows:

$$
\widehat{\Gamma}=\left(\begin{array}{cccccc}
1 & 0 & 0 & -3 & 0 & 4 \\
0 & -1 & -2 & 0 & -5 & 2 \\
0 & -2 & -2 & -10 & -10 & 4 \\
-3 & 0 & -10 & 56 & 3 & -12 \\
0 & -5 & -10 & 3 & -30 & 10 \\
4 & 2 & 4 & -12 & 10 & 13
\end{array}\right) .
$$

As the diagonal elements of Λ are not strictly positive, Γ cannot be completed in $\mathrm{P}_{\mathcal{D}}$.

Positive definite completion in $\mathrm{PD}_{\mathcal{D}}$

Proposition

Let Γ be a partial positive definite matrix. The following completion process (of polynomial complexity) determines if a completion in $\mathrm{PD}_{\mathcal{D}}$ exists, and if so, it uniquely constructs the completed matrix Σ.

1 Set $\Sigma_{i j}=\Gamma_{i j}$ for each $\{i, j\} \in \mathscr{V}$ and set $j=p$.
2 If $j>1$, then set $j=j-1$ and proceed to the next step, otherwise Σ is successfully completed.
3 If $\Sigma_{\mathrm{fa}(j)}>0$, then proceed to the next step, otherwise the completion in $\mathrm{PD}_{\mathcal{D}}$ does not exist.
4 If $\operatorname{pr}(j)$ is empty, then return to step (2), otherwise proceed to the next step.
5 If $\mathrm{pa}(j)$ is non-empty, then set $\Sigma_{\mathrm{pr}(j), j}=\Sigma_{\mathrm{pr}(j), \mathrm{pa}(j)}\left(\Sigma_{\mathrm{pa}(j)}\right)^{-1} \Sigma_{\mathrm{pa}(j), j}$, $\Sigma_{j, \mathrm{pr}(j)}=\Sigma_{\mathrm{pr}(j), j}^{\prime}$ and return to step (2). If pa(j) is empty, then set $\Sigma_{\mathrm{pr}(j), j}=0$ and return to step (2).

Example

Let \mathcal{D} and Γ be given as follows.

$$
\Gamma=\left(\begin{array}{cccc}
\Gamma_{11} & \Gamma_{12} & \Gamma_{13} & * \\
\Gamma_{21} & \Gamma_{22} & * & \Gamma_{24} \\
\Gamma_{31} & * & \Gamma_{33} & \Gamma_{34} \\
* & \Gamma_{42} & \Gamma_{43} & \Gamma_{44}
\end{array}\right)
$$

- Layer: $\mathrm{j}=4$. In step (1)

$$
\Sigma=\left(\begin{array}{cccc}
\Sigma_{11} & \Sigma_{12} & \Sigma_{13} & ? \\
\Sigma_{21} & \Sigma_{22} & ? & \Sigma_{24} \\
\Sigma_{31} & ? & \Sigma_{33} & \Sigma_{34} \\
? & \Sigma_{42} & \Sigma_{43} & \Sigma_{44}
\end{array}\right)
$$

Example continued

■ Layer: $\mathrm{j}=3$. In step (2) let $j=4-1=3$. In step (3) either $\Sigma_{\mathrm{fa}(3)}=\left(\begin{array}{ll}\Sigma_{33} & \Sigma_{34} \\ \Sigma_{43} & \Sigma_{44}\end{array}\right)>0$, otherwise the completion in $\mathrm{PD}_{\mathcal{D}}$ does not exist. Assuming the former, we proceed to step (5). Since $\operatorname{pr}(3)=\emptyset$, the layer down to $j=3$ is thus completed.

- Layer: $\mathrm{j}=2$. Return to step (2) with $j=3-1=2$. In step (3) we check whether $\Sigma_{\mathrm{fa}(2)}=\left(\begin{array}{ll}\Sigma_{22} & \Sigma_{24} \\ \Sigma_{42} & \Sigma_{44}\end{array}\right)>0$. Assuming $\Sigma_{\mathrm{fa}(2)}>0$, then in step (5), as $\operatorname{pr}(2)=\{3\}$, we set $\Sigma_{32}=\Sigma_{34} \Sigma_{44}^{-1} \Sigma_{42}$ and the layer down to $j=2$ is thus completed.

Example continued

■ Layer: $\mathrm{j}=1$. Process is returned to step (2) with $j=2-1=1$. In $\overline{\text { step (3) we first check whether }}$

$$
\Sigma_{\mathrm{fa}(1)}=\left(\begin{array}{ccc}
\Sigma_{11} & \Sigma_{12} & \Sigma_{13} \\
\Sigma_{21} & \Sigma_{22} & \Sigma_{34} \Sigma_{44}^{-1} \Sigma_{42} \\
\Sigma_{31} & \Sigma_{34} \Sigma_{44}^{-1} \Sigma_{42} & \Sigma_{33}
\end{array}\right)>0 .
$$

- Assuming $\Sigma_{\mathrm{fa}(1)}>0$, then in step (5), as $\operatorname{pr}(1)=\{4\}$ we set

$$
\Sigma_{41}=\left(\Sigma_{42}, \Sigma_{43}\right)\left(\begin{array}{cc}
\Sigma_{22} & \Sigma_{34} \Sigma_{\Sigma_{4}^{-1}}^{-1} \Sigma_{42} \\
\Sigma_{34} \Sigma_{44}^{-1} \Sigma_{42} & \Sigma_{33}
\end{array}\right)^{-1}\binom{\Sigma_{21}}{\Sigma_{31}} .
$$

- The processed yields a completion. The matrix Σ is the completion of Γ in $\mathrm{PD}_{\mathcal{D}}$.

An alternative procedure

■ Step (1) We construct a finite sequence of DAGs, $\mathcal{D}_{0}, \ldots, \mathcal{D}_{n}$ such that \mathcal{D}_{n} at the end of this sequence is perfect. Let Γ_{n} denote the incomplete matrix over \mathcal{D}_{n}.

- Step (2) Set $\mathcal{D}=\mathcal{D}_{n}$ and $\Gamma=\Gamma_{n}$.
- Step (3) If $\Gamma>0$, then proceed as follows.

1 Set $\Sigma_{i j}=\Gamma_{i j}$ for each $\{i, j\} \in \mathscr{V}$,
(2 Set $\Sigma_{\mathrm{pr}(j), j}=\Sigma_{\mathrm{pr}(j), \mathrm{pa}(j)} \Sigma_{\mathrm{pa}(j)}^{-1} \Sigma_{\mathrm{pa}(j), j}$ and $\Sigma_{j, \mathrm{pr}(j)}=\Sigma_{\mathrm{pr}(j), j}^{\prime}$ for each $j=p-1, \ldots, 1$

Remark

- Let \mathcal{D} be a perfect DAG and $\Gamma \in \mathrm{I}_{\mathcal{D}}$
Γ can be competed in $\mathrm{PD}_{\mathcal{D}} \Longleftrightarrow \Gamma \in Q_{\mathcal{D}}$ (i.e., $\quad \Gamma>_{\mathcal{D}} 0$)
- Thus the alternative procedure yields a completion iff $\Gamma_{n}>_{\mathcal{D}_{n}} 0$.

Example

Let \mathcal{D} be as above.

- Starting from $\mathcal{D}_{0}=\mathcal{D}$, the only immorality in this DAG is $5 \rightarrow 1 \leftarrow 2$. By adding the directed edge $5 \rightarrow 2$ we obtain \mathcal{D}_{1}.
- Next we obtain the perfect DAG \mathcal{D}_{2} by adding the directed edge $5 \rightarrow 3$ corresponding to the immorality $5 \rightarrow 2 \leftarrow 3$ in \mathcal{D}_{1}.
- Now consider the completion of the following \mathcal{D}-incomplete matrix.

Example continued

$$
\Gamma=\left(\begin{array}{ccccc}
\Gamma_{11} & \Gamma_{12} & * & * & \Gamma_{15} \\
\Gamma_{21} & \Gamma_{22} & \Gamma_{23} & * & * \\
* & \Gamma_{32} & \Gamma_{33} & \Gamma_{34} & * \\
* & * & \Gamma_{43} & \Gamma_{44} & \Gamma_{45} \\
\Gamma_{15} & * & * & \Gamma_{54} & \Gamma_{55}
\end{array}\right) .
$$

- $\Gamma_{53}=\Gamma_{54} \Gamma_{44}^{-1} \Gamma_{43}$, and $\Gamma_{52}=\Gamma_{53} \Gamma_{33}^{-1} \Gamma_{32}=\Gamma_{54} \Gamma_{44}^{-1} \Gamma_{43} \Gamma_{33}^{-1} \Gamma_{32}$
- Thus we obtain the following incomplete matrix over the perfect DAG \mathcal{D}_{2}

$$
\Gamma^{(2)}=\left(\begin{array}{ccccc}
\Gamma_{11} & \Gamma_{12} & * & * & \Gamma_{15} \\
\Gamma_{21} & \Gamma_{22} & \Gamma_{23} & * & \Gamma_{54} \Gamma_{44}^{-1} \Gamma_{43} \\
* & \Gamma_{32} & \Gamma_{33} & \Gamma_{34} & \Gamma_{53} \Gamma_{33}^{-1} \Gamma_{32} \\
* & * & \Gamma_{43} & \Gamma_{44} & \Gamma_{45} \\
\Gamma_{15} & \Gamma_{54} \Gamma_{44}^{-1} \Gamma_{43} & \Gamma_{53} \Gamma_{33}^{-1} \Gamma_{32} & \Gamma_{54} & \Gamma_{55}
\end{array}\right) .
$$

Completable DAGs and generalization of Grone et al's RESULT

Theorem

Every partial positive definite matrix over \mathcal{D} can be completed in $\mathrm{PD}_{\mathcal{D}}$ iff \mathcal{D} is a perfect DAG.

Corollary

Suppose \mathcal{G} is a decomposable graph. Then every partially positive definite matrix Γ over \mathcal{G} can be completed to a unique Σ in $\mathrm{PD}_{\mathcal{G}}$. Consequently, every partial positive definite matrix over a decomposable graph has a positive definite completion.

- The proof the theorem is based on an inductive argument assuming the statement of the theorem is true for any DAG s.t. $|V|<p$.
- For ANY DAG \mathcal{D}, completion in $\mathrm{PD}_{\mathcal{D}}$ implies completion in $\mathrm{PD}_{\mathcal{D}^{u}}$

Some insights

■ Interesting contrast between completing a given partial positive definite matrix $\Gamma \in \mathrm{Q}_{\mathcal{D}}$ in $\mathrm{PD}_{\mathcal{G}}$ vs. completing it in $\mathrm{PD}_{\mathcal{D}}$.

- Grone et al. (1984) asserts that $\Gamma \in \mathrm{Q}_{\mathcal{G}}$ can be completed in $\mathrm{PD}_{\mathcal{G}}$ if any positive completion exists.
- A completion in $\mathrm{PD}_{\mathcal{D}}$ is therefore sufficient to guarantee a completion in $\mathrm{PD}_{\mathcal{G}}$.
- The other way around is unfortunately not true.

■ In particular, Γ may not be completed in $\mathrm{PD}_{\mathcal{D}}$ even when it can be completed in $\mathrm{PD}_{\mathcal{G}}$.

■ This is because completion in $\mathrm{PD}_{\mathcal{D}}$ is more restrictive than completion in $\mathrm{PD}_{\mathcal{G}}$.

- We illustrate this distinction in the following-example.

Few Questions

More formally, let Γ be an incomplete matrix over \mathcal{D} and let \mathcal{G} be the undirected version of \mathcal{D}.

■ If Γ can be completed in $\mathrm{PD}_{\mathcal{G}}$, then can it be completed in $\mathrm{PD}_{\mathcal{D}}$ as well?

Consider the partial positive definite matrix Γ over the DAG \mathcal{D}.

$$
\Gamma=\left(\begin{array}{cccc}
7 & 12 & 12 & 16 \\
12 & 30 & 28 & * \\
12 & 28 & 37 & 32 \\
16 & * & 32 & 38
\end{array}\right)
$$

Figure: A non-perfect DAG \mathcal{D}

Few Questions

- Although \mathcal{D} is not a perfect DAG we have that \mathcal{G}, the undirected version of \mathcal{D}, is decomposable.

■ By Corollary above it can be completed to a positive definite matrix in $\mathrm{PD}_{\mathcal{G}}$.

■ Completion of Γ in $\mathrm{PD}_{\mathcal{D}}$ requires $\Sigma_{42}=\Gamma_{43} \Gamma_{33}^{-1} \Gamma_{32}=24.2162$

- The completed matrix (below) however is not positive definite.

$$
\left(\begin{array}{cccc}
7 & 12 & 12 & 16 \\
12 & 30 & 28 & 24.2162 \\
12 & 28 & 37 & 32 \\
16 & 24.2162 & 32 & 38
\end{array}\right)
$$

- Consequently, Γ cannot be completed in $\mathrm{PD}_{\mathcal{D}}$.

Few Questions

Let Γ be an incomplete matrix over \mathcal{D} and let \mathcal{G} be the undirected version of \mathcal{D}.

■ If Γ can be completed in $\mathrm{PD}_{\mathcal{G}}$, then can it be completed in $\mathrm{PD}_{\mathcal{D}}$ as well?

- The answer as we saw was negative.
- Then, can it at least be completed in $\mathrm{PD}_{\mathcal{D}^{\prime}}$ for a DAG version \mathcal{D}^{\prime} of \mathcal{G} ?

The answer is still negative. We show this by constructing a counter example.

Counterexample

Consider the following partial matrix Γ over the four cycle C_{4}.

$$
\Gamma=\left(\begin{array}{llll}
1 & a & d & * \\
a & 1 & * & b \\
d & * & 1 & c \\
* & b & c & 1
\end{array}\right)
$$

- Γ is a partial positive definite matrix over C_{4} if $|a|,|b|,|c|,|d|<1$.
- By Barrett et al. (1993), Γ can be completed to a positive definite matrix Σ iff

$$
f(a, b, c, d)=\sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)}+\sqrt{\left(1-c^{2}\right)\left(1-d^{2}\right)}-|a b-c d|>0
$$

- An enumeration of the DAG versions of C_{4} are given as follows.

Counterexample continued

(1)

(5)

(2)

(6)

(3)

(7)

(4)

(8)

(9)

Counterexample continued

- We can show Γ can be completed in a DAG version above iff

$$
\begin{aligned}
& \left(1-c^{2}\right)\left(1-d^{2}\right)-(a b-c d)^{2}>0, \text { or } \\
& \left(1-a^{2}\right)\left(1-d^{2}\right)-(b c-a d)^{2}>0, \text { or } \\
& \left(1-a^{2}\right)\left(1-b^{2}\right)-(c d-a b)^{2}>0, \text { or } \\
& \left(1-b^{2}\right)\left(1-c^{2}\right)-(a d-b c)^{2}>0, \text { or } \\
& \min \left(\left(1-b^{2}\right)\left(1-c^{2}\right)-(b c)^{2},\left(1-a^{2}\right)\left(1-d^{2}\right)-(a d)^{2}\right)>0, \text { or } \\
& \min \left(\left(1-a^{2}\right)\left(1-b^{2}\right)-(a b)^{2},\left(1-c^{2}\right)\left(1-d^{2}\right)-(c d)^{2}\right)>0 .
\end{aligned}
$$

■ If $a=0.6, b=0.9, c=0.1$, and $d=0.9$, then we have $f(0.6,0.9,0.1,0.9)=0.3324>0$, but none of the inequalities above is satisfied.

Computing $\Sigma(\Gamma)^{-1}$ and $\operatorname{det} \Sigma(\Gamma)$ without completing Γ

Definition

Let $\mathcal{G}=(V, \mathscr{V})$ be an arbitrary undirected graph.

- For three disjoint subsets A, B and S of V we say that S separates A from B in \mathcal{G} if every path from a vertex in A to a vertex in B intersects a vertex in S.
- Let Γ be a \mathcal{G}-partial matrix. The zero-fill-in of Γ in \mathcal{G}, denoted by $[\Gamma]^{V}$, is a $|V| \times|V|$ matrix T s.t.

$$
T_{i j}= \begin{cases}\Gamma_{i j} & \text { if }\{i, j\} \in \mathscr{V} \\ 0 & \text { otherwise }\end{cases}
$$

Lemma

Let $\mathcal{D}=(V, \mathscr{E})$ be an arbitrary DAG. Let $\Sigma \in \mathrm{PD}_{\mathcal{D}}$ and let (A, B, S) be a partition of V s.t. S separates A from B in \mathcal{D}^{m}. Then we have
$\boldsymbol{1} \Sigma^{-1}=\left[\left(\Sigma_{A \cup S}\right)^{-1}\right]^{V}+\left[\left(\Sigma_{B \cup S}\right)^{-1}\right]^{V}-\left[\left(\Sigma_{S}\right)^{-1}\right]^{V}$ and
$2 \operatorname{det}\left(\Sigma^{-1}\right)=\frac{\operatorname{det}\left(\Sigma_{S}\right)}{\operatorname{det}\left(\Sigma_{A \cup S}\right) \operatorname{det}\left(\Sigma_{B \cup S}\right)}$.

Proof:
Since $\mathrm{PD}_{\mathcal{D}} \subseteq \mathrm{PD}_{\mathcal{D}^{m}}$ the proof directly follows from Lemma 5.5 in Lauritzen (1996).

Formulae

- Let Γ be a partial positive definite matrix over \mathcal{D} that can be completed to a positive definite matrix Σ in $\mathrm{PD}_{\mathcal{D}}$. Then

$$
\begin{aligned}
& \boldsymbol{1} \Sigma^{-1}=\sum_{i=1}^{p}\left(\left[\left(\Sigma_{\mathrm{fa}(i)}\right)^{-1}\right]^{V}-\left[\left(\Sigma_{\mathrm{pa}(i)}\right)^{-1}\right]^{V}\right) \\
& \mathbf{2} \operatorname{det}\left(\Sigma^{-1}\right)=\frac{\prod_{i=1}^{p} \operatorname{det}\left(\Sigma_{\mathrm{pa}(i)}\right)}{\prod_{i=1}^{p} \operatorname{det}\left(\Sigma_{\mathrm{fa}(i)}\right)}=\prod_{i=1}^{p} \Sigma_{i \mathrm{ilpa}(i)}^{-1} .
\end{aligned}
$$

Example

Let \mathcal{D} and Γ be given as follows.

■ By applying the first formula we obtain

$$
\begin{aligned}
\Sigma^{-1} & =\left[\left(\Sigma_{\{1,2,4\}}\right)^{-1}\right]^{V}+\left[\left(\Sigma_{\{2,5\}}\right)^{-1}\right]^{V}+\left[\left(\Sigma_{\{3,4,5\}}\right)^{-1}\right]^{V}+\left[\Sigma_{44}^{-1}\right]^{V} \\
& +\left[\Sigma_{55}^{-1}\right]^{V}-\left[\left(\Sigma_{\{2,4\}}\right)^{-1}\right]^{V}-\left[\Sigma_{55}^{-1}\right]^{V}-\left[\left(\Sigma_{\{4,5\}}\right)^{-1}\right]^{V} .
\end{aligned}
$$

■ Note that all the involved entries are given by Γ, except for Σ_{54} and Σ_{42}.

Example continued

Completing the computations we obtain

$$
\begin{aligned}
\Sigma^{-1} & =\left[\left(\begin{array}{ccc}
1 & \Sigma_{12} & \Sigma_{14} \\
\Sigma_{21} & 1 & 0 \\
\Sigma_{41} & 0 & 1
\end{array}\right)^{-1}\right]^{V}+\left[\left(\begin{array}{cc}
1 & \Sigma_{25} \\
\Sigma_{52} & 1
\end{array}\right)^{-1}\right]^{V}+\left[\left(\begin{array}{ccc}
1 & \Sigma_{34} & \Sigma_{35} \\
\Sigma_{43} & 1 & 0 \\
\Sigma_{53} & 0 & 1
\end{array}\right)^{-1}\right]^{V} \\
& +\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)^{V}-\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)-\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& =\frac{1}{1-\Sigma_{12}^{2}-\Sigma_{14}^{2}}\left(\begin{array}{ccccc}
1 & -\Sigma_{12} & 0 & -\Sigma_{14} & 0 \\
-\Sigma_{12} & 1-\Sigma_{14}^{2} & 0 & \Sigma_{12} \Sigma_{14} & 0 \\
0 & 0 & 0 & 0 & 0 \\
-\Sigma_{14} & \Sigma_{12} \Sigma_{14} & 0 & 1-\Sigma_{12}^{2} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)+\frac{1}{1-\Sigma_{25}^{2}}\left(\begin{array}{cc}
0 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & -\Sigma_{25} \\
0 & 0 \\
0 & 0 \\
0
\end{array}\right) \\
& +\frac{1}{1-\Sigma_{34}^{2}-\Sigma_{35}^{2}}\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -\Sigma_{34} & -\Sigma_{35} \\
0 & 0 & -\Sigma_{34} & 1-\Sigma_{35}^{2} & \Sigma_{34} \Sigma_{35} \\
0 & 0 & -\Sigma_{35} & \Sigma_{34} \Sigma_{35} & 1-\Sigma_{34}^{2}
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

Example continued

By combining these terms into one matrix we have Σ^{-1} is equal to

- Using the second formula we obtain

$$
\operatorname{det}\left(\Sigma^{-1}\right)=\left[\left(1-\Sigma_{12}^{2}-\Sigma_{14}^{2}\right)\left(1-\Sigma_{25}^{2}\right)\left(1-\Sigma_{34}^{2}-\Sigma_{35}^{2}\right)\right]^{-1}
$$

A numerical example

- We apply the result for commuting the Σ^{-1} to the the following specific \mathcal{D}-partial matrix

$$
\Gamma=\left(\begin{array}{ccccc}
4 & -2 & * & 1 & * \\
-2 & 2 & * & * & -1 \\
* & * & 3 & 1 & -1 \\
1 & * & 1 & 1 & * \\
* & -1 & -1 & * & 1
\end{array}\right) .
$$

- We obtain

$$
\Sigma^{-1}=\left(\begin{array}{ccccc}
1 & 1 & 0 & -1 & 0 \\
1 & 2 & 0 & -1 & 1 \\
0 & 0 & 1 & -1 & 1 \\
-1 & -1 & -1 & 3 & -1 \\
0 & 1 & 1 & -1 & 3
\end{array}\right)
$$

- Note that Σ^{-1} has been evaluated without directly obtaining Σ, and then computing its inverse \longrightarrow fewer computations.

Thank You!
forantorter 三nac

