Around boundaries of exponential families

František Matúš

Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
E-mail: matus@utia.cas.cz
April 16-18, 2012, Fields Institute, Toronto
$\mu \ldots$ a nonzero Borel measure on \mathbb{R}^{d}

$\mu \ldots$ a nonzero Borel measure on \mathbb{R}^{d}

The log-Laplace transform Λ_{μ} of μ

$$
\begin{aligned}
& \Lambda_{\mu}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty] \\
& \vartheta \mapsto \ln \int_{\mathbb{R}^{d}} e^{\langle\vartheta, x\rangle} \mu(d x)
\end{aligned}
$$

$\mu \ldots$ a nonzero Borel measure on \mathbb{R}^{d}

The log-Laplace transform Λ_{μ} of μ

$$
\begin{aligned}
& \Lambda_{\mu}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty] \\
& \vartheta \mapsto \ln \int_{\mathbb{R}^{d}} e^{\langle\vartheta, x\rangle} \mu(d x)
\end{aligned}
$$

$\langle\cdot, \cdot\rangle \ldots$ the scalar product on \mathbb{R}^{d}
$\mu \ldots$ a nonzero Borel measure on \mathbb{R}^{d}

The log-Laplace transform Λ_{μ} of μ

$$
\begin{aligned}
& \Lambda_{\mu}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty] \\
& \vartheta \mapsto \ln \int_{\mathbb{R}^{d}} e^{\langle\vartheta, x\rangle} \mu(d x)
\end{aligned}
$$

$\langle\cdot, \cdot\rangle \ldots$ the scalar product on \mathbb{R}^{d}
(the cumulant generating function of μ)
$\mu \ldots$ a nonzero Borel measure on \mathbb{R}^{d}

The log-Laplace transform Λ_{μ} of μ

$$
\begin{aligned}
& \Lambda_{\mu}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty] \\
& \vartheta \mapsto \ln \int_{\mathbb{R}^{d}} e^{\langle\vartheta, x\rangle} \mu(d x)
\end{aligned}
$$

$\langle\cdot, \cdot\rangle \ldots$ the scalar product on \mathbb{R}^{d}
(the cumulant generating function of μ)
$\Lambda=\Lambda_{\mu} \ldots$ is convex, lower-semicontinuous
$\mu \ldots$ a nonzero Borel measure on \mathbb{R}^{d}

The log-Laplace transform Λ_{μ} of μ

$$
\begin{aligned}
& \Lambda_{\mu}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty] \\
& \vartheta \mapsto \ln \int_{\mathbb{R}^{d}} e^{\langle\vartheta, x\rangle} \mu(d x)
\end{aligned}
$$

$\langle\cdot, \cdot\rangle \ldots$ the scalar product on \mathbb{R}^{d}
(the cumulant generating function of μ)
$\Lambda=\Lambda_{\mu} \ldots$ is convex, lower-semicontinuous $\operatorname{dom}(\Lambda)=\left\{\vartheta \in \mathbb{R}^{d}: \Lambda(\vartheta)<+\infty\right\} \ldots$ the effective domain of Λ
$\mu \ldots$ a nonzero Borel measure on \mathbb{R}^{d}

The log-Laplace transform Λ_{μ} of μ

$$
\begin{aligned}
& \Lambda_{\mu}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty] \\
& \vartheta \mapsto \ln \int_{\mathbb{R}^{d}} e^{\langle\vartheta, x\rangle} \mu(d x)
\end{aligned}
$$

$\langle\cdot, \cdot\rangle \ldots$ the scalar product on \mathbb{R}^{d}
(the cumulant generating function of μ)
$\Lambda=\Lambda_{\mu} \ldots$ is convex, lower-semicontinuous $\operatorname{dom}(\Lambda)=\left\{\vartheta \in \mathbb{R}^{d}: \Lambda(\vartheta)<+\infty\right\} \ldots$ the effective domain of Λ
From now on it is assumed that Λ is finite on a ball.

The (standard) exponential family based on μ

$$
\mathcal{E}_{\mu}=\left\{Q_{\vartheta}: \vartheta \in \operatorname{dom}(\Lambda)\right\}
$$

$$
\text { where } \frac{d Q_{\vartheta}}{d \mu}(x)=e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)}, \quad x \in \mathbb{R}^{d} .
$$

The (standard) exponential family based on μ

$$
\mathcal{E}_{\mu}=\left\{Q_{\vartheta}: \vartheta \in \operatorname{dom}(\Lambda)\right\}
$$

$$
\text { where } \frac{d Q_{\vartheta}}{d \mu}(x)=e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)}, \quad x \in \mathbb{R}^{d} .
$$

$\vartheta \ldots$ the canonical parameter

The (standard) exponential family based on μ

$$
\mathcal{E}_{\mu}=\left\{Q_{\vartheta}: \vartheta \in \operatorname{dom}(\Lambda)\right\}
$$

$$
\text { where } \frac{d Q_{\vartheta}}{d \mu}(x)=e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)}, \quad x \in \mathbb{R}^{d} .
$$

$\vartheta \ldots$ the canonical parameter

From now on it is assumed that $\vartheta \mapsto Q_{\vartheta}$ is one-to-one.

The (standard) exponential family based on μ

$$
\mathcal{E}_{\mu}=\left\{Q_{\vartheta}: \vartheta \in \operatorname{dom}(\Lambda)\right\}
$$

$$
\text { where } \frac{d Q_{\vartheta}}{d \mu}(x)=e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)}, \quad x \in \mathbb{R}^{d} .
$$

$\vartheta \ldots$ the canonical parameter

From now on it is assumed that $\vartheta \mapsto Q_{\vartheta}$ is one-to-one.
Equivalently, Λ is strictly convex,

The (standard) exponential family based on μ

$$
\mathcal{E}_{\mu}=\left\{Q_{\vartheta}: \vartheta \in \operatorname{dom}(\Lambda)\right\}
$$

$$
\text { where } \frac{d Q_{\vartheta}}{d \mu}(x)=e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)}, \quad x \in \mathbb{R}^{d} .
$$

$\vartheta \ldots$ the canonical parameter

From now on it is assumed that $\vartheta \mapsto Q_{\vartheta}$ is one-to-one.
Equivalently, Λ is strictly convex, or μ is not supported by a hyperplane,

The (standard) exponential family based on μ

$$
\mathcal{E}_{\mu}=\left\{Q_{\vartheta}: \vartheta \in \operatorname{dom}(\Lambda)\right\}
$$

$$
\text { where } \frac{d Q_{\vartheta}}{d \mu}(x)=e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)}, \quad x \in \mathbb{R}^{d} .
$$

ϑ... the canonical parameter

From now on it is assumed that $\vartheta \mapsto Q_{\vartheta}$ is one-to-one.
Equivalently, Λ is strictly convex, or μ is not supported by a hyperplane, or the convex support $\operatorname{cs}(\mu)$ of μ has nonempty interior.

The (standard) exponential family based on μ

$$
\mathcal{E}_{\mu}=\left\{Q_{\vartheta}: \vartheta \in \operatorname{dom}(\Lambda)\right\}
$$

$$
\text { where } \frac{d Q_{\vartheta}}{d \mu}(x)=e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)}, \quad x \in \mathbb{R}^{d} .
$$

$\vartheta \ldots$ the canonical parameter

From now on it is assumed that $\vartheta \mapsto Q_{\vartheta}$ is one-to-one.
Equivalently, Λ is strictly convex, or μ is not supported by a hyperplane, or the convex support $\operatorname{cs}(\mu)$ of μ has nonempty interior. (the smallest closed convex set with μ-negligible complement)

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

$$
\Lambda^{\prime}(\vartheta)=\int_{\mathbb{R}^{d}} x \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)=\int_{\mathbb{R}^{d}} x \cdot Q_{\vartheta}(d x)
$$

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

$$
\Lambda^{\prime}(\vartheta)=\int_{\mathbb{R}^{d}} x \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)=\int_{\mathbb{R}^{d}} x \cdot Q_{\vartheta}(d x)
$$ is the mean of Q_{v}.

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

$$
\Lambda^{\prime}(\vartheta)=\int_{\mathbb{R}^{d}} x \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)=\int_{\mathbb{R}^{d}} x \cdot Q_{\vartheta}(d x)
$$ is the mean of Q_{ϑ}.

For $\vartheta \in \operatorname{dom}(\Lambda)$ general, Q_{ϑ} need not have mean.

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

$$
\begin{array}{r}
\Lambda^{\prime}(\vartheta)=\int_{\mathbb{R}^{d}} x \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)=\int_{\mathbb{R}^{d}} x \cdot Q_{\vartheta}(d x) \\
\text { is the mean of } Q_{\vartheta} .
\end{array}
$$

For $\vartheta \in \operatorname{dom}(\Lambda)$ general, Q_{ϑ} need not have mean.
Two different pm's in \mathcal{E}_{μ} cannot have the same mean.

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

$$
\begin{array}{r}
\Lambda^{\prime}(\vartheta)=\int_{\mathbb{R}^{d}} x \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)=\int_{\mathbb{R}^{d}} x \cdot Q_{\vartheta}(d x) \\
\text { is the mean of } Q_{\vartheta} .
\end{array}
$$

For $\vartheta \in \operatorname{dom}(\Lambda)$ general, Q_{ϑ} need not have mean.
Two different pm's in \mathcal{E}_{μ} cannot have the same mean. Hence, $\Lambda^{\prime}: \operatorname{int}(\operatorname{dom}(\Lambda)) \rightarrow \operatorname{int}(\operatorname{cs}(\mu))$ is injective.

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

$$
\begin{array}{r}
\Lambda^{\prime}(\vartheta)=\int_{\mathbb{R}^{d}} x \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)=\int_{\mathbb{R}^{d}} x \cdot Q_{\vartheta}(d x) \\
\text { is the mean of } Q_{\vartheta} .
\end{array}
$$

For $\vartheta \in \operatorname{dom}(\Lambda)$ general, Q_{ϑ} need not have mean.
Two different pm's in \mathcal{E}_{μ} cannot have the same mean.
Hence, $\Lambda^{\prime}: \operatorname{int}(\operatorname{dom}(\Lambda)) \rightarrow \operatorname{int}(\operatorname{cs}(\mu))$ is injective.
Let M denote $\Lambda^{\prime}(\operatorname{int}(\operatorname{dom}(\Lambda)))$ and ψ the inverse of Λ^{\prime}.

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

$$
\begin{array}{r}
\Lambda^{\prime}(\vartheta)=\int_{\mathbb{R}^{d}} x \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)=\int_{\mathbb{R}^{d}} x \cdot Q_{\vartheta}(d x) \\
\text { is the mean of } Q_{\vartheta} .
\end{array}
$$

For $\vartheta \in \operatorname{dom}(\Lambda)$ general, Q_{ϑ} need not have mean.
Two different pm's in \mathcal{E}_{μ} cannot have the same mean.
Hence, $\Lambda^{\prime}: \operatorname{int}(\operatorname{dom}(\Lambda)) \rightarrow \operatorname{int}(\operatorname{cs}(\mu))$ is injective.
Let M denote $\Lambda^{\prime}(\operatorname{int}(\operatorname{dom}(\Lambda)))$ and ψ the inverse of Λ^{\prime}.
Thus, $Q_{\psi(a)}$ has the mean a, once $a \in M$, and

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

$$
\begin{array}{r}
\Lambda^{\prime}(\vartheta)=\int_{\mathbb{R}^{d}} x \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)=\int_{\mathbb{R}^{d}} x \cdot Q_{\vartheta}(d x) \\
\text { is the mean of } Q_{\vartheta} .
\end{array}
$$

For $\vartheta \in \operatorname{dom}(\Lambda)$ general, Q_{ϑ} need not have mean.
Two different pm's in \mathcal{E}_{μ} cannot have the same mean. Hence, $\Lambda^{\prime}: \operatorname{int}(\operatorname{dom}(\Lambda)) \rightarrow \operatorname{int}(\operatorname{cs}(\mu))$ is injective.

Let M denote $\Lambda^{\prime}(\operatorname{int}(\operatorname{dom}(\Lambda)))$ and ψ the inverse of Λ^{\prime}.
Thus, $Q_{\psi(a)}$ has the mean a, once $a \in M$, and $\left\{Q_{\vartheta}: \vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))\right\}=\left\{Q_{\psi(a)}: a \in M\right\}$

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

$$
\begin{array}{r}
\Lambda^{\prime}(\vartheta)=\int_{\mathbb{R}^{d}} x \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)=\int_{\mathbb{R}^{d}} x \cdot Q_{\vartheta}(d x) \\
\text { is the mean of } Q_{\vartheta} .
\end{array}
$$

For $\vartheta \in \operatorname{dom}(\Lambda)$ general, Q_{ϑ} need not have mean.
Two different pm's in \mathcal{E}_{μ} cannot have the same mean. Hence, $\Lambda^{\prime}: \operatorname{int}(\operatorname{dom}(\Lambda)) \rightarrow \operatorname{int}(\operatorname{cs}(\mu))$ is injective.

Let M denote $\Lambda^{\prime}(\operatorname{int}(\operatorname{dom}(\Lambda)))$ and ψ the inverse of Λ^{\prime}.
Thus, $Q_{\psi(a)}$ has the mean a, once $a \in M$, and $\left\{Q_{\vartheta}: \vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))\right\}=\left\{Q_{\psi(a)}: a \in M\right\}$
... parametrization via means (N.E.F./F.E.N.)

The gradient of $\Lambda=\Lambda_{\mu}$ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

$$
\begin{array}{r}
\Lambda^{\prime}(\vartheta)=\int_{\mathbb{R}^{d}} x \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)=\int_{\mathbb{R}^{d}} x \cdot Q_{\vartheta}(d x) \\
\text { is the mean of } Q_{\vartheta} .
\end{array}
$$

For $\vartheta \in \operatorname{dom}(\Lambda)$ general, Q_{ϑ} need not have mean.
Two different pm's in \mathcal{E}_{μ} cannot have the same mean. Hence, $\Lambda^{\prime}: \operatorname{int}(\operatorname{dom}(\Lambda)) \rightarrow \operatorname{int}(\operatorname{cs}(\mu))$ is injective.

Let M denote $\Lambda^{\prime}(\operatorname{int}(\operatorname{dom}(\Lambda)))$ and ψ the inverse of Λ^{\prime}.
Thus, $Q_{\psi(a)}$ has the mean a, once $a \in M$, and $\left\{Q_{\vartheta}: \vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))\right\}=\left\{Q_{\psi(a)}: a \in M\right\}$
... parametrization via means (N.E.F./F.E.N.)
$M=\operatorname{int}(\operatorname{cs}(\mu))$ if and only if Λ is essentially smooth (\mathcal{E} is steep).

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}
Maximum likelihood principle advises to maximize over ϑ.

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}
Maximum likelihood principle advises to maximize over ϑ.
The Fenchel conjugate $\Lambda^{*}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ of Λ

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}
Maximum likelihood principle advises to maximize over ϑ.
The Fenchel conjugate $\Lambda^{*}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ of Λ

$$
\Lambda^{*}(a)=\sup _{\vartheta \in \mathbb{R}^{d}}[\langle\vartheta, a\rangle-\Lambda(\vartheta)]
$$

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}
Maximum likelihood principle advises to maximize over ϑ.
The Fenchel conjugate $\Lambda^{*}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ of Λ

$$
\Lambda^{*}(a)=\sup _{\vartheta \in \mathbb{R}^{d}}[\langle\vartheta, a\rangle-\Lambda(\vartheta)]
$$

If $a \in M$ then $\psi(a)$ is a maximizer and $Q_{\psi(a)}$ is the unique MLE.

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}
Maximum likelihood principle advises to maximize over ϑ.
The Fenchel conjugate $\Lambda^{*}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ of Λ

$$
\Lambda^{*}(a)=\sup _{\vartheta \in \mathbb{R}^{d}}[\langle\vartheta, a\rangle-\Lambda(\vartheta)]
$$

If $a \in M$ then $\psi(a)$ is a maximizer and $Q_{\psi(a)}$ is the unique MLE.
A maximizer exists if and only if $a \in \operatorname{int}(\operatorname{cs}(\mu))$.

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}
Maximum likelihood principle advises to maximize over ϑ.
The Fenchel conjugate $\Lambda^{*}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ of Λ

$$
\Lambda^{*}(a)=\sup _{\vartheta \in \mathbb{R}^{d}}[\langle\vartheta, a\rangle-\Lambda(\vartheta)]
$$

If $a \in M$ then $\psi(a)$ is a maximizer and $Q_{\psi(a)}$ is the unique MLE.
A maximizer exists if and only if $a \in \operatorname{int}(\operatorname{cs}(\mu))$.
The supremum in finite for $a \in \operatorname{dom}\left(\Lambda^{*}\right)$

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}
Maximum likelihood principle advises to maximize over ϑ.
The Fenchel conjugate $\Lambda^{*}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ of Λ

$$
\Lambda^{*}(a)=\sup _{\vartheta \in \mathbb{R}^{d}}[\langle\vartheta, a\rangle-\Lambda(\vartheta)]
$$

If $a \in M$ then $\psi(a)$ is a maximizer and $Q_{\psi(a)}$ is the unique MLE.
A maximizer exists if and only if $a \in \operatorname{int}(\operatorname{cs}(\mu))$.
The supremum in finite for $a \in \operatorname{dom}\left(\Lambda^{*}\right)$

$$
M \subseteq \operatorname{int}(\operatorname{cs}(\mu)) \subseteq \operatorname{dom}\left(\Lambda^{*}\right) \subseteq \operatorname{cs}(\mu)
$$

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}
Maximum likelihood principle advises to maximize over ϑ.
The Fenchel conjugate $\Lambda^{*}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ of Λ

$$
\Lambda^{*}(a)=\sup _{\vartheta \in \mathbb{R}^{d}}[\langle\vartheta, a\rangle-\Lambda(\vartheta)]
$$

If $a \in M$ then $\psi(a)$ is a maximizer and $Q_{\psi(a)}$ is the unique MLE.
A maximizer exists if and only if $a \in \operatorname{int}(\operatorname{cs}(\mu))$.
The supremum in finite for $a \in \operatorname{dom}\left(\Lambda^{*}\right)$

$$
\begin{gathered}
M \subseteq \operatorname{int}(c s(\mu)) \subseteq \operatorname{dom}\left(\Lambda^{*}\right) \subseteq c s(\mu) \\
\operatorname{dom}\left(\Lambda^{*}\right)=c c(\mu)+\operatorname{bar}(\operatorname{dom}(\Lambda)) \quad[\text { Csi\&Ma 08] }
\end{gathered}
$$

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}
Maximum likelihood principle advises to maximize over ϑ.
The Fenchel conjugate $\Lambda^{*}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ of Λ

$$
\Lambda^{*}(a)=\sup _{\vartheta \in \mathbb{R}^{d}}[\langle\vartheta, a\rangle-\Lambda(\vartheta)]
$$

If $a \in M$ then $\psi(a)$ is a maximizer and $Q_{\psi(a)}$ is the unique MLE.
A maximizer exists if and only if $a \in \operatorname{int}(\operatorname{cs}(\mu))$.
The supremum in finite for $a \in \operatorname{dom}\left(\Lambda^{*}\right)$

$$
\begin{gathered}
M \subseteq \operatorname{int}(c s(\mu)) \subseteq \operatorname{dom}\left(\Lambda^{*}\right) \subseteq \operatorname{cs}(\mu) \\
\operatorname{dom}\left(\Lambda^{*}\right)=\operatorname{cc}(\mu)+\operatorname{bar}(\operatorname{dom}(\Lambda)) \quad[\text { Csi\&Ma 08] } \\
\operatorname{cc}(\mu) \ldots \text { the convex core of } \mu
\end{gathered}
$$

Given a sample mean $a \in \mathbb{R}^{d}, \quad \vartheta \mapsto\langle\vartheta, a\rangle-\Lambda(\vartheta)$
... the normalized log-likelihood of data w.r.t. \mathcal{E}
Maximum likelihood principle advises to maximize over ϑ.
The Fenchel conjugate $\Lambda^{*}: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ of Λ

$$
\Lambda^{*}(a)=\sup _{\vartheta \in \mathbb{R}^{d}}[\langle\vartheta, a\rangle-\Lambda(\vartheta)]
$$

If $a \in M$ then $\psi(a)$ is a maximizer and $Q_{\psi(a)}$ is the unique MLE.
A maximizer exists if and only if $a \in \operatorname{int}(\operatorname{cs}(\mu))$.
The supremum in finite for $a \in \operatorname{dom}\left(\Lambda^{*}\right)$

$$
\begin{gathered}
M \subseteq \operatorname{int}(c s(\mu)) \subseteq \operatorname{dom}\left(\Lambda^{*}\right) \subseteq c s(\mu) \\
\operatorname{dom}\left(\Lambda^{*}\right)=c c(\mu)+\operatorname{bar}(\operatorname{dom}(\Lambda)) \quad[\text { Csi\&Ma 08] } \\
\quad \operatorname{cc}(\mu) \ldots \text { the convex core of } \mu \\
\quad \operatorname{bar}(C) \ldots \text { the barrier cone of } C \subseteq \mathbb{R}^{d}
\end{gathered}
$$

Log-Laplace transform Exponential family Means
Variances

The Hessian of Λ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and

The Hessian of Λ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and $\Lambda^{\prime \prime}(\vartheta)$ is the covariance matrix of Q_{ϑ}.

The Hessian of Λ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and $\Lambda^{\prime \prime}(\vartheta)$ is the covariance matrix of Q_{ϑ}. $\Lambda^{\prime \prime}(\vartheta)=\int_{\mathbb{R}^{d}}\left[x-\Lambda^{\prime}(\vartheta)\right]^{[2]} \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)$

The Hessian of Λ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and $\Lambda^{\prime \prime}(\vartheta)$ is the covariance matrix of Q_{ϑ}. $\Lambda^{\prime \prime}(\vartheta)=\int_{\mathbb{R}^{d}}\left[x-\Lambda^{\prime}(\vartheta)\right]^{[2]} \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x)$ where $y^{[2]} \in \mathbb{R}^{d \times d}$ for $y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$ denotes the matrix $\left(y_{i} \cdot y_{j}\right)_{i, j=1}^{d}$.

The Hessian of Λ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and $\Lambda^{\prime \prime}(\vartheta)$ is the covariance matrix of Q_{ϑ}.

$$
\begin{aligned}
& \Lambda^{\prime \prime}(\vartheta)=\int_{\mathbb{R}^{d}}\left[x-\Lambda^{\prime}(\vartheta)\right]^{[2]} \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x) \\
& \quad \text { where } y^{[2]} \in \mathbb{R}^{d \times d} \text { for } y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d} \\
& \quad \text { denotes the matrix }\left(y_{i} \cdot y_{j}\right)_{i, j=1}^{d} .
\end{aligned}
$$

The variance function of μ

$$
\begin{aligned}
& V=V_{\mu}: M \rightarrow \mathbb{R}^{d \times d} \\
& a \mapsto \Lambda^{\prime \prime}(\psi(a))
\end{aligned}
$$

The Hessian of Λ at $\vartheta \in \operatorname{int}(\operatorname{dom}(\Lambda))$ exists and $\Lambda^{\prime \prime}(\vartheta)$ is the covariance matrix of Q_{ϑ}.

$$
\begin{aligned}
& \Lambda^{\prime \prime}(\vartheta)=\int_{\mathbb{R}^{d}}\left[x-\Lambda^{\prime}(\vartheta)\right]^{[2]} \cdot e^{\langle\vartheta, x\rangle-\Lambda(\vartheta)} \mu(d x) \\
& \quad \text { where } y^{[2]} \in \mathbb{R}^{d \times d} \text { for } y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d} \\
& \quad \text { denotes the matrix }\left(y_{i} \cdot y_{j}\right)_{i, j=1}^{d} .
\end{aligned}
$$

The variance function of μ

$$
\begin{aligned}
& V=V_{\mu}: M \rightarrow \mathbb{R}^{d \times d} \\
& a \mapsto \Lambda^{\prime \prime}(\psi(a))
\end{aligned}
$$

$\mathcal{E}_{\mu}=\mathcal{E}_{\nu}$ if and only if V_{μ} coincides with V_{ν} on a ball.

$$
d=2, n \geqslant 1
$$

$$
\begin{aligned}
& d=2, n \geqslant 1 \\
& \mu_{n}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{n!}{i!j!(n-i-j)!} \delta_{(i, j)} \ldots \text { a finite measure on } \mathbb{R}^{2}
\end{aligned}
$$

$$
d=2, n \geqslant 1
$$

$$
\mu_{n}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{n!}{i!j!(n-i-j)!} \delta_{(i, j)} \ldots \text { a finite measure on } \mathbb{R}^{2}
$$

$$
d=2, n \geqslant 1
$$

$$
\mu_{n}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{n!}{i!j!(n-i-j)!} \delta_{(i, j)} \ldots \text { a finite measure on } \mathbb{R}^{2}
$$

$$
\vartheta=\left(\vartheta_{1}, \vartheta_{2}\right)
$$

$$
d=2, n \geqslant 1
$$

$$
\mu_{n}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{n!}{i!j!(n-i-j)!} \delta_{(i, j)} \ldots \text { a finite measure on } \mathbb{R}^{2}
$$

$$
\vartheta=\left(\vartheta_{1}, \vartheta_{2}\right)
$$

$$
\Lambda(\vartheta)=\ln \left(e^{\vartheta_{1}}+e^{\vartheta_{2}}+1\right)^{n} \ldots \text { the log-Laplace transform }
$$

$d=2, n \geqslant 1$
$\mu_{n}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{n!}{i!j!(n-i-j)!} \delta_{(i, j)} \ldots$ a finite measure on \mathbb{R}^{2}

$\vartheta=\left(\vartheta_{1}, \vartheta_{2}\right)$
$\Lambda(\vartheta)=\ln \left(e^{\vartheta_{1}}+e^{\vartheta_{2}}+1\right)^{n} \ldots$ the log-Laplace transform
$\operatorname{dom}(\Lambda)=\mathbb{R}^{2} \ldots$ the effective domain of Λ

$$
\mathcal{E}_{\mu}=\left\{Q_{\vartheta}: \vartheta=\left(\vartheta_{1}, \vartheta_{2}\right) \in \mathbb{R}^{2}\right\} \ldots \text { the exponential family }
$$

$$
\begin{aligned}
\mathcal{E}_{\mu}= & \left\{Q_{\vartheta}: \vartheta=\left(\vartheta_{1}, \vartheta_{2}\right) \in \mathbb{R}^{2}\right\} \ldots \text { the exponential family } \\
& \text { where } Q_{\vartheta}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{!!}{i!j!(n-i-j)!} e^{\vartheta_{1} i+\vartheta_{j} j-\Lambda(\vartheta)} \delta_{(i, j)} .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{E}_{\mu}= & \left\{Q_{\vartheta}: \vartheta=\left(\vartheta_{1}, \vartheta_{2}\right) \in \mathbb{R}^{2}\right\} \ldots \text { the exponential family } \\
& \text { where } Q_{\vartheta}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{n!}{i!j!(n-i-j)!} e^{\vartheta_{1} i+\vartheta_{2} j-\Lambda(\vartheta)} \delta_{(i, j)} .
\end{aligned}
$$

the convex support $\operatorname{cs}(\mu)$ of μ is

$$
\begin{aligned}
\mathcal{E}_{\mu}= & \left\{Q_{\vartheta}: \vartheta=\left(\vartheta_{1}, \vartheta_{2}\right) \in \mathbb{R}^{2}\right\} \ldots \text { the exponential family } \\
& \text { where } Q_{\vartheta}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{n!}{i!j!(n-i-j)!} e^{\vartheta_{1} i+\vartheta_{2} j-\Lambda(\vartheta)} \delta_{(i, j)} .
\end{aligned}
$$

the convex support $\operatorname{cs}(\mu)$ of μ is

$$
n=7
$$

$$
\Lambda^{\prime}(\vartheta)=\frac{n}{e^{\vartheta_{1}}+e^{v_{2}}+1}\left(e^{\vartheta_{1}}, e^{\vartheta_{2}}\right)
$$

... the mean of Q_{ϑ}

$\Lambda^{\prime}(\vartheta)=\frac{n}{e^{v_{1}}+e^{v_{2}+1}}\left(e^{\vartheta_{1}}, e^{\vartheta_{2}}\right)$
... the mean of Q_{ϑ}
Λ^{\prime} is a bijection between \mathbb{R}^{2} and
$\Lambda^{\prime}(\vartheta)=\frac{n}{e^{\vartheta_{1}}+e^{v_{2}+1}}\left(e^{\vartheta_{1}}, e^{\vartheta_{2}}\right)$
... the mean of Q_{ϑ}
Λ^{\prime} is a bijection between \mathbb{R}^{2} and
M ... the interior of the triangle $c s(\mu)$
$\Lambda^{\prime}(\vartheta)=\frac{n}{e^{\vartheta_{1}}+e^{v_{2}+1}}\left(e^{\vartheta_{1}}, e^{\vartheta_{2}}\right)$... the mean of Q_{ϑ}
Λ^{\prime} is a bijection between \mathbb{R}^{2} and
$M \ldots$ the interior of the triangle $\operatorname{cs}(\mu)$

Its inverse at $a=\left(a_{1}, a_{2}\right) \in \operatorname{int}(\operatorname{cs}(\mu))$ is
$\Lambda^{\prime}(\vartheta)=\frac{n}{e^{v_{1}}+e^{v_{2}+1}}\left(e^{\vartheta_{1}}, e^{\vartheta_{2}}\right)$
... the mean of Q_{ϑ}
Λ^{\prime} is a bijection between \mathbb{R}^{2} and
$M \ldots$ the interior of the triangle $\operatorname{cs}(\mu)$

Its inverse at $a=\left(a_{1}, a_{2}\right) \in \operatorname{int}(\operatorname{cs}(\mu))$ is

$$
\psi(a)=\left(\ln \frac{a_{1}}{n-a_{1}-a_{2}}, \ln \frac{a_{2}}{n-a_{1}-a_{2}}\right)
$$

$\Lambda^{\prime}(\vartheta)=\frac{n}{e^{v_{1}}+e^{v_{2}+1}}\left(e^{\vartheta_{1}}, e^{\vartheta_{2}}\right)$
Λ^{\prime} is a bijection between \mathbb{R}^{2} and
$M \ldots$ the interior of the triangle $\operatorname{cs}(\mu)$

Its inverse at $a=\left(a_{1}, a_{2}\right) \in \operatorname{int}(\operatorname{cs}(\mu))$ is

$$
\begin{gathered}
\psi(a)=\left(\ln \frac{a_{1}}{n-a_{1}-a_{2}}, \ln \frac{a_{2}}{n-a_{1}-a_{2}}\right) \\
Q_{\psi(a)}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{n!}{i!j!(n-i-j)!} a_{1}^{i} a_{2}^{j}\left(n-a_{1}-a_{2}\right)^{n-i-j} \delta_{(i, j)} .
\end{gathered}
$$

$\Lambda^{\prime}(\vartheta)=\frac{n}{e^{\vartheta_{1}}+e^{\vartheta_{2}+1}}\left(e^{\vartheta_{1}}, e^{\vartheta_{2}}\right)$
Λ^{\prime} is a bijection between \mathbb{R}^{2} and
$M \ldots$ the interior of the triangle $\operatorname{cs}(\mu)$

Its inverse at $a=\left(a_{1}, a_{2}\right) \in \operatorname{int}(\operatorname{cs}(\mu))$ is

$$
\begin{gathered}
\psi(a)=\left(\ln \frac{a_{1}}{n-a_{1}-a_{2}}, \ln \frac{a_{2}}{n-a_{1}-a_{2}}\right) \\
Q_{\psi(a)}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{n!}{i!j!(n-i-j)!} a_{1}^{i} a_{2}^{j}\left(n-a_{1}-a_{2}\right)^{n-i-j} \delta_{(i, j)} .
\end{gathered}
$$

$\mathcal{E}_{\mu}=\left\{Q_{\psi(a)}: a \in \operatorname{int}(\operatorname{cs}(\mu))\right\} \ldots$ 'multinomial family'

$$
\Lambda^{\prime}(\vartheta)=\frac{n}{e^{v_{1}}+e^{v_{2}}+1}\left(e^{\vartheta_{1}}, e^{\vartheta_{2}}\right)
$$

Λ^{\prime} is a bijection between \mathbb{R}^{2} and
$M \ldots$ the interior of the triangle $\operatorname{cs}(\mu)$

Its inverse at $a=\left(a_{1}, a_{2}\right) \in \operatorname{int}(\operatorname{cs}(\mu))$ is

$$
\begin{gathered}
\psi(a)=\left(\ln \frac{a_{1}}{n-a_{1}-a_{2}}, \ln \frac{a_{2}}{n-a_{1}-a_{2}}\right) \\
Q_{\psi(a)}=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{n!}{i!j!(n-i-j)!} a_{1}^{i} a_{2}^{j}\left(n-a_{1}-a_{2}\right)^{n-i-j} \delta_{(i, j)} .
\end{gathered}
$$

$\mathcal{E}_{\mu}=\left\{Q_{\psi(a)}: a \in \operatorname{int}(\operatorname{cs}(\mu))\right\} \ldots$ 'multinomial family' (of the dimension $d=2$ with the parameter n)

$$
\Lambda^{\prime \prime}(\vartheta)=\frac{n \cdot e^{\vartheta_{1}}}{\left(e^{\left.\vartheta_{1}+e^{\vartheta_{2}}+1\right)^{2}}\right.}\left[\begin{array}{cc}
e^{\vartheta_{1}}\left(e^{\vartheta_{2}}+1\right) & -e^{\vartheta_{1}} e^{\vartheta_{2}} \\
-e^{\vartheta_{1}} e^{\vartheta_{2}} & e^{\vartheta_{2}}\left(e^{\vartheta_{1}}+1\right)
\end{array}\right]
$$

$$
\Lambda^{\prime \prime}(\vartheta)=\frac{n \cdot e^{\vartheta_{1}}}{\left(e^{\vartheta_{1}}+e^{\vartheta_{2}}+1\right)^{2}}\left[\begin{array}{cc}
e^{\vartheta_{1}}\left(e^{\vartheta_{2}}+1\right) & -e^{\vartheta_{1}} e^{\vartheta_{2}} \\
-e^{\vartheta_{1}} e^{\vartheta_{2}} & e^{\vartheta_{2}}\left(e^{\vartheta_{1}}+1\right)
\end{array}\right]
$$

... the variance of Q_{ϑ}

$$
\Lambda^{\prime \prime}(\vartheta)=\frac{n \cdot e^{\vartheta_{1}}}{\left(e^{\left.\vartheta_{1}+e^{\vartheta_{2}}+1\right)^{2}}\right.}\left[\begin{array}{cc}
e^{\vartheta_{1}}\left(e^{\vartheta_{2}}+1\right) & -e^{\vartheta_{1}} e^{\vartheta_{2}} \\
-e^{\vartheta_{1}} e^{\vartheta_{2}} & e^{\vartheta_{2}}\left(e^{\vartheta_{1}}+1\right)
\end{array}\right]
$$

... the variance of Q_{ϑ}

The variance function is matrix-valued,

$$
\Lambda^{\prime \prime}(\vartheta)=\frac{n \cdot e^{\vartheta_{1}}}{\left(e^{\left.\vartheta_{1}+e^{\vartheta_{2}}+1\right)^{2}}\right.}\left[\begin{array}{cc}
e^{\vartheta_{1}}\left(e^{\vartheta_{2}}+1\right) & -e^{\vartheta_{1}} e^{\vartheta_{2}} \\
-e^{\vartheta_{1}} e^{\vartheta_{2}} & e^{\vartheta_{2}}\left(e^{\vartheta_{1}}+1\right)
\end{array}\right]
$$

... the variance of Q_{ϑ}

The variance function is matrix-valued,

$$
V(a)=\Lambda^{\prime \prime}(\psi(a))=\frac{1}{n}\left[\begin{array}{cc}
a_{1}\left(n-a_{1}\right) & -a_{1} a_{2} \\
-a_{1} a_{2} & a_{2}\left(n-a_{2}\right)
\end{array}\right]=\operatorname{diag}(a)-\frac{1}{n} a^{[2]}
$$

$$
\Lambda^{\prime \prime}(\vartheta)=\frac{n \cdot e^{\vartheta_{1}}}{\left(e^{\left.\vartheta_{1}+e^{\vartheta_{2}}+1\right)^{2}}\right.}\left[\begin{array}{cc}
e^{\vartheta_{1}}\left(e^{\vartheta_{2}}+1\right) & -e^{\vartheta_{1}} e^{\vartheta_{2}} \\
-e^{\vartheta_{1}} e^{\vartheta_{2}} & e^{\vartheta_{2}}\left(e^{\vartheta_{1}}+1\right)
\end{array}\right]
$$

... the variance of Q_{ϑ}

The variance function is matrix-valued,

$$
\begin{array}{r}
V(a)=\Lambda^{\prime \prime}(\psi(a))=\frac{1}{n}\left[\begin{array}{cc}
a_{1}\left(n-a_{1}\right) & -a_{1} a_{2} \\
-a_{1} a_{2} & a_{2}\left(n-a_{2}\right)
\end{array}\right]=\operatorname{diag}(a)-\frac{1}{n} a^{[2]} \\
\ldots \text { the variance of } Q_{\psi(a)}
\end{array}
$$

$$
\begin{array}{r}
\Lambda^{\prime \prime}(\vartheta)=\frac{n \cdot e^{\vartheta_{1}}}{\left(e^{\vartheta_{1}}+e^{\vartheta_{2}}+1\right)^{2}}\left[\begin{array}{cc}
e^{\vartheta_{1}}\left(e^{\vartheta_{2}}+1\right) & -e^{\vartheta_{1}} e^{\vartheta_{2}} \\
-e^{\vartheta_{1}} e^{\vartheta_{2}} & e^{\vartheta_{2}}\left(e^{\vartheta_{1}}+1\right)
\end{array}\right] \\
\ldots \text { the variance of } Q_{\vartheta}
\end{array}
$$

The variance function is matrix-valued,

$$
\begin{array}{r}
V(a)=\Lambda^{\prime \prime}(\psi(a))=\frac{1}{n}\left[\begin{array}{cc}
a_{1}\left(n-a_{1}\right) & -a_{1} a_{2} \\
-a_{1} a_{2} & a_{2}\left(n-a_{2}\right)
\end{array}\right]=\operatorname{diag}(a)-\frac{1}{n} a^{[2]} \\
\ldots \text { the variance of } Q_{\psi(a)}
\end{array}
$$

each entry is a bivariate polynomial in a_{1}, a_{2} of the degree $\leqslant 2$ (V is quadratic)

In the topology of the total variation on pm 's on \mathbb{R}^{d},

In the topology of the total variation on pm 's on \mathbb{R}^{d}, what is behavior of $Q_{\psi\left(a_{n}\right)}$ for a convergent sequence $a_{n} \in M$?

In the topology of the total variation on pm 's on \mathbb{R}^{d}, what is behavior of $Q_{\psi\left(a_{n}\right)}$ for a convergent sequence $a_{n} \in M$?
($Q_{\psi(a)}$ is the MLE if a is an empirical mean)

In the topology of the total variation on pm 's on \mathbb{R}^{d}, what is behavior of $Q_{\psi\left(a_{n}\right)}$ for a convergent sequence $a_{n} \in M$?

$$
\left(Q_{\psi(a)} \text { is the MLE if } a \text { is an empirical mean }\right)
$$

$c l_{v}(\mathcal{E})$ matters, described in [Csi\&Ma 05] via $c c(\mu)$

In the topology of the total variation on pm 's on \mathbb{R}^{d}, what is behavior of $Q_{\psi\left(a_{n}\right)}$ for a convergent sequence $a_{n} \in M$? ($Q_{\psi(a)}$ is the MLE if a is an empirical mean)
$c l_{v}(\mathcal{E})$ matters, described in [Csi\&Ma 05] via $c c(\mu)$

For a sequence $a_{n} \in M$ converging to $a \in \operatorname{dom}\left(\Lambda^{*}\right)$,

In the topology of the total variation on pm's on \mathbb{R}^{d}, what is behavior of $Q_{\psi\left(a_{n}\right)}$ for a convergent sequence $a_{n} \in M$?

$$
\left(Q_{\psi(a)} \text { is the MLE if } a \text { is an empirical mean }\right)
$$

$c l_{v}(\mathcal{E})$ matters, described in [Csi\&Ma 05] via $c c(\mu)$

For a sequence $a_{n} \in M$ converging to $a \in \operatorname{dom}\left(\Lambda^{*}\right)$, if $\Lambda^{*}\left(a_{n}\right) \rightarrow \Lambda^{*}(a)$ then $Q_{\psi\left(a_{n}\right)}$ converges [Csi\&Ma 08, Thm 5.6]

In the topology of the total variation on pm's on \mathbb{R}^{d}, what is behavior of $Q_{\psi\left(a_{n}\right)}$ for a convergent sequence $a_{n} \in M$?

$$
\left(Q_{\psi(a)} \text { is the MLE if } a \text { is an empirical mean }\right)
$$

$c l_{v}(\mathcal{E})$ matters, described in [Csi\&Ma 05] via $c c(\mu)$

For a sequence $a_{n} \in M$ converging to $a \in \operatorname{dom}\left(\Lambda^{*}\right)$, if $\Lambda^{*}\left(a_{n}\right) \rightarrow \Lambda^{*}(a)$ then $Q_{\psi\left(a_{n}\right)}$ converges [Csi\&Ma 08, Thm 5.6]

In particular,

In the topology of the total variation on pm 's on \mathbb{R}^{d}, what is behavior of $Q_{\psi\left(a_{n}\right)}$ for a convergent sequence $a_{n} \in M$?

$$
\left(Q_{\psi(a)} \text { is the MLE if } a \text { is an empirical mean }\right)
$$

$c l_{v}(\mathcal{E})$ matters, described in [Csi\&Ma 05] via $c c(\mu)$

For a sequence $a_{n} \in M$ converging to $a \in \operatorname{dom}\left(\Lambda^{*}\right)$, if $\Lambda^{*}\left(a_{n}\right) \rightarrow \Lambda^{*}(a)$ then $Q_{\psi\left(a_{n}\right)}$ converges [Csi\&Ma 08, Thm 5.6]

In particular,
if $a \in \operatorname{int}(\operatorname{cs}(\mu))$ then $Q_{\psi\left(a_{n}\right)}$ has the limit in \mathcal{E};

In the topology of the total variation on pm 's on \mathbb{R}^{d}, what is behavior of $Q_{\psi\left(a_{n}\right)}$ for a convergent sequence $a_{n} \in M$?

$$
\left(Q_{\psi(a)} \text { is the MLE if } a \text { is an empirical mean }\right)
$$

$c l_{v}(\mathcal{E})$ matters, described in [Csi\&Ma 05] via $c c(\mu)$

For a sequence $a_{n} \in M$ converging to $a \in \operatorname{dom}\left(\Lambda^{*}\right)$, if $\Lambda^{*}\left(a_{n}\right) \rightarrow \Lambda^{*}(a)$ then $Q_{\psi\left(a_{n}\right)}$ converges [Csi\&Ma 08, Thm 5.6]

In particular,
if $a \in \operatorname{int}(\operatorname{cs}(\mu))$ then $Q_{\psi\left(a_{n}\right)}$ has the limit in \mathcal{E};
if $a \in M$ then $Q_{\psi\left(a_{n}\right)} \rightarrow Q_{\psi(a)}$

Assume $a \in \operatorname{dom}\left(\Lambda^{*}\right) \backslash \operatorname{int}(\operatorname{cs}(\mu))$ and $b \in \operatorname{int}(\operatorname{cs}(\mu))$.

Assume $a \in \operatorname{dom}\left(\Lambda^{*}\right) \backslash \operatorname{int}(\operatorname{cs}(\mu))$ and $b \in \operatorname{int}(\operatorname{cs}(\mu))$.
For $\varepsilon \downarrow 0$ what is behavior of

Assume $a \in \operatorname{dom}\left(\Lambda^{*}\right) \backslash \operatorname{int}(\operatorname{cs}(\mu))$ and $b \in \operatorname{int}(\operatorname{cs}(\mu))$.
For $\varepsilon \downarrow 0$ what is behavior of

$$
\varepsilon \mapsto \Lambda^{*}(a+\varepsilon(b-a))
$$

Assume $a \in \operatorname{dom}\left(\Lambda^{*}\right) \backslash \operatorname{int}(\operatorname{cs}(\mu))$ and $b \in \operatorname{int}(\operatorname{cs}(\mu))$.
For $\varepsilon \downarrow 0$ what is behavior of

$$
\begin{aligned}
& \varepsilon \mapsto \Lambda^{*}(a+\varepsilon(b-a)) \\
& \varepsilon \mapsto Q_{\psi(a+\varepsilon(b-a))}
\end{aligned}
$$

Assume $a \in \operatorname{dom}\left(\Lambda^{*}\right) \backslash \operatorname{int}(\operatorname{cs}(\mu))$ and $b \in \operatorname{int}(\operatorname{cs}(\mu))$.
For $\varepsilon \downarrow 0$ what is behavior of

$$
\begin{aligned}
& \varepsilon \mapsto \Lambda^{*}(a+\varepsilon(b-a)) \\
& \varepsilon \mapsto Q_{\psi(a+\varepsilon(b-a))} \\
& \varepsilon \mapsto V(a+\varepsilon(b-a))
\end{aligned}
$$

Assume $a \in \operatorname{dom}\left(\Lambda^{*}\right) \backslash \operatorname{int}(\operatorname{cs}(\mu))$ and $b \in \operatorname{int}(\operatorname{cs}(\mu))$.
For $\varepsilon \downarrow 0$ what is behavior of

$$
\begin{aligned}
& \varepsilon \mapsto \Lambda^{*}(a+\varepsilon(b-a)) \\
& \varepsilon \mapsto Q_{\psi(a+\varepsilon(b-a))} \\
& \varepsilon \mapsto V(a+\varepsilon(b-a))
\end{aligned}
$$

Assume $a \in \operatorname{dom}\left(\Lambda^{*}\right) \backslash \operatorname{int}(c s(\mu))$ and $b \in \operatorname{int}(c s(\mu))$.
For $\varepsilon \downarrow 0$ what is behavior of

$$
\begin{aligned}
& \varepsilon \mapsto \Lambda^{*}(a+\varepsilon(b-a)) \\
& \varepsilon \mapsto Q_{\psi(a+\varepsilon(b-a))} \\
& \varepsilon \mapsto V(a+\varepsilon(b-a))
\end{aligned}
$$

Jørgensen, Martínez, Tsao (1994) $\quad V$ when $d=1$

Assume $a \in \operatorname{dom}\left(\Lambda^{*}\right) \backslash \operatorname{int}(c s(\mu))$ and $b \in \operatorname{int}(c s(\mu))$.
For $\varepsilon \downarrow 0$ what is behavior of

$$
\begin{aligned}
& \varepsilon \mapsto \Lambda^{*}(a+\varepsilon(b-a)) \\
& \varepsilon \mapsto Q_{\psi(a+\varepsilon(b-a))} \\
& \varepsilon \mapsto V(a+\varepsilon(b-a))
\end{aligned}
$$

$$
\ldots
$$

Jørgensen, Martínez, Tsao (1994) $\quad V$ when $d=1$
Masmoudi (1999) $\quad V$ when $d \geqslant 1$, under many restrictions

Assume $a \in \operatorname{dom}\left(\Lambda^{*}\right) \backslash \operatorname{int}(\operatorname{cs}(\mu))$ and $b \in \operatorname{int}(\operatorname{cs}(\mu))$.
For $\varepsilon \downarrow 0$ what is behavior of

$$
\begin{aligned}
& \varepsilon \mapsto \Lambda^{*}(a+\varepsilon(b-a)) \\
& \varepsilon \mapsto Q_{\psi(a+\varepsilon(b-a))} \\
& \varepsilon \mapsto V(a+\varepsilon(b-a))
\end{aligned}
$$

$$
\cdots
$$

Jørgensen, Martínez, Tsao (1994) $\quad V$ when $d=1$
Masmoudi (1999) $\quad V$ when $d \geqslant 1$, under many restrictions
Matúš (2007) Λ^{*} when the support $s(\mu)$ of μ is finite

In the figure, μ is concentrated on the five black squares.

In the figure, μ is concentrated on the five black squares. cs (μ) the pentagon

In the figure, μ is concentrated on the five black squares. $c s(\mu)$ the pentagon a inside a unique face F of $\operatorname{cs}(\mu)$

In the figure, μ is concentrated on the five black squares. $c s(\mu)$ the pentagon a inside a unique face F of $\operatorname{cs}(\mu)$ $b \in \operatorname{int}(c s(\mu))$

In the figure, μ is concentrated on the five black squares. $c s(\mu)$ the pentagon a inside a unique face F of $\operatorname{cs}(\mu)$ $b \in \operatorname{int}(\operatorname{cs}(\mu))$
C ... the convex hull of $s(\mu) \backslash F$

In the figure, μ is concentrated on the five black squares. $c s(\mu)$ the pentagon a inside a unique face F of $\operatorname{cs}(\mu)$ $b \in \operatorname{int}(\operatorname{cs}(\mu))$
C ... the convex hull of $s(\mu) \backslash F$
$C_{+}=C+\operatorname{lin}(F) \ldots$ the strip

In the figure, μ is concentrated on the five black squares. $c s(\mu)$ the pentagon a inside a unique face F of $\operatorname{cs}(\mu)$ $b \in \operatorname{int}(\operatorname{cs}(\mu))$
C ... the convex hull of $s(\mu) \backslash F$
$C_{+}=C+\operatorname{lin}(F) \ldots$ the strip
$x_{a b} \ldots$ a nearest point of C_{+}

In the figure, μ is concentrated on the five black squares.
$c s(\mu)$ the pentagon
a inside a unique face F of $\operatorname{cs}(\mu)$
$b \in \operatorname{int}(\operatorname{cs}(\mu))$
C ... the convex hull of $s(\mu) \backslash F$
$C_{+}=C+\operatorname{lin}(F) \ldots$ the strip
$x_{a b} \ldots$ a nearest point of C_{+}
$G \ldots$ a face of C

In the figure, μ is concentrated on the five black squares. $c s(\mu)$ the pentagon a inside a unique face F of $\operatorname{cs}(\mu)$ $b \in \operatorname{int}(\operatorname{cs}(\mu))$
C ... the convex hull of $s(\mu) \backslash F$
$C_{+}=C+\operatorname{lin}(F) \ldots$ the strip
$x_{a b} \ldots$ a nearest point of C_{+}
G ... a face of C
$x_{a b}^{*} \ldots$ a special point inside G

Theorem (M07)

If μ is a pm on \mathbb{R}^{d} concentrated on a finite set, $a \in r i(F)$ for a proper face F of $\operatorname{cs}(\mu), b \in \operatorname{int}(\operatorname{cs}(\mu))$ and $\varepsilon>0$ then

$$
\begin{aligned}
\Lambda^{*}\left(a+\varepsilon\left(x_{a b}-a\right)\right)= & \Lambda^{*}(a)+\varepsilon \ln \varepsilon \\
& +\varepsilon\left[\Psi_{C, \Xi}^{*}\left(x_{a b}\right)-1-\Lambda^{*}(a)\right]+o(\varepsilon)
\end{aligned}
$$

Theorem (M07)

If μ is a pm on \mathbb{R}^{d} concentrated on a finite set, $a \in r i(F)$ for a proper face F of $\operatorname{cs}(\mu), b \in \operatorname{int}(c s(\mu))$ and $\varepsilon>0$ then

$$
\begin{aligned}
\Lambda^{*}\left(a+\varepsilon\left(x_{a b}-a\right)\right)= & \Lambda^{*}(a)+\varepsilon \ln \varepsilon \\
& +\varepsilon\left[\Psi_{C, \Xi}^{*}\left(x_{a b}\right)-1-\Lambda^{*}(a)\right]+o(\varepsilon)
\end{aligned}
$$

This approximation was applied to complete the first order conditions for a probability measure to be a maximizer of the divergence from an exponential family (Ay (2002)).

Theorem (unpubl)

Under the above assumptions,
if $x \in s(\mu)$ then $Q_{\psi\left(a+\varepsilon\left(x_{a b}-a\right)\right)}(x)$ equals

$$
\begin{array}{ll}
(1-\varepsilon) \cdot Q_{F, \psi_{F}(a)}(x)+\varepsilon \cdot\left\langle x_{a b}-x_{a b}^{*}, Q_{F, \psi_{F}(a)}^{\prime}(x)\right\rangle, & x \in F, \\
\varepsilon \cdot Q_{G, \psi_{G}\left(x_{a b}^{*}\right)}(x), & x \in G,
\end{array}
$$

0 ,
otherwise.
up to o(ε)-terms.

Theorem (unpubl)

Under the above assumptions, $V\left(a+\varepsilon\left(x_{a b}-a\right)\right)$ equals

$$
(1-\varepsilon) V_{F}(a)+\varepsilon\left[\left(x_{a b}-x_{a b}^{*}\right) V_{F}^{\prime}(a)+V_{G}\left(x_{a b}^{*}\right)+\left[x_{a b}^{*}-a\right]^{[2]}\right]
$$

up to an o(ε)-term.

$$
\mathcal{F}_{1, r}=\{\mathrm{N}(a, r): a \in \mathbb{R}\}
$$

$$
V(a)=r
$$

$$
r>0
$$

$$
\begin{array}{lr}
\mathcal{F}_{1, r}=\{\mathrm{N}(a, r): a \in \mathbb{R}\} & V(a)=r \\
\left.\mathcal{F}_{2}=\{\operatorname{Poi}(a): a>0)\right\} & V(a)=a
\end{array}
$$

$$
r>0
$$

$$
\begin{array}{lrl}
\mathcal{F}_{1, r}=\{\mathrm{N}(a, r): a \in \mathbb{R}\} & V(a)=r & r>0 \\
\left.\mathcal{F}_{2}=\{\operatorname{Poi}(a): a>0)\right\} & V(a)=a &
\end{array}
$$

Theorem (Morris 82)

If the variance function of an exponential family \mathcal{E}_{μ} on \mathbb{R} equals a quadratic polynomial on the open interval M_{μ} then \mathcal{E}_{μ} is one of the families $\mathcal{F}_{1, .}-\mathcal{F}_{6, \text { up }}$ to an affine transform.

$$
\begin{array}{lrl}
\mathcal{F}_{1, r}=\{N(a, r): a \in \mathbb{R}\} & V(a)=r & r>0 \\
\left.\mathcal{F}_{2}=\{\operatorname{Poi}(a): a>0)\right\} & V(a)=a &
\end{array}
$$

Theorem (Morris 82)

If the variance function of an exponential family \mathcal{E}_{μ} on \mathbb{R} equals a quadratic polynomial on the open interval M_{μ} then \mathcal{E}_{μ} is one of the families $\mathcal{F}_{1,}-\mathcal{F}_{6, \text {. up }}$ to an affine transform.

$$
\mathcal{F}_{3, n}=\{\operatorname{Bi}(a, n): 0<a<n\} \quad V(a)=\frac{1}{n} a(n-a) \quad n \geqslant 1
$$

$$
\begin{array}{lrl}
\mathcal{F}_{1, r}=\{N(a, r): a \in \mathbb{R}\} & V(a)=r & r>0 \\
\left.\mathcal{F}_{2}=\{\operatorname{Poi}(a): a>0)\right\} & V(a)=a &
\end{array}
$$

Theorem (Morris 82)

If the variance function of an exponential family \mathcal{E}_{μ} on \mathbb{R} equals a quadratic polynomial on the open interval M_{μ} then \mathcal{E}_{μ} is one of the families $\mathcal{F}_{1, .}-\mathcal{F}_{6, \text {. up }}$ to an affine transform.

$$
\begin{array}{lll}
\mathcal{F}_{3, n}=\{\operatorname{Bi}(a, n): 0<a<n\} & V(a)=\frac{1}{n} a(n-a) & n \geqslant 1 \\
\mathcal{F}_{4, r}=\{\operatorname{NBi}(a, r): a>0\} & V(a)=\frac{1}{r} a(n+a) & r>0
\end{array}
$$

$$
\begin{array}{lrl}
\mathcal{F}_{1, r}=\{\mathrm{N}(a, r): a \in \mathbb{R}\} & V(a)=r & r>0 \\
\left.\mathcal{F}_{2}=\{\operatorname{Poi}(a): a>0)\right\} & V(a)=a &
\end{array}
$$

Theorem (Morris 82)

If the variance function of an exponential family \mathcal{E}_{μ} on \mathbb{R} equals a quadratic polynomial on the open interval M_{μ} then \mathcal{E}_{μ} is one of the families $\mathcal{F}_{1, .}-\mathcal{F}_{6, \text {. up }}$ to an affine transform.

$$
\begin{array}{lll}
\mathcal{F}_{3, n}=\{\operatorname{Bi}(a, n): 0<a<n\} & V(a)=\frac{1}{n} a(n-a) & n \geqslant 1 \\
\mathcal{F}_{4, r}=\{\operatorname{NBi}(a, r): a>0\} & V(a)=\frac{1}{r} a(n+a) & r>0 \\
\mathcal{F}_{5, r}=\{\operatorname{Ga}(a, r): a>0\} & V(a)=\frac{1}{r} a^{2} & r>0
\end{array}
$$

$$
\begin{array}{lcc}
\mathcal{F}_{1, r}=\{\mathrm{N}(a, r): a \in \mathbb{R}\} & V(a)=r & r>0 \\
\left.\mathcal{F}_{2}=\{\operatorname{Poi}(a): a>0)\right\} & V(a)=a &
\end{array}
$$

Theorem (Morris 82)

If the variance function of an exponential family \mathcal{E}_{μ} on \mathbb{R} equals a quadratic polynomial on the open interval M_{μ} then \mathcal{E}_{μ} is one of the families $\mathcal{F}_{1, .}-\mathcal{F}_{6, \text { up }}$ to an affine transform.

$$
\begin{array}{lll}
\mathcal{F}_{3, n}=\{\operatorname{Bi}(a, n): 0<a<n\} & V(a)=\frac{1}{n} a(n-a) & n \geqslant 1 \\
\mathcal{F}_{4, r}=\{\operatorname{NBi}(a, r): a>0\} & V(a)=\frac{1}{r} a(n+a) & r>0 \\
\mathcal{F}_{5, r}=\{\operatorname{Ga}(a, r): a>0\} & V(a)=\frac{1}{r} a^{2} & r>0 \\
\mathcal{F}_{6, r}=\{\operatorname{Ghs}(a, r): a \in \mathbb{R}\} & V(a)=\frac{1}{r} a^{2}+r & r>0
\end{array}
$$

$$
\begin{array}{lrl}
\mathcal{F}_{1, r}=\{\mathrm{N}(a, r): a \in \mathbb{R}\} & V(a)=r & r>0 \\
\left.\mathcal{F}_{2}=\{\operatorname{Poi}(a): a>0)\right\} & V(a)=a &
\end{array}
$$

Theorem (Morris 82)

If the variance function of an exponential family \mathcal{E}_{μ} on \mathbb{R} equals a quadratic polynomial on the open interval M_{μ} then \mathcal{E}_{μ} is one of the families $\mathcal{F}_{1, .}-\mathcal{F}_{6, \text {. up }}$ to an affine transform.

$$
\begin{array}{lll}
\mathcal{F}_{3, n}=\{\operatorname{Bi}(a, n): 0<a<n\} & V(a)=\frac{1}{n} a(n-a) & n \geqslant 1 \\
\mathcal{F}_{4, r}=\{\operatorname{NBi}(a, r): a>0\} & V(a)=\frac{1}{r} a(n+a) & r>0 \\
\mathcal{F}_{5, r}=\{\operatorname{Ga}(a, r): a>0\} & V(a)=\frac{1}{r} a^{2} & r>0 \\
\mathcal{F}_{6, r}=\{\operatorname{Ghs}(a, r): a \in \mathbb{R}\} & V(a)=\frac{1}{r} a^{2}+r & r>0
\end{array}
$$

... generalized hyperbolic secant

$d=1$, VF cubic, Letac\&Mora (1990), ten types

$d=1$, VF cubic, Letac\&Mora (1990), ten types $d=1, \Lambda^{\prime}$ has a meromorphic extension, Bar-Lev\&Bshouty\&Enis (1991)

$d=1$, VF cubic, Letac\&Mora (1990), ten types
$d=1, \Lambda^{\prime}$ has a meromorphic extension, Bar-Lev\&Bshouty\&Enis (1991)
Letac (1992) Lectures on NEF's and their VF's
$d=1$, VF cubic, Letac\&Mora (1990), ten types
$d=1, \Lambda^{\prime}$ has a meromorphic extension, Bar-Lev\&Bshouty\&Enis (1991)
Letac (1992) Lectures on NEF's and their VF's

The case $d=2$ and VF quadratic is open.
$d=1$, VF cubic, Letac\&Mora (1990), ten types
$d=1, \Lambda^{\prime}$ has a meromorphic extension, Bar-Lev\&Bshouty\&Enis (1991)
Letac (1992) Lectures on NEF's and their VF's

The case $d=2$ and VF quadratic is open.
$d \geqslant 1$, each diagonal element $V_{i, i}$ is a function of a_{i}
Bar-Lev\&Bshouty\&Enis\&Letac\&Lu\&Richards (1994)
$d=1, \mathrm{VF}$ cubic, Letac\&Mora (1990), ten types
$d=1, \Lambda^{\prime}$ has a meromorphic extension, Bar-Lev\&Bshouty\&Enis (1991)
Letac (1992) Lectures on NEF's and their VF's

The case $d=2$ and VF quadratic is open.
$d \geqslant 1$, each diagonal element $V_{i, i}$ is a function of a_{i}
Bar-Lev\&Bshouty\&Enis\&Letac\&Lu\&Richards (1994)
$d \geqslant 1$, VF simple quadratic, Casalis (1996)
$d=1, \mathrm{VF}$ cubic, Letac\&Mora (1990), ten types
$d=1, \Lambda^{\prime}$ has a meromorphic extension, Bar-Lev\&Bshouty\&Enis (1991)
Letac (1992) Lectures on NEF's and their VF's

The case $d=2$ and VF quadratic is open.
$d \geqslant 1$, each diagonal element $V_{i, i}$ is a function of a_{i}
Bar-Lev\&Bshouty\&Enis\&Letac\&Lu\&Richards (1994)
$d \geqslant 1$, VF simple quadratic, Casalis (1996)
$d \geqslant 1$, VF simple cubic, Hassairi\&Zarai (2006)
$d=1$, VF cubic, Letac\&Mora (1990), ten types
$d=1, \Lambda^{\prime}$ has a meromorphic extension, Bar-Lev\&Bshouty\&Enis (1991)
Letac (1992) Lectures on NEF's and their VF's

The case $d=2$ and VF quadratic is open.
$d \geqslant 1$, each diagonal element $V_{i, i}$ is a function of a_{i}
Bar-Lev\&Bshouty\&Enis\&Letac\&Lu\&Richards (1994)
$d \geqslant 1$, VF simple quadratic, Casalis (1996)
$d \geqslant 1$, VF simple cubic, Hassairi\&Zarai (2006)
$d \geqslant 1$, Letac\&Wesołowski (2008)
$d=1$, VF cubic, Letac\&Mora (1990), ten types
$d=1, \Lambda^{\prime}$ has a meromorphic extension, Bar-Lev\&Bshouty\&Enis (1991)
Letac (1992) Lectures on NEF's and their VF's

The case $d=2$ and VF quadratic is open.
$d \geqslant 1$, each diagonal element $V_{i, i}$ is a function of a_{i}
Bar-Lev\&Bshouty\&Enis\&Letac\&Lu\&Richards (1994)
$d \geqslant 1$, VF simple quadratic, Casalis (1996)
$d \geqslant 1$, VF simple cubic, Hassairi\&Zarai (2006)
$d \geqslant 1$, Letac\&Wesołowski (2008)
$d=2$, each $V_{i, i}$ affine in a_{i}, Chachulska (2010)
$d=1$, VF cubic, Letac\&Mora (1990), ten types
$d=1, \Lambda^{\prime}$ has a meromorphic extension, Bar-Lev\&Bshouty\&Enis (1991)
Letac (1992) Lectures on NEF's and their VF's

The case $d=2$ and VF quadratic is open.
$d \geqslant 1$, each diagonal element $V_{i, i}$ is a function of a_{i}
Bar-Lev\&Bshouty\&Enis\&Letac\&Lu\&Richards (1994)
$d \geqslant 1$, VF simple quadratic, Casalis (1996)
$d \geqslant 1$, VF simple cubic, Hassairi\&Zarai (2006)
$d \geqslant 1$, Letac\&Wesołowski (2008)
$d=2$, each $V_{i, i}$ affine in a_{i}, Chachulska (2010)

Theorem (unpubl)

If an EF has a quadratic VF and finite support then it coincides with the product of multinomial families up to an affinity.

Theorem (unpubl)

If an EF has a quadratic VF and finite support then it coincides with the product of multinomial families up to an affinity.

Proof by induction on d :

Theorem (unpubl)

If an EF has a quadratic VF and finite support then it coincides with the product of multinomial families up to an affinity.

Proof by induction on d :

$$
d=1 \text { by Morris classification }
$$

Theorem (unpubl)

If an EF has a quadratic VF and finite support then it coincides with the product of multinomial families up to an affinity.

Proof by induction on d :

$$
\begin{aligned}
& d=1 \text { by Morris classification } \\
& d \geqslant 2
\end{aligned}
$$

Theorem (unpubl)

If an EF has a quadratic VF and finite support then it coincides with the product of multinomial families up to an affinity.

Proof by induction on d :

$$
\begin{aligned}
& d=1 \text { by Morris classification } \\
& d \geqslant 2 \text { : } \\
& \text { a facet } F \text { and edge } E \text { of the polytope } \operatorname{cs}(\mu)
\end{aligned}
$$

Theorem (unpubl)

If an EF has a quadratic VF and finite support then it coincides with the product of multinomial families up to an affinity.

Proof by induction on d :

$$
\begin{aligned}
& d=1 \text { by Morris classification } \\
& d \geqslant 2: \\
& \text { a facet } F \text { and edge } E \text { of the polytope } \operatorname{cs}(\mu) \\
& \quad \text { intersect in an extreme point }
\end{aligned}
$$

Theorem (unpubl)

If an EF has a quadratic VF and finite support then it coincides with the product of multinomial families up to an affinity.

Proof by induction on d :
$d=1$ by Morris classification
$d \geqslant 2$:
a facet F and edge E of the polytope $\operatorname{cs}(\mu)$
intersect in an extreme point
the restrictions of μ to F or E are known by induction

Theorem (unpubl)

If an EF has a quadratic VF and finite support then it coincides with the product of multinomial families up to an affinity.

Proof by induction on d :
$d=1$ by Morris classification
$d \geqslant 2$:
a facet F and edge E of the polytope $\operatorname{cs}(\mu)$
intersect in an extreme point
the restrictions of μ to F or E are known by induction the approximation of V around $a \in r i(F)$ is applied

Theorem (unpubl)

If an EF has a quadratic VF and finite support then it coincides with the product of multinomial families up to an affinity.

Proof by induction on d :
$d=1$ by Morris classification
$d \geqslant 2$:
a facet F and edge E of the polytope $c s(\mu)$
intersect in an extreme point
the restrictions of μ to F or E are known by induction the approximation of V around $a \in r i(F)$ is applied and combined with the assumption

Theorem (unpubl)

If an EF has a quadratic VF and finite support then it coincides with the product of multinomial families up to an affinity.

Proof by induction on d :
$d=1$ by Morris classification
$d \geqslant 2$:
a facet F and edge E of the polytope $\operatorname{cs}(\mu)$
intersect in an extreme point
the restrictions of μ to F or E are known by induction the approximation of V around $a \in r i(F)$ is applied and combined with the assumption on the quadratic behaviour of VF.

