Importance Sampling to Estimate the Entropy Function in Graphical Models with Cycles

Mehdi Molkaraie and Hans-Andrea Loeliger
Information and Signal Processing Laboratory ETH Zurich

Workshop on Graphical Models: The Fields Institute, 16-18 April 2012

Problem Setting

Let $X=\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$ be a set of N binary RV's ie each with alphabet $\mathcal{X}=\{0,1\}$

Let $f\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ be a nonnegative function $f: \mathcal{X}^{N} \rightarrow \mathbb{R}$
The support of f

$$
\mathcal{S}_{f}=\left\{x \in \mathcal{X}^{N}: f(x)>0\right\}
$$

Suppose $f(x)$ factors into several nonnegative "local functions" each having some subset of $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ as arguments ie

$$
f(x)=\prod_{R \in \mathcal{R}} f_{R}\left(x_{R}\right)
$$

Example:
Suppose $N=5$ and $\mathcal{R}=\{\{1,2,3\},\{3,4,5\},\{5\}\}$

$$
f(x)=f_{\{1,2,3\}}\left(x_{1}, x_{2}, x_{3}\right) f_{\{3,4,5\}}\left(x_{3}, x_{4}, x_{5}\right) f_{\{5\}}\left(x_{5}\right)
$$

Quantities of Interest

We can define/compute

- A probability mass function $p(x)$ on \mathcal{X}^{N} as

$$
p(x)=\frac{f(x)}{Z_{f}}
$$

- The normalization constant, the partition function, Z_{f}

$$
Z_{f}=\sum_{x \in \mathcal{X}^{N}} f(x)
$$

- The marginals of $p(x)$ on R

$$
p_{R}\left(x_{R}\right)=\sum_{x \backslash x_{R}} p(x)
$$

- The entropy function

$$
H(X)=-\sum_{x \in \mathcal{X}^{N}} p(x) \log _{2} p(x)=-\mathrm{E}_{p}\left[\log _{2} p(X)\right]
$$

Graphical Models: Factor Graphs

We use (Forney) factor graphs [KFL01] to express factorizations as

$$
f(x)=\prod_{R \in \mathcal{R}} f_{R}\left(x_{R}\right)
$$

A factor graphs consists of

- nodes (representing factors), and
- edges/half edges (representing variables).

Example 1:

$$
f(x)=f_{A}\left(x_{1}, x_{2}, x_{3}\right) f_{B}\left(x_{3}, x_{4}, x_{5}\right) f_{C}\left(x_{5}\right)
$$

Factor Graphs : Cloning

If a variable appears in more than two factors, we clone the variable.

$$
f_{1}(x) f_{2}(x) f_{3}(x)=f_{1}(x) f_{2}\left(x^{\prime}\right) f_{3}\left(x^{\prime \prime}\right) \delta\left(x-x^{\prime}\right) \delta\left(x-x^{\prime \prime}\right)
$$

Example 2:

$$
f(x)=f_{A}\left(x_{1}, x_{2}\right) f_{B}\left(x_{2}, x_{3}\right) f_{C}\left(x_{2}, x_{4}\right)
$$

Factor Graphs : 2D Model

Example 3:

$$
f\left(x_{1}, \ldots, x_{N}\right)=\prod_{\substack{\text { neighbors }\left(x_{k}, x_{\ell}\right)}} g_{k, \ell}\left(x_{k}, x_{\ell}\right)
$$

Cycle-Free Factor Graphs: The Sum-Product Algorithm

If f has a cycle-free factor graph representation, the sum-product algorithm can compute Z_{f} and the marginals $p_{R}\left(x_{R}\right)$ efficiently (after a finite number of steps).

Similar algorithms:
The sum-product algorithm on factor graphs.
J. Pearl's belief propagation algorithm.

Forward/Backward algorithm.
BCJR on trellises.

Cycle-Free Factor Graphs: Sampling \& $H(X)$

Consider

$$
p(x) \propto f_{A}\left(x_{1}, x_{2}\right) f_{B}\left(x_{2}, x_{3}\right) f_{C}\left(x_{3}, x_{4}\right)
$$

By reparameterization

$$
\begin{aligned}
& p(x)=\frac{p\left(x_{1}, x_{2}\right) p\left(x_{2}, x_{3}\right) p\left(x_{3}, x_{4}\right)}{p\left(x_{2}\right) p\left(x_{3}\right)} \\
& p(x)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right)
\end{aligned}
$$

In a cycle-free graph

- It is easy to draw samples according to $p(x)$
- Entropy decomposes

$$
H(X)=H\left(X_{1}, X_{2}\right)+H\left(X_{2}, X_{3}\right)+H\left(X_{3}, X_{4}\right)-H\left(X_{2}\right)-H\left(X_{3}\right)
$$

Constrained 2D Model with Cycles: Z_{f}

Consider a constrained 2D model as of size $N=m \times m$

$$
f\left(x_{1}, \ldots, x_{N}\right)=\prod_{\text {neighbors }\left(x_{k}, x_{\ell}\right)} g\left(x_{k}, x_{\ell}\right)
$$

$$
g\left(x_{k}, x_{\ell}\right)=\left\{\begin{array}{l}
0, \text { if } x_{k}=x_{\ell}=1 \\
1, \text { else }
\end{array}\right.
$$

Constrained 2D Model

In this case

$$
Z_{f}=\sum_{x \in \mathcal{X}^{N}} f(x)=\text { number of valid configurations }=\left|\mathcal{S}_{f}\right|
$$

The entropy rate $\frac{1}{N} H(X)=\frac{1}{N} \log _{2} Z_{f}$
Example 4
For a 2×2 model

$$
\begin{array}{llllllllllllll}
0 & 0 & 1 & 0 & & 0 & 1 & & 0 & 0 & & 0 & 0 & \\
0 & 0 & & 0 & 1 \\
0 & 0 & & 0 & 0 & & 0 & 0 & & 1 & 0 & & 0 & 1 \\
& 0 & 1 & & 1 & 0
\end{array}
$$

The entropy rate is

$$
\frac{1}{4} \log _{2} 7=0.701 \quad \text { bits } / \text { symbol }
$$

Estimating $1 / Z_{f}$

Gibbs Sampling

1. Draw samples $x^{(1)}, x^{(2)}, \ldots, x^{(K)} \in \mathcal{S}_{f}$ according to $p(x)$
2. Compute:

$$
\hat{\Gamma}=\frac{1}{K \cdot\left|\mathcal{S}_{f}\right|} \sum_{k=1}^{K} \frac{1}{f\left(x^{(k)}\right)}
$$

$\Rightarrow E[\hat{\Gamma}]=1 / Z_{f}$

Tree-Based Gibbs Sampling

Partition the index set $\{1, \ldots, N\}$ into two parts (A, B) such that by fixing x_{A} or x_{B} the remaining factor graph is cycle-free.

Generate samples $\left(x_{A}^{(1)}, x_{B}^{(1)}\right),\left(x_{A}^{(2)}, x_{B}^{(2)}\right), \ldots$ by alternating between

- sampling $x_{A}^{(k)}$ according to $p\left(x_{A} \mid x_{B}=x_{B}^{(k-1)}\right) \propto f\left(x_{A}, x_{B}^{(k-1)}\right)$
- sampling $x_{B}^{(k)}$ according to $p\left(x_{B} \mid x_{A}=x_{A}^{(k)}\right) \propto f\left(x_{A}^{(k)}, x_{B}\right)$

Mixes faster than Gibbs sampling

Tree-Based Estimation of $1 / Z_{f}$

Suppose

$$
f_{A}\left(x_{A}\right) \triangleq \sum_{x_{B}} f\left(x_{A}, x_{B}\right)
$$

Therefore

$$
\begin{aligned}
Z_{f_{A}} & =\sum_{x_{A}} f_{A}\left(x_{A}\right) \\
& =Z_{f}
\end{aligned}
$$

\Longrightarrow Modified Gibbs sampler to estimate $1 / Z_{f_{A}}$ by:

$$
\hat{\Gamma}_{A}=\frac{1}{K \cdot\left|\mathcal{S}_{f_{A}}\right|} \sum_{k=1}^{K} \frac{1}{f_{A}\left(x_{A}^{(k)}\right)}
$$

where

$$
f_{A}\left(x_{A}^{(k)}\right)=\sum_{x_{B}} f\left(x_{A}^{(k)}, x_{B}\right)
$$

$$
\hat{\Gamma}_{A}=\frac{1}{K\left|\mathcal{S}_{f_{A}}\right|} \sum_{k=1}^{K} \frac{1}{f_{A}\left(\mathbf{x}_{A}^{(k)}\right)} \quad \hat{\Gamma}_{B}=\frac{1}{K\left|\mathcal{S}_{f_{B}}\right|} \sum_{k=1}^{K} \frac{1}{f_{B}\left(\mathbf{x}_{B}^{(k)}\right)}
$$

Numerical Example:

Size $N=10 \times 10$.
Estimated $\frac{1}{N} \log \hat{Z}_{f}$ vs. number of samples K

Numerical Example:

Size $N=60 \times 60$.
Estimated $\frac{1}{N} \log \hat{Z}_{f}$ vs. number of samples K

Source/Channel Models with Cycles

- Channel output Y and channel input X with two-dimensional factor graph for $p(x)$ (up to a scale factor)
- Memoryless channel $p(y \mid x)=\prod_{k=1}^{N} p\left(y_{k} \mid x_{k}\right)$
- Goal: estimating $H(Y)$

Estimating the Mutual Information Rate $I(X ; Y)$

The mutual information rate between the input process and the output process is

$$
\frac{1}{N} I(X ; Y)=\frac{1}{N}(H(Y)-H(Y \mid X))
$$

In many cases of interest, $H(Y \mid X)$ is analytically available eg when noise is additive white Gaussian (AWGN), independent of the input

$$
H(Y \mid X)=\frac{N}{2} \log \left(2 \pi e \sigma^{2}\right)
$$

\Longrightarrow By estimating $H(Y)$, we will have an estimate of $I(X ; Y)$.

Source/Channel Models: $H(Y)$

$$
H(Y)=-\mathrm{E}[\log p(Y)] \approx-\frac{1}{L} \sum_{\ell=1}^{L} \log p\left(y^{(\ell)}\right)
$$

Algorithm

1. Create samples $y^{(1)}, \ldots, y^{(L)}$ by
a) Generating samples $x^{(1)}, \ldots, x^{(L)}$ by simulating the input.
b) Generating $y^{(1)}, \ldots, y^{(L)}$ from $x^{(1)}, \ldots, x^{(L)}$ by channel simulation.
2. Estimate $p\left(y^{(\ell)}\right)$ for $\ell=1,2, \ldots, L$.

- We can generate input samples at step (1.a) using MCMC.
- We concentrate on step (2): estimating

$$
p\left(y^{(\ell)}\right)=\sum_{x \in \mathcal{X}^{N}} p\left(x, y^{(\ell)}\right)
$$

(Computing $p\left(y^{(\ell)}\right)$ needs a sum with an exponential number of terms).

Estimating $p\left(y^{(\ell)}\right)$
Clearly, $p\left(y^{(\ell)}\right)$ is the partition function of $p\left(x, y^{(\ell)}\right)$

$$
p\left(y^{(\ell)}\right)=\sum_{x \in \mathcal{X}^{N}} p\left(x, y^{(\ell)}\right)
$$

We can estimate $p\left(y^{(\ell)}\right)$ using Gibbs sampling.
We also have

$$
\begin{aligned}
p\left(y^{(\ell)}\right) & =\sum_{x \in \mathcal{X}^{N}} p(x) p\left(y^{(\ell)} \mid x\right) \\
& =\mathrm{E}\left[p\left(y^{(\ell)} \mid X\right)\right]
\end{aligned}
$$

But ...

Estimating $p\left(y^{(\ell)}\right)$

Previous method has slow/erratic convergence at SNR $\gtrsim-4 \mathrm{~dB}$.

$$
\mathrm{SNR} \triangleq 10 \log _{10}\left(\frac{1}{\sigma^{2}}\right)
$$

Analogy with statistical physics: $Z=\sum_{s} e^{-E(s) / k_{B} T}$

$$
\begin{aligned}
\text { High temperature (easy) } & \Longleftrightarrow \text { Low SNR } \\
\text { Low temperature (hard) } & \Longleftrightarrow \text { High SNR }
\end{aligned}
$$

Let us define

$$
f_{\ell}(x) \triangleq p(x) p\left(y^{(\ell)} \mid x\right)
$$

The desired quantity $p\left(y^{(\ell)}\right)$ is $Z_{f_{\ell}}$, the partition function of $f_{\ell}(x)$.

Estimating $p\left(y^{(\ell)}\right)$

Importance sampling

1. Draw samples $x^{(1)}, x^{(2)}, \ldots, x^{(K)}$ from \mathcal{X}^{N} according to some auxiliary probability distribution $q(x)=\frac{1}{Z_{g}} g(x)$,
2. Compute

$$
\hat{R}=\frac{1}{K} \sum_{k=1}^{K} \frac{f\left(x^{(k)}\right)}{g\left(x^{(k)}\right)}
$$

$\Longrightarrow \mathrm{E}(\hat{R})=Z_{f} / Z_{g}$.
One (obvious) choice for $g(x)$ is

$$
g(x) \triangleq f(x)^{\alpha}, \quad \text { for } 0<\alpha<1
$$

With this choice, $g(x)$ and $f(x)$ have the same factor graph structure.

Estimating $p\left(y^{(\ell)}\right)$

Use J parallel versions of importance sampling as
For $j=0,1, \ldots, J$ let

$$
\begin{aligned}
g_{j}(x) & \triangleq f(x)^{\alpha_{j}} \\
\text { with } 0<\alpha_{J}<\ldots<\alpha_{1}<\alpha_{0} & =1 \text {. }
\end{aligned}
$$

Here $Z_{g_{0}}=Z_{f}$ and

$$
\frac{Z_{f}}{Z_{g_{J}}}=\frac{Z_{g_{0}}}{Z_{g_{1}}} \frac{Z_{g_{1}}}{Z_{g_{2}}} \cdots \frac{Z_{g_{J-1}}}{Z_{g_{J}}}
$$

Multilayer importance sampling

1. For $j=1,2 \ldots, J$ compute $Z_{g_{j-1}} / Z_{g_{j}}$ by importance sampling.
2. Use $\prod_{j=1}^{J} \hat{R}_{j}$ as an estimate of $Z_{f} / Z_{g_{J}}$, since $\mathrm{E}\left(\hat{R}_{j}\right)=Z_{g_{j-1}} / Z_{g_{j}}$

Estimating $p\left(y^{(\ell)}\right)$: Remarks

Algorithm

1. For $j=1,2, \ldots, J$ compute $Z_{g_{j-1}} / Z_{g_{j}}$ by importance sampling.
2. Use $\prod_{j=1}^{J} \hat{R}_{j}$ as an estimate of $Z_{f} / Z_{g_{J}}$.

Estimating $Z_{g_{J}}$ easier than $Z_{f} \Longrightarrow$ High temperature.
If J is large, $g_{j}(x)$ is a good approximation of $g_{j-1}(x)$, at each layer j.
Larger values of J are required for higher values of SNR.
Some choices of $\left\{\alpha_{0}, \ldots, \alpha_{J}\right\}$ might result in faster convergence.

Similar ideas: Annealed importance sampling [Neal98], Equilibrium free energy differences [Jarzynski97].

Numerical Example: $I(X ; Y)$ at zero dB

Channel size $N=24 \times 24$.
AWGN channel, $p(x)$ uniform over valid configurations, and $J=4$.

Estimated information rate at zero dB vs. number of samples L.

Numerical Example: $I(X ; Y)$ vs. SNR

Channel size $N=24 \times 24$.
AWGN channel, $p(x)$ uniform over valid configurations.
Estimated i.u.d. information rate vs. SNR

Concluding Remarks

We proposed a sampling-based method to estimate the entropy of the input/output process of source/channel models, (in particular) information rates of 2D source/channel models:

Shannon-McMillan Theorem:
For a finite-valued ergodic process $\left\{X_{N}\right\}$

$$
-\frac{1}{N} \log p\left(X_{1}, X_{2}, \ldots, X_{N}\right) \rightarrow H \quad \text { with probability } 1
$$

Papers available online: http://people.ee.ethz.ch/~loeliger

Thank You!

Other Constraints

- DC-free (Spectral-Null Constraints)

Bipolar $\{-1,+1\}$ alphabet, number of +1 's and -1 's are equal.

- No Isolated Bit. Bits agree with at least one of their neighbors.
- Channels with prescribed number of 1 and 0 . Number of 1 's in each row/column is at most $n / 2$.

(Memory coding for limiting current).

RLL Constraints Applications

Track-oriented magnetic recording (1D): in DVDs, hard disks, to reduce interference, improve synchronization, time-control, etc.

Page-oriented magnetic recording (2D): in holograhic memory, to increase capacity per surface.

Noiseless Constrained 1D Channels

Consider a 1D $(1, \infty)$-RLL constraint

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{N}\right)=\prod_{k=2}^{N} g_{k}\left(x_{k-1}, x_{k}\right) \\
Z_{f}=\sum_{x \in \mathcal{X}} f(x)=\sum_{x \in \mathcal{X}} \prod_{k=2}^{N} g_{k}\left(x_{k-1}, x_{k}\right)
\end{gathered}
$$

Computing Z_{f} is straightforward

with sum-product message passing on a cycle-free factor graph.
Other approaches: combinatorial and algebraic [Shannon48].

Capacity of 1D (1, ∞)-RLL

1-D $(1, \infty)$-RLL means adjacent bits can not both have value 1 .

- $N=1, Z=2$, valid sequences: 0,1
- $N=2, Z=3$, valid sequences: $00,10,01$, not: 11
- $N=3, Z=5$, valid sequences: $000,100,010,001,101$.
- Valid sequences of length N :

$$
Z(N)=Z(N-1)+Z(N-2)
$$

Easy to prove

$$
C_{\infty}^{(1, \infty)}=\lim _{N \rightarrow \infty} \frac{\log _{2} Z(N)}{N}=\log _{2} \frac{1+\sqrt{5}}{2} \approx 0.6942 \text { bits }
$$

In statistical physics: transfer matrix method.

1D Numerical Approach

- By increasing the size of the factor graph

N	$Z(N)$	$\frac{1}{N} \log _{2} Z(N)$
1	2	1
2	3	0.79
3	5	0.77
4	8	0.75
5	13	0.74
10	144	0.72
100	9×10^{20}	0.70
400	5×10^{83}	0.69

We know

$$
C_{1 D}^{(1, \infty)}=0.6942 \text { bits }
$$

Bounds for Noiseless Constrained 2D Channels

In 2D, C_{∞} is known (tightly bounded) only for a few special cases:

- For 2D ($1, \infty$)-RLL, [CW98]

$$
0.587891 \ldots \leq C_{\infty} \leq 0.587891 \ldots
$$

- For 2D (d, k)-RLL, [KZ00]

$$
C_{\infty}=0 \quad \Leftrightarrow \quad k=d+1
$$

We propose a general method based on Gibbs sampling to compute a Monte Carlo estimate of the capacity of noiseless 2D RLL constraints.

Sampling from Cycle-Free Factor Graphs

(demonstrated for Markov chains)
Sampling from $p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) \prod_{k=2}^{n} p\left(x_{k} \mid x_{k-1}\right) \quad$ is straightforward.
What if $\quad p\left(x_{1}, \ldots, x_{n}\right) \propto \prod_{k=2}^{n} g_{k}\left(x_{k-1}, x_{k}\right) \quad$?

Reparameterize using $\quad p\left(x_{k} \mid x_{x-1}\right)=\frac{g_{k}\left(x_{k-1}, x_{k}\right) \overleftarrow{\mu}_{X_{k}}\left(x_{k}\right)}{\overleftarrow{\mu}_{X_{k-1}}\left(x_{k-1}\right)}$ with sum-product messages $\overleftarrow{\mu}$
\Longrightarrow "backward filtering forward sampling" (or the other way round)

Estimating $H(Y)$

In the following, we consider

- Source/Channel models with the input process X and the output process Y.

We are primarily interested in

- Estimating $H(Y)$ in source/channel models where Y is a noisy observation of X.

Source/Channel Models: $H(Y)$

Suppose the input process of the source/channel model is X and the output process is Y.

We want to compute

$$
H(Y)=-\mathrm{E}[\log p(Y)] \approx-\frac{1}{L} \sum_{\ell=1}^{L} \log p\left(y^{(\ell)}\right)
$$

for samples $y^{(1)}, y^{(2)}, \ldots, y^{(L)}$ from $p(y)$.

Algorithm

1. Create samples $y^{(1)}, \ldots, y^{(L)}$ by
a) Generating samples $x^{(1)}, \ldots, x^{(L)}$ by simulating the input.
b) Generating $y^{(1)}, \ldots, y^{(L)}$ from $x^{(1)}, \ldots, x^{(L)}$ by channel simulation.
2. Estimate $p\left(y^{(\ell)}\right)$ for $\ell=1,2, \ldots, L$.

Cycle-Free Source/Channel Models: $p(y)$

-Hidden Markov models

In this case

$$
\begin{aligned}
& p(x, y)=p\left(x_{1}\right) \prod_{k=1}^{N} p\left(x_{k+1}, y_{k} \mid x_{k}\right) \\
& p\left(y^{(\ell)}\right)=\sum_{x \in \mathcal{X}^{N}} p\left(x, y^{(\ell)}\right)
\end{aligned}
$$

-Memoryless source/channel models

$$
\begin{aligned}
& p(x, y)=p(x) \prod_{k=1}^{N} p\left(y_{k} \mid x_{k}\right) \\
& p\left(y^{(\ell)}\right)=\sum_{x \in \mathcal{X}^{N}} p\left(x, y^{(\ell)}\right)
\end{aligned}
$$

