The geometry of the groups PSL(2, q)

Julie De Saedeleer

Université Libre de Bruxelles

October 21th, 2011

- 18 infinite families.
- 26 sporadic groups.
- Question left open: To achieve a unified geometric interpretation of all finite simple groups (Buekenhout).
- Encouragement in this direction: Theory of Buildings by J. Tits.
 Applies to 17 of the 18 infinite families leaving aside the *Alt(n)* and the 26 sporadic groups.

- 18 infinite families.
- 26 sporadic groups.
- **Question left open**: To achieve a unified geometric interpretation of all finite simple groups (Buekenhout).
- Encouragement in this direction: Theory of Buildings by J. Tits.
 Applies to 17 of the 18 infinite families leaving aside the *Alt(n)* and the 26 sporadic groups.

- 18 infinite families.
- 26 sporadic groups.
- **Question left open**: To achieve a unified geometric interpretation of all finite simple groups (Buekenhout).
- Encouragement in this direction: Theory of Buildings by J. Tits.
 Applies to 17 of the 18 infinite families leaving aside the *Alt(n)* and the 26 sporadic groups.

- 18 infinite families.
- 26 sporadic groups.
- Question left open: To achieve a unified geometric interpretation of all finite simple groups (Buekenhout).
- Encouragement in this direction: Theory of Buildings by J. Tits.
 Applies to 17 of the 18 infinite families leaving aside the *Alt(n)* and the 26 sporadic groups.

- 18 infinite families.
- 26 sporadic groups.
- Question left open: To achieve a unified geometric interpretation of all finite simple groups (Buekenhout).
- Encouragement in this direction: Theory of Buildings by J. Tits.
 Applies to 17 of the 18 infinite families leaving aside the *Alt(n)* and the 26 sporadic groups.

- 18 infinite families.
- 26 sporadic groups.
- Question left open: To achieve a unified geometric interpretation of all finite simple groups (Buekenhout).
- Encouragement in this direction: Theory of Buildings by J. Tits.
 Applies to 17 of the 18 infinite families leaving aside the *Alt(n)* and the 26 sporadic groups.

Two main traces have been developed in incidence geometry

Classify geometries over a given diagram

Given a group G, classify all incidence geometries of this group and find a good set of axioms to impose on them. This subject is known as Coset geometry

Two main traces have been developed in incidence geometry

- Classify geometries over a given diagram
- Given a group G, classify all incidence geometries of this group and find a good set of axioms to impose on them. This subject is known as Coset geometry

Sample of known results

Sample of known results, theorical and experimental

- Every Alt(n) and Sym(n) for $n \le 8$ (Cara)
- Sporadic groups (Buekenhout, Dehon, Gottchalk, Leemans, Miller): M₁₁, M₁₂, M₂₂, M₂₃, M₂₄, J₁, J₂, J₃, HS, Mcl O'Nan (partial results)
- Sz (Leemans)
- Every PSL(2, q) for $q \le 19$ (Cara, Dehon, Leemans, Vanmeerbeek)

On the way to classify all geometries of PSL(2, q)

Idea

Classify all coset geometries for every PSL(2, q) (*q* prime-power).

On the way to classify all geometries of PSL(2, q)

Idea

Classify all coset geometries for every PSL(2, q) (*q* prime-power).

Classification of all coset geometries of **rank two** on which some group PSL(2, q), q a prime power, acts flag-transitively.

Classification under additional conditions, to be explained.

Incidence geometry of rank two

Geometry of rank two

- A *geometry* Γ is a four-tuple (*X*, *, *t*, *l*) where
 - X is a set whose elements are called the elements of Γ;
 - I is the set {0,1} whose elements are called the types of Γ;
 - **3** $t: X \rightarrow I$ is a mapping from X onto I;
 - Is a symmetric and reflexive relation on X × X such that no two distinct elements of the same type are incident.

Incidence geometry of rank two

Geometry of rank two

- A *geometry* Γ is a four-tuple (*X*, *, *t*, *l*) where
 - X is a set whose elements are called the elements of Γ;
 - I is the set {0,1} whose elements are called the types of Γ;
 - **3** $t: X \rightarrow I$ is a mapping from X onto I;
 - Is a symmetric and reflexive relation on X × X such that no two distinct elements of the same type are incident.

Every element of a given type is incident to at least one element of the other type.

Incidence geometry of rank two

Geometry of rank two

- A *geometry* Γ is a four-tuple (*X*, *, *t*, *l*) where
 - X is a set whose elements are called the elements of Γ;
 - I is the set {0,1} whose elements are called the types of Γ;
 - **3** $t: X \rightarrow I$ is a mapping from X onto I;
 - Is a symmetric and reflexive relation on X × X such that no two distinct elements of the same type are incident.

Every element of a given type is incident to at least one element of the other type.

Flag

In a geometry, a *flag* \mathcal{F} is a set of pairwise incident elements.

Let $I = \{0, 1\}$ be the type set; let *G* be a group with two distinct subgroups $(G_i)_{i \in I}$.

Let $I = \{0, 1\}$ be the type set; let *G* be a group with two distinct subgroups $(G_i)_{i \in I}$. We require:

$$\ \, \bullet \ \, G = < G_0, G_1 >;$$

2 $G_0 \cap G_1$ is a proper subgroup of G_0 and of G_1 .

Let $I = \{0, 1\}$ be the type set; let *G* be a group with two distinct subgroups $(G_i)_{i \in I}$.

We require:

- $G_0 \cap G_1$ is a proper subgroup of G_0 and of G_1 .
- 2 $G = \langle G_0, G_1 \rangle;$

Construction of a Coset geometry for $(G, \{G_0, G_1\})$

We construct a geometry $\Gamma = \Gamma(G, (G_i)_{i \in I}) = (X, t, *, I)$ as follows

- The set of elements is $X = \{gG_i | g \in G, G_i \in (G_i)_{i \in I}\}.$
- 3 We define an *incidence relation* * on $X \times X$ by

 $gG_i * hG_j \Leftrightarrow gG_i \bigcap hG_j \neq \emptyset$

3 The type function on Γ is defined by $t(gG_i) = i$

Let $I = \{0, 1\}$ be the type set; let *G* be a group with two distinct subgroups $(G_i)_{i \in I}$.

We require:

- $G_0 \cap G_1$ is a proper subgroup of G_0 and of G_1 .
- 2 $G = \langle G_0, G_1 \rangle;$

Construction of a Coset geometry for $(G, \{G_0, G_1\})$

We construct a geometry $\Gamma = \Gamma(G, (G_i)_{i \in I}) = (X, t, *, I)$ as follows

- The set of elements is $X = \{gG_i | g \in G, G_i \in (G_i)_{i \in I}\}.$
- **2** We define an *incidence relation* * on $X \times X$ by

$$gG_i * hG_j \Leftrightarrow gG_i \bigcap hG_j \neq \emptyset$$

3 The type function on Γ is defined by $t(gG_i) = i$

Let $I = \{0, 1\}$ be the type set; let *G* be a group with two distinct subgroups $(G_i)_{i \in I}$.

We require:

- $G_0 \cap G_1$ is a proper subgroup of G_0 and of G_1 .
- 2 $G = \langle G_0, G_1 \rangle;$

Construction of a Coset geometry for $(G, \{G_0, G_1\})$

We construct a geometry $\Gamma = \Gamma(G, (G_i)_{i \in I}) = (X, t, *, I)$ as follows

- The set of elements is $X = \{gG_i | g \in G, G_i \in (G_i)_{i \in I}\}.$
- ② We define an *incidence relation* * on $X \times X$ by

$$gG_i * hG_j \Leftrightarrow gG_i \bigcap hG_j \neq \emptyset$$

③ The type function on Γ is defined by $t(gG_i) = i$

Let $\Gamma = \Gamma(G; \{G_0, G_1\})$ be a geometry of rank two:

- the geometry Γ must be *firm (F)*;
- the geometry Γ must be residually connected (RC);
- the group G must act *flag-transitively (FT)* on Γ;
- the group G must act residually weakly primitively (RWPRI) on Γ;
- the geometry Γ must be *locally two-transitive* $(2T)_1$.

Let $\Gamma = \Gamma(G; \{G_0, G_1\})$ be a geometry of rank two:

- the geometry Γ must be firm (F);
- the geometry Γ must be *residually connected (RC)*;
- the group G must act *flag-transitively (FT)* on Γ;
- the group G must act residually weakly primitively (RWPRI) on Γ;
- the geometry Γ must be *locally two-transitive* $(2T)_1$.

Let $\Gamma = \Gamma(G; \{G_0, G_1\})$ be a geometry of rank two:

- the geometry Γ must be firm (F);
- the geometry Γ must be *residually connected (RC)*;
- the group G must act *flag-transitively (FT)* on Γ;
- the group G must act residually weakly primitively (RWPRI) on Γ;
- the geometry Γ must be *locally two-transitive* $(2T)_1$.

Lemmas

- **1** If Γ is a rank two geometry, then *G* acts FT on Γ .
- **2** If Γ is RWPRI, then it is also firm and RC.

Let $\Gamma = \Gamma(G; \{G_0, G_1\})$ be a geometry of rank two:

- the geometry Γ must be *firm (F)*;
- the geometry Γ must be *residually connected (RC)*;
- the group G must act *flag-transitively (FT)* on Γ;
- the group G must act residually weakly primitively (RWPRI) on Γ;
- the geometry Γ must be *locally two-transitive* $(2T)_1$.

The only axioms we must verify for the rank two are: RWPRI and $(2T)_1$.

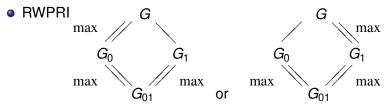
RWPRI and $2T_1$

Let $\Gamma(G; \{G_0, G_1\})$ be a geometry of rank 2. • RWPRI G G max max G_1 Gı Gn max max max max G_{0^1} G_{01} or

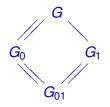
• Γ is $(2T)_1$ if G_0 and G_1 act two-transitively on the cosets of G_{01}

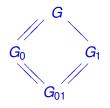
RWPRI and $2T_1$

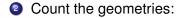
Let $\Gamma(G; \{G_0, G_1\})$ be a geometry of rank 2.



 Γ is (2T)₁ if G₀ and G₁ act two-transitively on the cosets of G₀₁







- up to isomorphism
- up to conjugacy

Classification Theorem of rank two geometries of PSL(2, q) groups

Classification Theorem (DS and Leemans)

Let $G \cong PSL(2, q)$ and $\Gamma(G; \{G_0, G_1, G_0 \cap G_1\})$ be a locally two-transitive RWPRI geometry of rank two. If G_0 is isomorphic to one of $E_q: \frac{(q-1)}{(2,q-1)}$, $D_2 \frac{(q\pm 1)}{(2,q-1)}$, A_4 , S_4 , A_5 , $PSL(2, q_i)$ or $PGL(2, q_i)$, then Γ is isomorphic to one of the geometries appearing in the following tables

	$G_0\cong S_4$			$q = p > 2$ and $q = \pm 1(8)$
G ₀₁	G_1	♯ up to	‡ up to	Extra conditions on q
		conj.	isom.	
D ₆	D ₁₂	2	1	$q=\pm 1(24)$
	D ₁₈	2	1	$q = \pm 1(72)$ or $q = \pm 17(72)$
	S_4	2	1	$rac{q\pm 1}{6}$ even
	S_4	1	1	$\frac{q \pm 1}{6}$ odd
D ₈	D ₁₆	2	1	$q = \pm 1(16)$
	D ₂₄	2	1	$q=\pm 1(24)$
	S_4	2	1	$\frac{q\pm 1}{8}$ even
	S_4	1	1	$\frac{q \pm 1}{8}$ odd
A ₄	A_5	2	1	$q=\pm 1(40)$ or $q=\pm 9(40)$

Table: The *RWPRI* and $(2T)_1$ geometries with $G_0 = S_4$.

Conclusion

• The classification of the rank two geometries under the given conditions is complete.

- Our list comprises infinite classes of geometries up to conjugacy (resp. isomorphism) depending on the prime power pⁿ.
- If *q* ≤ 97 there are 329 geometries up to conjugacy and 190 geometries up to isomorphism.

Conclusion

- The classification of the rank two geometries under the given conditions is complete.
- Our list comprises infinite classes of geometries up to conjugacy (resp. isomorphism) depending on the prime power pⁿ.
- If q ≤ 97 there are 329 geometries up to conjugacy and 190 geometries up to isomorphism.

Conclusion

- The classification of the rank two geometries under the given conditions is complete.
- Our list comprises infinite classes of geometries up to conjugacy (resp. isomorphism) depending on the prime power pⁿ.
- If *q* ≤ 97 there are 329 geometries up to conjugacy and 190 geometries up to isomorphism.

Idea

Classify all incidence geometries for PSL(2, q) groups under the given axioms.

Steps

Classify all geometries of rank two.

- What is the maximal rank?
- Classify all geometries with no restriction on the rank.
- Use another axiom to reduce the number of geometries:

Idea

Classify all incidence geometries for PSL(2, q) groups under the given axioms.

Steps

- Classify all geometries of rank two.
- What is the maximal rank?
- Classify all geometries with no restriction on the rank.
- Use another axiom to reduce the number of geometries:

Idea

Classify all incidence geometries for PSL(2, q) groups under the given axioms.

Steps

- Classify all geometries of rank two.
- What is the maximal rank?
- Olassify all geometries with no restriction on the rank.
- Use another axiom to reduce the number of geometries:

Idea

Classify all incidence geometries for PSL(2, q) groups under the given axioms.

Steps

- Classify all geometries of rank two.
- What is the maximal rank?
- Olassify all geometries with no restriction on the rank.
- Use another axiom to reduce the number of geometries:

Idea

Classify all incidence geometries for PSL(2, q) groups under the given axioms.

Steps

- Classify all geometries of rank two.
- What is the maximal rank?
- Classify all geometries with no restriction on the rank.
- Use another axiom to reduce the number of geometries:

Self-normalizing or a slightly weaker version Borel self-normalizing

- Under BSN, there exists no geometry in which G_0 is isomorphic to A_4 , $E_q : \frac{q-1}{(2,q-1)}$.
- Under SN, there exists no geometry in which G₀ is isomorphic to A₄, E_q : ^{q-1}/_(2,q-1) and PSL(2, q) over a subfield.
- For q ≤ 97, BSN (resp. SN) leaves only 42 (resp. 36) geometries out of 190, up to isomorphism.
- If we impose BSN on higher ranks we restrict the number of possible maximal parabolic subgroups to 3, namely: $E_q : \frac{q-1}{(2,q-1)}$, PSL(2, q') and PGL(2, q') (over a subfield).
- *M*₁₁, *M*₁₂, *M*₂₂, *M*₂₃, *M*₂₄, *J*₁, *J*₂, *J*₃, *HS* and McL have at least one geometry satisfying SN.
- If we apply SN to the classification of RWPRI geometries for the Sz groups only the Building remains.

- Under BSN, there exists no geometry in which G_0 is isomorphic to A_4 , $E_q : \frac{q-1}{(2,q-1)}$.
- Under SN, there exists no geometry in which G₀ is isomorphic to A₄, E_q : ^{q-1}/_(2,q-1) and PSL(2, q) over a subfield.
- For q ≤ 97, BSN (resp. SN) leaves only 42 (resp. 36) geometries out of 190, up to isomorphism.
- If we impose BSN on higher ranks we restrict the number of possible maximal parabolic subgroups to 3, namely:
 E_q: q-1/(2,q-1), PSL(2,q') and PGL(2,q') (over a subfield).
- *M*₁₁, *M*₁₂, *M*₂₂, *M*₂₃, *M*₂₄, *J*₁, *J*₂, *J*₃, *HS* and McL have at least one geometry satisfying SN.
- If we apply SN to the classification of RWPRI geometries for the Sz groups only the Building remains.

- Under BSN, there exists no geometry in which G_0 is isomorphic to A_4 , $E_q : \frac{q-1}{(2,q-1)}$.
- Under SN, there exists no geometry in which G₀ is isomorphic to A₄, E_q : ^{q-1}/_(2,q-1) and PSL(2, q) over a subfield.
- For q ≤ 97, BSN (resp. SN) leaves only 42 (resp. 36) geometries out of 190, up to isomorphism.
- If we impose BSN on higher ranks we restrict the number of possible maximal parabolic subgroups to 3, namely:
 E_q: q-1/(2,q-1), PSL(2, q') and PGL(2, q') (over a subfield).
- *M*₁₁, *M*₁₂, *M*₂₂, *M*₂₃, *M*₂₄, *J*₁, *J*₂, *J*₃, *HS* and McL have at least one geometry satisfying SN.
- If we apply SN to the classification of RWPRI geometries for the Sz groups only the Building remains.

- Under BSN, there exists no geometry in which G_0 is isomorphic to A_4 , $E_q : \frac{q-1}{(2,q-1)}$.
- Under SN, there exists no geometry in which G₀ is isomorphic to A₄, E_q : ^{q-1}/_(2,q-1) and PSL(2, q) over a subfield.
- For q ≤ 97, BSN (resp. SN) leaves only 42 (resp. 36) geometries out of 190, up to isomorphism.
- If we impose BSN on higher ranks we restrict the number of possible maximal parabolic subgroups to 3, namely:
 E_q: q-1/(2,q-1), PSL(2, q') and PGL(2, q') (over a subfield).
- *M*₁₁, *M*₁₂, *M*₂₂, *M*₂₃, *M*₂₄, *J*₁, *J*₂, *J*₃, *HS* and McL have at least one geometry satisfying SN.
- If we apply SN to the classification of RWPRI geometries for the Sz groups only the Building remains.

- Under BSN, there exists no geometry in which G_0 is isomorphic to A_4 , $E_q : \frac{q-1}{(2,q-1)}$.
- Under SN, there exists no geometry in which G₀ is isomorphic to A₄, E_q : ^{q-1}/_(2,q-1) and PSL(2, q) over a subfield.
- For q ≤ 97, BSN (resp. SN) leaves only 42 (resp. 36) geometries out of 190, up to isomorphism.
- If we impose BSN on higher ranks we restrict the number of possible maximal parabolic subgroups to 3, namely:
 E_q: q-1/(2,q-1), PSL(2, q') and PGL(2, q') (over a subfield).
- *M*₁₁, *M*₁₂, *M*₂₂, *M*₂₃, *M*₂₄, *J*₁, *J*₂, *J*₃, *HS* and McL have at least one geometry satisfying SN.
- If we apply SN to the classification of RWPRI geometries for the Sz groups only the Building remains.

- Under BSN, there exists no geometry in which G_0 is isomorphic to A_4 , $E_q : \frac{q-1}{(2,q-1)}$.
- Under SN, there exists no geometry in which G₀ is isomorphic to A₄, E_q : ^{q-1}/_(2,q-1) and PSL(2, q) over a subfield.
- For q ≤ 97, BSN (resp. SN) leaves only 42 (resp. 36) geometries out of 190, up to isomorphism.
- If we impose BSN on higher ranks we restrict the number of possible maximal parabolic subgroups to 3, namely:
 E_q: q-1/(2,q-1), PSL(2, q') and PGL(2, q') (over a subfield).
- *M*₁₁, *M*₁₂, *M*₂₂, *M*₂₃, *M*₂₄, *J*₁, *J*₂, *J*₃, *HS* and McL have at least one geometry satisfying SN.
- If we apply SN to the classification of RWPRI geometries for the Sz groups only the Building remains.

Locally *s*-arc-transitive graphs: Context

- Interesting examples of locally s-arc transitive graphs arise naturally from incidence graphs of various structures.
 In particular: Incidence graphs of coset geometries over a given group.
- **Context:** Search for locally *s*-arc transitive graphs related to families of simple groups.

Locally s-arc-transitive graphs: Context

- Interesting examples of locally s-arc transitive graphs arise naturally from incidence graphs of various structures.
 In particular: Incidence graphs of coset geometries over a given group.
- **Context:** Search for locally *s*-arc transitive graphs related to families of simple groups.

Locally s-arc-transitive graphs: Context

- Interesting examples of locally s-arc transitive graphs arise naturally from incidence graphs of various structures.
 In particular: Incidence graphs of coset geometries over a given group.
- **Context:** Search for locally *s*-arc transitive graphs related to families of simple groups.

Idea:

Given a group $G \cong PSL(2, q)$,

use the classification of RWPRI and $(2T)_1$ rank 2 geometries to obtain for each geometry the highest value of *s* such that the incidence graph is locally *s*-arc-transitive.

Sample of earlier work

Sample of earlier work:

- Sz (Leemans, 1998 and Praeger-Fang, 1999)
- Ree (Praeger, Fang and Li, 2004)
- Sporadic groups (Leemans, 2009): *M*₁₁, *M*₁₂, *M*₂₂, *M*₂₃, *M*₂₄, *J*₁, *J*₂, *J*₃, *HS*, *Mcl*, *He*, *Ru*, *Suz*, *Co*₃ *O'Nan* (partial results)

locally s-arc-transitive graph

Let $\mathcal{G}(V, E)$ be a finite simple undirected connected graph.

- An *s*-arc is an (s + 1)-tuple $(\alpha_0, ..., \alpha_s)$ of vertices such that $\{\alpha_{i-1}, \alpha_i\}$ is an edge of \mathcal{G} for all i = 1, ..., s and $\alpha_{j-1} \neq \alpha_{j+1}$ for all j = 1, ..., s 1.
- Given G ≤ Aut(G).
 We call G locally (G, s)-arc-transitive if G contains an s-arc and given any two s-arcs α and β starting at the same vertex v, there exists an element g ∈ G_v mapping α to β.

locally s-arc-transitive graph

Let $\mathcal{G}(V, E)$ be a finite simple undirected connected graph.

- An *s*-arc is an (s + 1)-tuple $(\alpha_0, ..., \alpha_s)$ of vertices such that $\{\alpha_{i-1}, \alpha_i\}$ is an edge of \mathcal{G} for all i = 1, ..., s and $\alpha_{j-1} \neq \alpha_{j+1}$ for all j = 1, ..., s 1.
- Given G ≤ Aut(G).
 We call G locally (G, s)-arc-transitive if G contains an s-arc and given any two s-arcs α and β starting at the same vertex v, there exists an element g ∈ G_v mapping α to β.

Search for graphs G having G acting as a locally 2-arc-transitive automorphism group is equivalent to determining the pairs of subgroups $\{G_0, G_1\}$ in G such that

- (*P*₁) *G*₀ (resp. *G*₁) has a 2-transitive action on the cosets of $B = G_0 \cap G_1$ in G_0 (resp. *G*₁) (this ensures local 2-arc-transitivity) $\Leftrightarrow (2T)_1$;
- $(P_2) \langle G_0, G_1 \rangle = G$ (this ensures connectedness of the graph) $\Leftrightarrow RC$;
- (P_3) $B = G_0 \cap G_1$ is core-free in G. This is clearly satisfied since $G \cong PSL(2, q)$ is simple.

Search for graphs G having G acting as a locally 2-arc-transitive automorphism group is equivalent to determining the pairs of subgroups $\{G_0, G_1\}$ in G such that

- (P₁) G₀ (resp. G₁) has a 2-transitive action on the cosets of B = G₀ ∩ G₁ in G₀ (resp. G₁) (this ensures local 2-arc-transitivity) ⇔ (2T)₁;
- (P_2) $\langle G_0, G_1 \rangle = G$

(this ensures connectedness of the graph) $\Leftrightarrow RC$;

• (P_3) $B = G_0 \cap G_1$ is core-free in G. This is clearly satisfied since $G \cong PSL(2, q)$ is simple.

Search for graphs G having G acting as a locally 2-arc-transitive automorphism group is equivalent to determining the pairs of subgroups $\{G_0, G_1\}$ in G such that

- (P₁) G₀ (resp. G₁) has a 2-transitive action on the cosets of B = G₀ ∩ G₁ in G₀ (resp. G₁) (this ensures local 2-arc-transitivity) ⇔ (2T)₁;
- $(P_2) \langle G_0, G_1 \rangle = G$ (this ensures connectedness of the graph) $\Leftrightarrow RC$;
- (P_3) $B = G_0 \cap G_1$ is core-free in G. This is clearly satisfied since $G \cong PSL(2, q)$ is simple.

Search for graphs G having G acting as a locally 2-arc-transitive automorphism group is equivalent to determining the pairs of subgroups $\{G_0, G_1\}$ in G such that

- (P₁) G₀ (resp. G₁) has a 2-transitive action on the cosets of B = G₀ ∩ G₁ in G₀ (resp. G₁) (this ensures local 2-arc-transitivity) ⇔ (2T)₁;
- $(P_2) \langle G_0, G_1 \rangle = G$ (this ensures connectedness of the graph) $\Leftrightarrow RC$;
- (P_3) $B = G_0 \cap G_1$ is core-free in G. This is clearly satisfied since $G \cong PSL(2, q)$ is simple.

The Algorithm of Tits shows that:

These locally (G, 2)-arc-transitive graphs are rank two geometries.

All rank two geometries satisfying $(2T)_1$ and *RWPRI* classified in the Theorem satisfy $(P_1), (P_2)$ and (P_3)

They are locally 2-arc-transitive graphs.

Aim

For every geometry Γ given in the classification Theorem, we try to determine the highest value of *s* such that the incidence graph of Γ is a locally *s*-arc-transitive graph.

All rank two geometries satisfying $(2T)_1$ and *RWPRI* classified in the Theorem satisfy $(P_1), (P_2)$ and (P_3)

They are locally 2-arc-transitive graphs.

Aim

For every geometry Γ given in the classification Theorem, we try to determine the highest value of *s* such that the incidence graph of Γ is a locally *s*-arc-transitive graph.

All rank two geometries satisfying $(2T)_1$ and *RWPRI* classified in the Theorem satisfy $(P_1), (P_2)$ and (P_3)

They are locally 2-arc-transitive graphs.

Aim

For every geometry Γ given in the classification Theorem, we try to determine the highest value of *s* such that the incidence graph of Γ is a locally *s*-arc-transitive graph.

Conclusion

Most values of *s* are 2 or 3.

Open problem

- In a few cases, we only get a set of possible values for *s*.
- The exact value may be computed by Magma but only for small values of *q*.

Conclusion

Most values of s are 2 or 3.

Open problem

- In a few cases, we only get a set of possible values for *s*.
- The exact value may be computed by Magma but only for small values of q.

Examples:

- Γ(PSL(2, q); S₄, S₄, D₈) s = 4 for the values q = 9, 17, 23, 31, 41, 47, 71, 73, 79, 89;
- $\Gamma(\text{PSL}(2, q); S_4, D_{16}, D_8) \ s = 7$ for the values q = 17, 31, 79, 97.

The end

Thank you!

Incidence graph

For each pair of subgroups $\{G_0, G_1\}$ of *G* satisfying (P_1) , (P_2) and (P_3)

- the corresponding graph is the incidence graph *G* of Γ which is the graph whose vertices are the left cosets of the subgroups (*G_i*)_{*i*∈*I*}.
- Two vertices are joined provided the corresponding cosets have a non-empty intersection.
- The type of a vertex $v = gG_i$ of the incidence graph is *i*.

Lemma (Leemans 2009)

Let *G* be a group and $\{G_0, G_1\}$ be a pair of subgroups satisfying properties (P_1) , (P_2) and (P_3) . Denote by b_i the index of $B := G_0 \cap G_1$ in G_i (with i = 0, 1). If $(G; G_0, G_1, G_{01})$ is a locally *s*-arc-transitive graph (with $s \ge 2$), then

• $((b_0 - 1)(b_1 - 1))^{\frac{s-1}{2}}$ divides |B| if *s* is odd;

•
$$((b_0 - 1)(b_1 - 1))^{\frac{s-2}{2}} . lcm(b_0 - 1, b_1 - 1)$$
 divides $|B|$ if s is even,

where $lcm(b_0 - 1, b_1 - 1)$ is the lowest common multiple of $b_0 - 1$ and $b_1 - 1$.

Corollary (Leemans 2009)

If $(G; G_0, G_1, G_{01})$ is a locally *s*-arc-transitive graph with $B := G_0 \cap G_1$ a cyclic group of prime order and with at least one b_i not equal to 2, then *s* is at most 3. Moreover, if s = 3, then one of b_0 or b_1 must be equal to 2.

Observe also that the SN property implies the BSN property. In the classification of RWPRI and $(2T)_1$ geometries of rank two, the only geometries that satisfy the BSN property but do not satisfy the SN property are

$$\Gamma\left(\text{PSL}(2,2^{2n}); \text{PSL}(2,2^n), E_{2^{2n}}: (2^n-1), E_{2^n}: (2^n-1)\right) \text{ with } n \neq 1$$

and

$$\Gamma\left(\text{PSL}(2,p^{2n});\text{PGL}(2,p^{n});E_{p^{2n}}:(p^{n}-1);E_{p^{n}}:(p^{n}-1)\right)$$

with *p* odd prime.

	$G_0 \cong S_4$			$q=p>$ 2 and $q=\pm 1(8)$
<i>G</i> ₀₁	<i>G</i> ₁	BSN	SN	Extra conditions on q
D_6	D ₁₂	no	no	$q=\pm 1(24)$
<i>D</i> ₆	D ₁₈	no	no	$(q=\pm 1(72) ext{ or } q=\pm 17(72))$
				and $\frac{q\pm 1}{18}$ even
<i>D</i> ₆	D ₁₈	yes	yes	$(q = \pm 1(72) \text{ or } q = \pm 17(72))$
				and $\frac{q\pm 1}{18}$ odd
D ₆	S_4	no	no	$\frac{q\pm 1}{6}$ even
<i>D</i> ₆	S_4	yes	yes	$\frac{q\pm 1}{6}$ odd
D ₈	D ₁₆	no	no	$q = \pm 1(16)$
D ₈	D ₂₄	no	no	$q=\pm$ 1(24) even
D ₈	D ₂₄	yes	yes	$q=\pm$ 1(24) odd
D ₈	S_4	no	no	$rac{q\pm 1}{8}$ even
D ₈	S_4	yes	yes	$\frac{q \pm 1}{8}$ odd
<i>A</i> ₄	A_5	no	no	$q=\pm 1(40)$ or $q=\pm 9(40)$

Table: The RWPRI and $(2T)_1$ geometries with $G_0 \cong S_4$.

	$G_0\cong S_4$		q = p > 2 and
			$q\equiv\pm$ 1(8)
G ₀₁	G_1	locally(G, s)-	Extra conditions on q
		arc-transitive graphs	
<i>D</i> ₆	D ₁₂	s = 3	$q\equiv\pm1(24)$
D ₆	D ₁₈	<i>s</i> = 2 <i>or</i> 3	$q\equiv\pm$ 1(72) or
			$q\equiv\pm17(72)$
D ₆	S_4	<i>s</i> = 2	$q\equiv\pm$ 1(6)
D ₈	D ₁₆	<i>s</i> = 3,5 <i>o</i> r7	$q = \pm 1(16)$
D ₈	D_{24}	<i>s</i> = 2,3 <i>or</i> 4	$q\equiv\pm$ 1(24)
D ₈	S_4	<i>s</i> = 2,3 <i>or</i> 4	none
A4	A_5	<i>s</i> = 3	$q \equiv \pm 1(40)$
			or $q \equiv \pm 9(40)$

Table: locally *s*-arc-transitive graphs that are not locally (s + 1)-arc-transitive with $G_0 \cong S_4$.