Universal Rigidity of bar frameworks in General Position

A.Y. Alfakih (joint work with Y. Ye (Stanford))

Dept of Math and Statistics University of Windsor

Rigidity Workshop, Fields Institute, Oct 2011

A bar framework in \mathbb{R}^r , denoted by G(p), is a configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^r together with a graph G on the vertices $1, \ldots, n$.

A bar framework in \mathbb{R}^r , denoted by G(p), is a configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^r together with a graph G on the vertices $1, \ldots, n$.

We assume that $r = \dim$ (affine hull of p^1, \ldots, p^n).

A bar framework in \mathbb{R}^r , denoted by G(p), is a configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^r together with a graph G on the vertices $1, \ldots, n$.

We assume that $r = \dim$ (affine hull of p^1, \ldots, p^n). A bar framework has two aspects: a geometric one (p) and a combinatorial one (G).

A bar framework in \mathbb{R}^r , denoted by G(p), is a configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^r together with a graph G on the vertices $1, \ldots, n$.

We assume that $r = \dim$ (affine hull of p^1, \ldots, p^n). A bar framework has two aspects: a geometric one (p) and a combinatorial one (G).

Bar frameworks have important applications in:

A bar framework in \mathbb{R}^r , denoted by G(p), is a configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^r together with a graph G on the vertices $1, \ldots, n$.

We assume that $r = \dim$ (affine hull of p^1, \ldots, p^n). A bar framework has two aspects: a geometric one (p) and a combinatorial one (G).

Bar frameworks have important applications in:

• Molecular conformations.

A bar framework in \mathbb{R}^r , denoted by G(p), is a configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^r together with a graph G on the vertices $1, \ldots, n$.

We assume that $r = \dim$ (affine hull of p^1, \ldots, p^n). A bar framework has two aspects: a geometric one (p) and a combinatorial one (G).

Bar frameworks have important applications in:

- Molecular conformations.
- Multidimensional scaling.

A bar framework in \mathbb{R}^r , denoted by G(p), is a configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^r together with a graph G on the vertices $1, \ldots, n$.

We assume that $r = \dim$ (affine hull of p^1, \ldots, p^n). A bar framework has two aspects: a geometric one (p) and a combinatorial one (G).

Bar frameworks have important applications in:

- Molecular conformations.
- Multidimensional scaling.
- Wireless sensor network localization problems.

Equivalent Frameworks and Affine Actions

Definition

A framework G(p) in \mathbb{R}^r is equivalent to framework G(q) in \mathbb{R}^s if

 $||q^i - q^j|| = ||p^i - p^j||$ for every edge $(i, j) \in E(G)$.

Equivalent Frameworks and Affine Aotions

Definition

A framework G(p) in \mathbb{R}^r is equivalent to framework G(q) in \mathbb{R}^s if

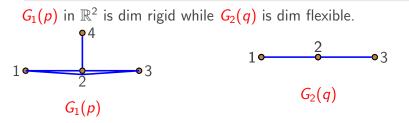
 $||q^i-q^j||=||p^i-p^j||$ for every edge $(i,j)\in E(G).$

Definition

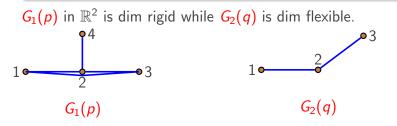
A framework G(p) in \mathbb{R}^r has an affine motion if there exists a framework G(q) in \mathbb{R}^r that is equivalent, but not congruent, to G(p) such that $q^i = Ap^i + b$ for all i = 1, ..., n.

A given framework G(p) in \mathbb{R}^r is said to be dimensionally rigid if there does not exist another framework G(q), equivalent to G(p), in \mathbb{R}^s where $s \ge r + 1$.

A given framework G(p) in \mathbb{R}^r is said to be dimensionally rigid if there does not exist another framework G(q), equivalent to G(p), in \mathbb{R}^s where $s \ge r + 1$.



A given framework G(p) in \mathbb{R}^r is said to be dimensionally rigid if there does not exist another framework G(q), equivalent to G(p), in \mathbb{R}^s where $s \ge r + 1$.



Universal Rigidity

Definition

A given framework G(p) in \mathbb{R}^r is said to be universally rigid if every other framework G(q) of G in any space \mathbb{R}^s that is equivalent to G(p) is also congruent to G(p).

Universal Rigidity

Definition

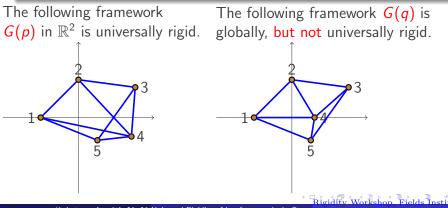
A given framework G(p) in \mathbb{R}^r is said to be universally rigid if every other framework G(q) of G in any space \mathbb{R}^s that is equivalent to G(p) is also congruent to G(p).

The following framework G(p) in \mathbb{R}^2 is universally rigid.

Universal Rigidity

Definition

A given framework G(p) in \mathbb{R}^r is said to be universally rigid if every other framework G(q) of G in any space \mathbb{R}^s that is equivalent to G(p) is also congruent to G(p).



Alternative Way to Introduce Universal Rigidity:

• Given a configuration $p = (p^1, \dots, p^n)$ in \mathbb{R}^r , define the matrix

$$D_p = (d_{ij} = ||p^i - p^j||^2).$$

 D_p is called the Euclidean distance matrix (EDM) generated by p.

Alternative Way to Introduce Universal Rigidity:

• Given a configuration $p = (p^1, \dots, p^n)$ in \mathbb{R}^r , define the matrix

$$D_p = (d_{ij} = ||p^i - p^j||^2).$$

 D_p is called the Euclidean distance matrix (EDM) generated by p.

• Given an EDM D_p , universal rigidity is the problem of deciding whether a strict subset of the entries of D_p suffices to uniquely determine all entries of D_p , i.e., to recover p up to a rigid motion.

ridity Workshop Fields Instit

• I'll present a sufficient condition for universal rigidity of bar frameworks in general position.

Theorem (A '07)

Let G(p) be a given framework on n nodes in \mathbb{R}^r , $r \le n-2$. Then G(p) is universally rigid if and only if:

- G(p) is dimensionally rigid, and
- \bigcirc G(p) does not have an affine motion.

Stress Matrices

 A stress of a bar framework G(p) is a real-valued function ω on E(G) such that:

$$\sum_{j:(i,j)\in E(G)}\omega_{ij}(p^i-p^j)=0 \text{ for all } i=1,\ldots,n.$$

Stress Matrices

 A stress of a bar framework G(p) is a real-valued function ω on E(G) such that:

$$\sum_{j:(i,j)\in E(G)}\omega_{ij}(p^i-p^j)=0 \text{ for all } i=1,\ldots,n.$$

• Given a stress ω , the stress matrix associated with ω is the $n \times n$ symmetric matrix $S = (s_{ij})$ where

$$s_{ij} = \begin{cases} -\omega_{ij} & \text{if } (i,j) \in E(G), \\ 0 & \text{if } (i,j) \notin E(G), \\ \sum_{k:(i,k)\in E(G)} \omega_{ik} & \text{if } i = j. \end{cases}$$

Stress Matrices

 A stress of a bar framework G(p) is a real-valued function ω on E(G) such that:

$$\sum_{j:(i,j)\in E(G)}\omega_{ij}(p^i-p^j)=0 \text{ for all } i=1,\ldots,n.$$

• Given a stress ω , the stress matrix associated with ω is the $n \times n$ symmetric matrix $S = (s_{ij})$ where

$$s_{ij} = \begin{cases} -\omega_{ij} & \text{if } (i,j) \in E(G), \\ 0 & \text{if } (i,j) \notin E(G), \\ \sum_{k:(i,k)\in E(G)} \omega_{ik} & \text{if } i = j. \end{cases}$$

• Note the resemblance of S to the Laplacian of G.

• A Gale matrix of G(p) in \mathbb{R}^r is any $n \times (\overline{r} = n - 1 - r)$ matrix Z such that the columns of Z form a basis of the null space of : $\begin{bmatrix} p^1 & p^2 & \cdots & p^n \\ 1 & 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} P^T \\ e^T \end{bmatrix}$.

- A Gale matrix of G(p) in \mathbb{R}^r is any $n \times (\overline{r} = n 1 r)$ matrix Z such that the columns of Z form a basis of the null space of : $\begin{bmatrix} p^1 & p^2 & \cdots & p^n \\ 1 & 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} P^T \\ e^T \end{bmatrix}$.
- In Polytope theory, the rows of Z are called Gale transforms of p^1, \ldots, p^n .

- A Gale matrix of G(p) in \mathbb{R}^r is any $n \times (\overline{r} = n 1 r)$ matrix Z such that the columns of Z form a basis of the null space of : $\begin{bmatrix} p^1 & p^2 & \cdots & p^n \\ 1 & 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} P^T \\ e^T \end{bmatrix}$.
- In Polytope theory, the rows of Z are called Gale transforms of p^1, \ldots, p^n .
- A Gale matrix Z encodes the affine dependencies among the points p^1, \ldots, p^n .

Lemma (A '07)

Let S and Z be, respectively, a stress matrix and a Gale matrix of G(p). Then

 $S = Z \Psi Z^T$ for some symmetric matrix Ψ .

On the other hand, let Ψ' be any symmetric matrix such that

 $z^{i^T} \Psi' z^j = 0$ for all $(i, j) \notin E$,

where z^i is the *i*th row of Z. Then $Z\Psi'Z^T$ is a stress matrix of G(p).

Sufficiency Results

Theorem (A '07)

Let G(p) be a given framework on n nodes in \mathbb{R}^r , $r \le n-2$. Let Z be a Gale matrix of G(p) and let z^i be the *i*th row of Z. If $\exists \Psi \succ 0 : z^{iT} \Psi z^j = 0 \quad \forall (i,j) \notin E$, or equivalently, if \exists a semidefinite stress matrix S of rank $= \overline{r} = n - 1 - r$. Then G(p) is dimensionally rigid.

Sufficiency Results

Theorem (A '07)

Let G(p) be a given framework on n nodes in \mathbb{R}^r , $r \le n-2$. Let Z be a Gale matrix of G(p) and let z^i be the *i*th row of Z. If $\exists \Psi \succ 0 : z^{i^T} \Psi z^j = 0 \quad \forall (i,j) \notin E$, or equivalently, if \exists a semidefinite stress matrix S of rank $= \overline{r} = n - 1 - r$. Then G(p) is dimensionally rigid.

Corollary (A '07, Connelly '82 and '99)

Let G(p) be a given framework on n nodes in \mathbb{R}^r , $r \le n-2$. If $1 - \exists \Psi \succ 0 : z^{i^T} \Psi z^j = 0 \quad \forall (i,j) \notin E$, or equivalently, \exists a semidefinite stress matrix S of rank $= \overline{r} = n - 1 - r$, and 2 - G(p) does not have an affine motion. Then G(p) is universally rigid.

Let V be such that $V^T e = 0$ and $V^T V = I_{n-1}$.

 E^{ij} is the matrix with 1s in the *ij*th and *ji*th entries and 0s elsewhere. Z is a Gale matrix of G(p).

Let V be such that $V^T e = 0$ and $V^T V = I_{n-1}$.

 E^{ij} is the matrix with 1s in the *ij*th and *ji*th entries and 0s elsewhere. Z is a Gale matrix of G(p).

Lemma (Connelly '05, A. '07)

The following statements are equivalent:

•
$$G(p)$$
 in \mathbb{R}^r has an affine motion.

• There exists a non-zero $r \times r$ symmetric matrix Φ such that $(p^i - p^j)^T \Phi(p^i - p^j) = 0$ for all $(i, j) \in E$.

• There exists $y = (y_{ij}) \neq 0$ such that $V^T \sum_{(i,j) \notin E} y_{ij} E^{ij} Z = 0$,

A framework G(p) in \mathbb{R}^r is said to be in general position if no r + 1of the points p^1, \ldots, p^n are affinely dependent. For example no 3 collinear points in the plane. etc.

A framework G(p) in \mathbb{R}^r is said to be in general position if no r + 1of the points p^1, \ldots, p^n are affinely dependent. For example no 3 collinear points in the plane. etc.

Theorem

Let G(p) be a given framework on n nodes in general position in \mathbb{R}^r , $r \leq n-2$. Let Z be a Gale matrix of G(p) and let z^{i^T} be the *i*th row of Z. Then Every subset of $\{z^1, \ldots z^n\}$ of cardinality $\leq \overline{r} = n - 1 - r$ is linearly independent.

Theorem (A. and Ye '10)

Let G(p) be a framework on n nodes in general position in \mathbb{R}^r , $r \leq n-2$. If G(p) admits a positive semidefinite stress matrix S of rank n - 1 - r. Then G(p) does not have an affine motion.

Theorem (A. and Ye '10)

Let G(p) be a framework on n nodes in general position in \mathbb{R}^r , $r \leq n-2$. If G(p) admits a positive semidefinite stress matrix S of rank n - 1 - r. Then G(p) does not have an affine motion.

Corollary (A. and Ye '10)

Let G(p) be a framework on n nodes in general position in \mathbb{R}^r , $r \le n-2$, and let Z be a Gale matrix of G(p). If: $\exists \Psi \succ 0 : z^{i^T} \Psi z^j = 0 \quad \forall (i,j) \notin E$, or equivalently, if \exists a positive semidefinite stress matrix S of rank n - 1 - r, Then G(p) is universally rigid.

• We need to prove that if $V^T \sum_{(i,j) \notin E} y_{ij} E^{ij} Z = 0$, then y = 0.

Bigidity Workshop Fields Institute

- We need to prove that if $V^T \sum_{(i,j) \notin E} y_{ij} E^{ij} Z = 0$, then y = 0.
- By the Theorem's assumption, ∀i ∈ V(G), deg (i) ≥ r + 1. Thus

 $|\overline{N}(i)| = |\{j \in V(G) : i \neq j, (i,j) \notin E(G)\}| \leq \overline{r} - 1.$

- We need to prove that if $V^T \sum_{(i,j) \notin E} y_{ij} E^{ij} Z = 0$, then y = 0.
- By the Theorem's assumption, ∀i ∈ V(G), deg (i) ≥ r + 1. Thus

 $|\overline{N}(i)| = |\{j \in V(G) : i \neq j, (i,j) \notin E(G)\}| \leq \overline{r} - 1.$

• Thus $\sum_{(i,j)\notin E} y_{ij}E^{ij}Z = \sum_{j\in \overline{N}(i)} y_{ij}z^j = 0$ implies that y = 0.

- We need to prove that if $V^T \sum_{(i,j) \notin E} y_{ij} E^{ij} Z = 0$, then y = 0.
- By the Theorem's assumption, ∀i ∈ V(G), deg (i) ≥ r + 1. Thus

 $|\overline{N}(i)| = |\{j \in V(G) : i \neq j, (i,j) \notin E(G)\}| \leq \overline{r} - 1.$

- Thus $\sum_{(i,j)\notin E} y_{ij} E^{ij} Z = \sum_{j\in \overline{N}(i)} y_{ij} z^j = 0$ implies that y = 0.
- Therefore, if we can show that V^T is redundant, then we are done. The choice of Z is critical in this regard.

ridity Workshop Fields

Proof of the Theorem Cont'd

If G(p) is in general position and if G(p) admits a stress matrix S of rank r
, then there exists a Gale matrix Z
 with the following property:

 $\hat{z}_{ij} = 0$ for all $j = 1, \dots, \bar{r}$ and $i \in \overline{N}(j + r + 1)$.

If G(p) is in general position and if G(p) admits a stress matrix S of rank r
, then there exists a Gale matrix Z
 with the following property:

 $\hat{z}_{ij} = 0$ for all $j = 1, \dots, \bar{r}$ and $i \in \overline{N}(j + r + 1)$.

• \hat{Z} is just the matrix consisting of the last \bar{r} columns of S.

If G(p) is in general position and if G(p) admits a stress matrix S of rank r
, then there exists a Gale matrix Z
 with the following property:

 $\hat{z}_{ij} = 0$ for all $j = 1, \dots, \bar{r}$ and $i \in \overline{N}(j + r + 1)$.

• If G(p) is in general position and if G(p) admits a stress matrix S of rank \bar{r} , then there exists a Gale matrix \hat{Z} with the following property:

 $\hat{z}_{ii} = 0$ for all $i = 1, \dots, \bar{r}$ and $i \in \overline{N}(i + r + 1)$.

- Z is just the matrix consisting of the last \overline{r} columns of S. • $V^T \sum_{(i,j) \notin F} y_{ij} E^{ij} \hat{Z} = 0$ iff $\sum_{(i,j) \notin F} y_{ij} E^{ij} \hat{Z} = e\xi^T$.
- To complete the proof, it suffices to show that $\xi = 0$.

ridity Workshop Fields Ir

Proof of the Theorem Cont'd

• The (r+2,1)th entry of $e\xi^T$ is $\xi_1 =$

$$\begin{bmatrix} 0 & \cdots & y_{r+2,j_1} & \cdots & 0 & \cdots & y_{r+2,j_2} & \cdots \end{bmatrix} \begin{bmatrix} \hat{z}_{11} \\ \vdots \\ \hat{z}_{r+2,1} \\ \vdots \\ \hat{z}_{n,1} \end{bmatrix} = 0,$$

since $\hat{z}_{i1} = 0$ for all $i \in \overline{N}(r+2)$.

Proof of the Theorem Cont'd

• The (r+2,1)th entry of $e\xi^T$ is $\xi_1 =$

$$\begin{bmatrix} 0 \cdots y_{r+2,j_1} \cdots 0 \cdots y_{r+2,j_2} \cdots \end{bmatrix} \begin{bmatrix} \hat{z}_{11} \\ \vdots \\ \hat{z}_{r+2,1} \\ \vdots \\ \hat{z}_{n,1} \end{bmatrix} = 0,$$

since $\hat{z}_{i1} = 0$ for all $i \in \overline{N}(r+2)$.

• By considering the entries (r + 3, 2), (r + 4, 3), ... (n, \overline{r}) we get $\xi = 0$.

Thank You

Bigidity Workshop Fields Institute