
Computing Cohomology Ring

Tomasz Kaczynski
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Background from Cubical Homology

A cubical set X ⊂ Rd is a finite union of elementary cubes

Q = I1 × I2 × · · · × Id ⊂ Rd ,

Ii of the form [k , k + 1] or {k}.
K(Rd ) all such Q
Kk (Rd ) those of dimension k
Kk (X ) those in X
Ck (X ) free abelian group generated by
Kk (X ), its canonical basis

∂k (Q) =
∑
±(k − 1)–dim faces of Q

cubical boundary operator
Alternation defined in [CH] by induction on d = emb X



Cubical cochain complex

C(X ) cubical chain complex

Note: All is valid for R(K(X )) := C(X ; R) graded module with
coefficients in a ring with unity R.

(C∗(X ), δ) the dual complex of (C∗(X ), ∂)

δk : Ck (X )→ Ck+1(X ) the coboundary operator

〈δkck , ck+1〉 := 〈ck , ∂k+1ck+1〉

Kk (X ) := {Q?|Q ∈ Kk (X )} the dual canonical basis of Ck (Rd )

Hk (X ) := Z k (X )/Bk (X ) = ker δk/im δk−1

the k ’th cohomology group of X



Cubical cross product

Recall from CH: the cubical product

× : Cp(Rn)× Cq(Rm)→ Cp+q(Rn+m)

is defined on P ∈ Kn
p and Q ∈ Km

q as the cartesian product
P ×Q and extended to chains (c, c′) by bilinearity.

The cubical cross product of cochains
cp ∈ Cp(X ) and cq ∈ Cq(Y )
is a cochain in Cp+q(X × Y )
defined on R × S ∈ Kp+q(X × Y ) by

〈cp×cq,Q〉 :=

{
〈cp,R〉 · 〈cq,S〉 if dim R = p and dim S = q,

0 otherwise.



Cup product – general definition

The cubical cup product

^ : Cp(X )× Cq(X )→ Cp+q(X )

of cochains cp and cq is defined on Q ∈ Kp+q(X ) by:

〈(cp ^ cq),Q〉 := 〈diagp+q(cp×cq),Q〉 = 〈cp×cq,diagp+q(Q)〉

where diagp+q is the homology chain map induced by
diag(x) = (x , x).

The cup product ^ : Hp(X )× Hq(X )→ Hp+q(X ) is defined by

[zp] ^ [zq] := [zp ^ zq].

Our goal: Obtain an explicit formula suitable for computations.



Chain map of the diagonal map

Theorem (Chain selector CH)
Given f : X → Y, let F : X −→→Y,

F (x) := ch (f (ch (x)),

where ch(A) is the smallest cubical set containing A.
Suppose F acyclic–valued. Then ∃ a chain map
ϕ : C(X )→ C(Y ) such that

(a) |ϕk (Q)| ⊂ (F (
◦
Q)) ∀Q∈Kk (X);

(b) ϕ0(V ) ∈ K0 ∀Q∈K0(X).

For any chain map satisfying (a,b), we have

ϕ∗ = H∗(f ).



Lemma (1)
Let X1,X2,Y1,Y2 be cubical sets,
f : X1 → Y1, g : X2 → Y2 maps which admit acyclic-valued
representations F , G, ϕ and ψ their chain selectors.

1 The set-valued map F ×G : X1 × X2
−→→Y1 × Y2 given by

(F ×G)(x , y) := F (x)×G(y)

is an acyclic-valued representation of f × g.
2 The chain map ϕ⊗ ψ : C(X1 × X2)→ C(Y1 × Y2) given on

generators Q = Q1×Q2 ∈ Kk (X1 × X2) by

(ϕ⊗ ψ)k (Q) := ϕp(Q1)×ψq(Q2)

is a chain selector of F ×G.



Theorem (2)
Let X ,Y be cubical sets and let λ : X × Y → Y × X be the
transpose given by λ(x , y) := (y , x).

1 The map Λ : X × Y −→→Y × X given by

Λ(x , y) := Q2 ×Q1, Q1 := ch (x),Q2 := ch (y),

is an acyclic-valued representation of λ;
2 Let λ# : C(X × Y )→ C(Y × X ) be defined on generators

Q = Q1×Q2 ∈ Kk (X × Y ) by

λk (Q) := (−1)dim Q1 dim Q2Q2×Q1.

Then λ# is a chain selector of Λ.



Corollary (3)
Let τ : (X1 × Y1)× (X2 × Y2)→ (X1 × X2)× (Y1 × Y2) be given
by τ(x1, y1, x2, y2) = (x1, x2, y1, y2). Then

1 T (x) := τ(ch (x)) is an acyclic-valued representation of τ ;
2 The map

τ# : C(X1 × Y1 × X2 × Y2)→ C(X1 × X2 × Y1 × Y2)

defined on generators by

τ# ((P1×P2)×(Q1×Q2)) := (−1)dim P2 dim Q1 (P1×Q1)× (P2×Q2)

is its chain selector.



Constructing ϕ = diag#

Proposition (4)
The map diag : X → X × X admits an acyclic-valued
representation Diag : X −→→ (X × X ) given by
Diag(x) := Q ×Q where Q = ch (x) ∈ K(X ).

We go by induction on d = emb (X ).

Case d = 1:

Q = [v ] ⇒ diag0([v ]) := [v ]×[v ]

Q = [v0, v1] ⇒ diag1([v0, v1]) := [v0]×[v0, v1] + [v0, v1]×[v1]



Induction step:

diag(x1, . . . , xd ) = (x1, . . . , xd , x1, x2, . . . , xd )

= τ(x1, x1, x2, . . . , xd , x2, . . . , xd )

= τ(diag(x1),diag(x2, . . . , xd ))

We get
diag = τ ◦ (diagX1 ×diagX ′

) ◦ j ,

where τ is the permutation,

j : X ↪→ X1 × X2 ⊂ R× Rd−1

the inclusion of X to the product of its projections.



Theorem (5)
Let emb X > 1. Define diag# : C(X )→ C(X × X ) by

diag# := π ◦ τ# ◦ (diagX1
# ⊗diagX ′

# ) ◦ ι,

where
1 ι : C(X )→ C(X1 × X ′) is the inclusion map;

2 diagX1
# and diagX ′

# are defined by induction hypothesis;

3 diagX1
# ⊗diagX ′

# is give in Lemma 1;

4 τ# is given in Corollary 3;
5 π : C(X1 × X ′ × X1 × X ′)→ C(X × X ) is the projection

π(Q) :=

{
Q if Q ∈ K(X × X ),
0 otherwise.

Then diag# is a chain selector for Diag.



Explicit cup product formula

Induction on d = emb (X ). Case d = 1:

k = p + q = 0, R = [v ]. Then

〈P? ^ Q?,R〉 = 〈P?×Q?, [v ]×[v ]〉

=

{
1 if P = Q = [v ],
0 otherwise.

k = p + q = 1, R = [v0, v1]. Then

〈P? ^ Q?,R〉 = 〈P?×Q?, [v0]×[v0, v1] + [v0, v1]×[v1]〉

=


1 if P = [v0] and Q = [v0, v1],
1 if P = [v0, v1] and Q = [v1],
0 otherwise.



Theorem (6)
Let X ⊂ R and let P,Q ∈ K(X ), P = [a,b], Q = [c,d ] be
elementary intervals, possibly degenerated. Then

P? ^ Q? =


[a]? if a = b = c = d ,

[c,d ]? if a = b = c = d − 1,
[a,b]? if b = c = d = a + 1,

0 otherwise.

In particular, P? ^ Q? is either zero or a dual of an elementary
interval.
Example Let X = [a,a + 1] ∈ R. We have

[a]? ^ [a,a + 1]? = [a,a + 1]? and [a,a + 1]? ^ [a]? = 0.

Hence the graded commutative law for cohomology classes
does not hold for chain complexes.



Induction step

Theorem (7)
Let emb X = d > 1, and suppose that the formula for ^ is given
for cochains with emb = 1, . . . ,d − 1.
Let P = P1 × P2 ∈ Kp(X ) and Q = Q1 ×Q2 ∈ Kq(X ) with
emb P1 = emb Q1 = 1 and emb P2 = emb Q2 = d − 1.
Let x = P?

1 ^ Q?
1, y = P?

2 ^ Q?
2 be computed using induction.

Then

P? ^ Q? =

{
(−1)dim P2 dim Q1 x×y if |x×y | ∈ K(X ),

0 otherwise.

Example Let X = [0,1]2, P = [0]× [0,1], and Q = [0,1]× [0].

P? ^ Q? = (−1)1·1 ([0]? ^ [0,1]?)× ([0,1]? ^ [1]?) = −[0,1]2
?
.

However, if X = P ∪Q, we get P? ^ Q? = 0.



Coordinate-wise formula

Let

P = I1 × I2 × · · · × Id and Q = J1 × J2 × · · · × Jd .

Let P ′j := Ij+1 × Ij+2 × · · · × Id . Put

sgn (P,Q) := (−1)
∑d

j=1 dim P′
j dim Jj = (−1)

∑d
j=1(dim Jj

∑d
i=j+1 dim Ii).

Corollary (8)
With the above notation,

P? ^ Q? = sgn (P,Q)(I?1 ^ J?1)×(I?2 ^ J?2)× · · ·×(I?d ^ J?d ),

provided the right-hand side is supported in X,
and P? ^ Q? = 0 otherwise.



Example – cubical torus

Let P ′
j := Ij+1 × Ij+2 × · · · × Id. Put

sgn (P,Q) := (−1)
Pd

j=1 dimP ′
j dim Jj = (−1)

Pd
j=1(dim Jj

Pd
i=j+1 dim Ii).

From Theorem 2.24 we easily derive the following.

Corollary 2.26 With the above notation,

P ? ^ Q? = sgn (P,Q)(I?1 ^ J?
1 )×(I?2 ^ J?

2 )× · · ·×(I?d ^ J?
d ), (11)

provided the right-hand side is supported in X, and P ? ^ Q? = 0 otherwise.

Example 2.27 We illustrate the cup-product formula in the cubical torus
T := Γ1×Γ1 ⊂ R4, where Γ1 = ∂[0, 1]2 is the boundary of the square. Since
it is hard to draw pictures in R4, we parameterize Γ1 by the interval [0, 4]
with identified endpoints 0 ∼ 4, which permits visualizing T as the square
[0, 4]2 with pairs of identified facing edges, as shown in the figure below.

0 1 2 3 4 ∼ 0

1

2

3

4 ∼ 0

Figure 1: The graphical representation of the cubical torus discussed in
Example 2.27. The solid line vertical edges carry the cocycle x1 and the
horizontal ones the cocycle y1. The gray square carries x1 ^ y1.

Consider the cocycle x1 generated by the sum of four solid line vertical
edges with [2, 3] at the second coordinate, and y1 by the sum of solid line
horizonal edges with [1, 2] at the first coordinate. Only the edges of the
parametric square [1, 2]× [2, 3] may contribute to non-zero terms of x1 ^ y1.
Thus,

x1 ^ y1 = {([1]× [2, 3])∗ + ([2]× [2, 3])∗}^ {([1, 2]× [2])∗ + ([1, 2]× [3])∗}
= 0− ([1, 2]× [2, 3])∗ + 0 + 0 = −([1, 2]× [2, 3])∗.

The cohomology classes of cochains x1 and y1 generate H1(T ), and [Q∗],
where Q := ([1, 2]× [2, 3]), generates H2(T ).
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T =
(
bd [0,1]2

)2 ∼= ([0,4]/ ∼)2

x1 =
∑

(solid line vertical edges)?, x1 =
∑

(horizontal ones)?

x1
1 ^ x1

2 = −([1,2]× [2,3])∗ generator of H2(T ).
Its support |x1 ^ y1| is the gray square.



Cohomology of S-complexes

S-complex defined by Mrozek et. al. (S, κ)
is a combinatorial setting for a CW-complex
with a chosen canonical basis S = {Sk}
and given incidence numbers κ in a ring of coefficients R
such that
κ(a,b) 6= 0, a ∈ Sk , then b is a (k − 1)–face of a.
Particular cases: Any simplicial complex S,
S = K(X ), X a cubical set.
This gives rise to the chain complex R(S), its dual
R?(S) := Hom (R(S),R), the coboundary map δκ := (∂κ)?,

δκ(t?) :=
∑
s∈S

κ(s, t)s? t ∈ S.

and to the cohomology H∗(S).



Reduction and coreduction pairs
Smith normal form algorithm is costly! Our goal: We want a
low-cost method for removing as many generators as possible
before applying it.
An S-subcomplex S′ is closed if bdSS′ ⊂ S′ and it is open if
S \ S′ is closed.
Consider a pair (a,b) ∈ S × S with invertible κ(Q,P).
It is a reduction pair if cbdS(b) = {a}.
It is a coreduction pair if bdS(a) = {b}.
Theorem (9)
A reduction pair (a,b) is open in S and a coreduction pair is
closed in S. In both cases {a,b} and S̄ := S \ {a,b} are
S-subcomplexes of S, and H({a,b}) = H∗({a,b}) = 0.
Consequently,

H(S) ∼= H(S̄) and H∗(S) ∼= H∗(S̄).



Homology Models

Attention: To compute the cohomology ring of a cubical set it is
not sufficient to have the cohomology generators in a reduced
S-complex.
It is necessary to construct the cohomology generators in the
original cubical set.

Theorem (10)
Let (a,b) be a reduction or coredution pair in S. The maps
ψ = ψ(a,b) : R(S)→ R(S̄), ι = ι(a,b) : R(S̄)→ R(S),

ψ(c) = c − 〈c,a〉〈∂b,a〉∂b − 〈c,b〉b, (1)

ι(c) = c − 〈∂c,a〉
〈∂b,a〉b (2)

are mutually inverse chain equivalences.



Reduction sequence

is a finite sequence

ω = {(ai ,bi)i=1,2,...n} ∈ S

such that (ai ,bi) is a reduction or coreduction pair
in (Si−1, κi−1),
starting at S0 = S and ending at Sω := Sn.
A homology model of S is Sω together with the chain
equivalences:

ιω = ι(a1,b1) ◦ · · · ◦ ι(an,bn) : R(Sω)→ R(S),

ψω = ψ(an,bn) ◦ · · · ◦ ψ(a1,b1) : R(S)→ R(Sω).



Dual chain equivalences

Idea: Use (ιω)? to transport cochains on S to those in Sω and
(ψω)? the reverse way.

Proposition (11)
The duals of ψ and ι are given by

ψ? : R?(S̄) 3 c 7→ c − 〈b
?, δc〉
〈∂b,a〉 a? ∈ R?(S),

ι? : R?(S) 3 c 7→ c − 〈b
?, c〉

〈∂b,a〉δa
? ∈ R?(S̄).



Using models for cohomology

Note: There are even more benefits from the homology model
for cohomology computation than for homology computation!

Theorem (12)
Let ω be a sequence consisting only of elementary coreduction
pairs. Then (ψω)? is an inclusion

R?(Sω) ↪→ R?(S),

Consequence: For computing the ring structure of a cubical set
X , when S = K(X ), the cup product formula may be applied
directly to the cohomology generators in the ω-reduction.



Wedge X and torus T
X = S2 ∨ S1 ∨ S1. H(X ) ∼= H(T ), but H∗(X ) 6∼= H∗(T ) as rings.

Cubical model for X . Left: original, Right: coreduced.
Cup product of H1–generators computed easily in the
coreduced complex is zero.



Cubical model for T . Left: original, Right: coreduced.
Cup product of H1–generators computed easily in the
coreduced complex is a H2–generator.



Efficiency test on rescaled X and T



Past and future work

Origins of (singular) cubical approach:
J.P. Serre, Homologie singulière des espaces fibrés, Annals
Math. (1951).
More recent computation oriented work:
R. González-Diáz and P. Real, Computation of cohomology
operations on finite simplicial complexes, Homology, Homotopy
& Appl. (2003).
T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational
Homology, Springer 2004.
M. Mrozek and B. Batko, Coreduction homology algorithm,
Discrete & Comput. Geom. (2009).
Related program libraries CHomP, CAPD-RedHom.
Future work:
Implementation and experimentation, joint work with P. Dłotko
and M. Mrozek.
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