Computing Cohomology Ring

Tomasz Kaczynski

Université de Sherbrooke
joint work with
Marian Mrozek, Jagiellonian University

Fields Institute, Toronto, November 9, 2011

Outline

(1) Cubical cohomology groups
(2) Cubical cup product - general definition
(3) Towards the explicit cup product formula Chain map of the diagonal map
Explicit cup product formula
Example
4) Coreduction algorithm for cohomology Cohomology of S-complexes Homology Models Models for cohomology
(5) Computational examples
(6) Past and future work

Background from Cubical Homology

A cubical set $X \subset \mathbb{R}^{d}$ is a finite union of elementary cubes

$$
Q=I_{1} \times I_{2} \times \cdots \times I_{d} \subset \mathbb{R}^{d},
$$

l_{i} of the form $[k, k+1]$ or $\{k\}$.
$\mathcal{K}\left(\mathbb{R}^{d}\right)$ all such Q
$\mathcal{K}_{k}\left(\mathbb{R}^{d}\right)$ those of dimension k
$\mathcal{K}_{k}(X)$ those in X
$C_{k}(X)$ free abelian group generated by
$\mathcal{K}_{k}(X)$, its canonical basis

$$
\partial_{k}(Q)=\sum \pm(k-1) \text {-dim faces of } Q
$$

cubical boundary operator
Alternation defined in $[\mathrm{CH}]$ by induction on $d=\mathrm{emb} X$

Cubical cochain complex

$\mathcal{C}(X)$ cubical chain complex
Note: All is valid for $R(\mathcal{K}(X)):=\mathcal{C}(X ; R)$ graded module with coefficients in a ring with unity R.
$\left(\mathcal{C}^{*}(X), \delta\right)$ the dual complex of $\left(\mathcal{C}_{*}(X), \partial\right)$
$\delta^{k}: C^{k}(X) \rightarrow C^{k+1}(X)$ the coboundary operator

$$
\left\langle\delta^{k} c^{k}, c_{k+1}\right\rangle:=\left\langle c^{k}, \partial_{k+1} c_{k+1}\right\rangle
$$

$\mathcal{K}^{k}(X):=\left\{Q^{\star} \mid Q \in \mathcal{K}_{k}(X)\right\}$ the dual canonical basis of $C^{k}\left(\mathbb{R}^{d}\right)$

$$
H^{k}(X):=Z^{k}(X) / B^{k}(X)=\operatorname{ker} \delta^{k} / \operatorname{im} \delta^{k-1}
$$

the k'th cohomology group of X

Cubical cross product

Recall from CH : the cubical product

$$
\times: C_{p}\left(\mathbb{R}^{n}\right) \times C_{q}\left(\mathbb{R}^{m}\right) \rightarrow C_{p+q}\left(\mathbb{R}^{n+m}\right)
$$

is defined on $P \in \mathcal{K}_{p}^{n}$ and $Q \in \mathcal{K}_{q}^{m}$ as the cartesian product $P \times Q$ and extended to chains (c, c^{\prime}) by bilinearity.

The cubical cross product of cochains
$c^{p} \in C^{p}(X)$ and $c^{q} \in C^{q}(Y)$
is a cochain in $C^{p+q}(X \times Y)$
defined on $R \times S \in \mathcal{K}_{p+q}(X \times Y)$ by
$\left\langle c^{p} \times c^{q}, Q\right\rangle:=\left\{\begin{array}{cl}\left\langle c^{p}, R\right\rangle \cdot\left\langle c^{q}, S\right\rangle & \text { if } \operatorname{dim} R=p \text { and } \operatorname{dim} S=q, \\ 0 & \text { otherwise. }\end{array}\right.$

Cup product - general definition

The cubical cup product

$$
\smile: C^{p}(X) \times C^{q}(X) \rightarrow C^{p+q}(X)
$$

of cochains c^{p} and c^{q} is defined on $Q \in \mathcal{K}_{p+q}(X)$ by:
$\left\langle\left(c^{p} \smile c^{q}\right), Q\right\rangle:=\left\langle\operatorname{diag}^{p+q}\left(c^{p} \times c^{q}\right), Q\right\rangle=\left\langle c^{p} \times c^{q}, \operatorname{diag}_{p+q}(Q)\right\rangle$
where diag $_{p+q}$ is the homology chain map induced by $\operatorname{diag}(x)=(x, x)$.

The cup product $\smile: H^{p}(X) \times H^{q}(X) \rightarrow H^{p+q}(X)$ is defined by

$$
\left[z^{p}\right] \smile\left[z^{q}\right]:=\left[z^{p} \smile z^{q}\right] .
$$

Our goal: Obtain an explicit formula suitable for computations.

Chain map of the diagonal map

Theorem (Chain selector CH)
Given $\mathrm{f}: X \rightarrow Y$, let $F: X \rightrightarrows Y$,

$$
F(x):=\operatorname{ch}(f(\operatorname{ch}(x)),
$$

where $\operatorname{ch}(A)$ is the smallest cubical set containing A.
Suppose F acyclic-valued. Then \exists a chain map
$\varphi: \mathcal{C}(X) \rightarrow \mathcal{C}(Y)$ such that
(a) $\left|\varphi_{k}(Q)\right| \subset(F(Q)) \forall_{Q \in \mathcal{K}_{k}(X)}$;
(b) $\varphi_{0}(V) \in \mathcal{K}_{0} \forall Q \in \mathcal{K}_{0}(X)$.

For any chain map satisfying (a,b), we have

$$
\varphi_{*}=H_{*}(f) .
$$

Lemma (1)

Let $X_{1}, X_{2}, Y_{1}, Y_{2}$ be cubical sets,
$f: X_{1} \rightarrow Y_{1}, g: X_{2} \rightarrow Y_{2}$ maps which admit acyclic-valued representations F, G, φ and ψ their chain selectors.
(1) The set-valued map $F \times G: X_{1} \times X_{2} \rightrightarrows Y_{1} \times Y_{2}$ given by

$$
(F \times G)(x, y):=F(x) \times G(y)
$$

is an acyclic-valued representation of $f \times g$.
(2) The chain map $\varphi \otimes \psi: \mathcal{C}\left(X_{1} \times X_{2}\right) \rightarrow \mathcal{C}\left(Y_{1} \times Y_{2}\right)$ given on generators $Q=Q_{1} \times Q_{2} \in \mathcal{K}_{k}\left(X_{1} \times X_{2}\right)$ by

$$
(\varphi \otimes \psi)_{k}(Q):=\varphi_{p}\left(Q_{1}\right) \times \psi_{q}\left(Q_{2}\right)
$$

is a chain selector of $F \times G$.

Theorem (2)
Let X, Y be cubical sets and let $\lambda: X \times Y \rightarrow Y \times X$ be the transpose given by $\lambda(x, y):=(y, x)$.
(1) The map ^: $X \times Y \rightrightarrows Y \times X$ given by

$$
\wedge(x, y):=Q_{2} \times Q_{1}, Q_{1}:=\operatorname{ch}(x), Q_{2}:=\operatorname{ch}(y),
$$

is an acyclic-valued representation of λ;
(2) Let $\lambda_{\#}: \mathcal{C}(X \times Y) \rightarrow C(Y \times X)$ be defined on generators $Q=Q_{1} \times Q_{2} \in \mathcal{K}_{k}(X \times Y)$ by

$$
\lambda_{k}(Q):=(-1)^{\operatorname{dim} Q_{1} \operatorname{dim} Q_{2}} Q_{2} \times Q_{1} .
$$

Then $\lambda_{\#}$ is a chain selector of Λ.

Corollary (3)

Let $\tau:\left(X_{1} \times Y_{1}\right) \times\left(X_{2} \times Y_{2}\right) \rightarrow\left(X_{1} \times X_{2}\right) \times\left(Y_{1} \times Y_{2}\right)$ be given by $\tau\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$. Then
(1) $T(x):=\tau(\operatorname{ch}(x))$ is an acyclic-valued representation of τ;
(2) The map

$$
\tau_{\#}: \mathcal{C}\left(X_{1} \times Y_{1} \times X_{2} \times Y_{2}\right) \rightarrow \mathcal{C}\left(X_{1} \times X_{2} \times Y_{1} \times Y_{2}\right)
$$

defined on generators by
$\tau_{\#}\left(\left(P_{1} \times P_{2}\right) \times\left(Q_{1} \times Q_{2}\right)\right):=(-1)^{\operatorname{dim} P_{2} \operatorname{dim} Q_{1}}\left(P_{1} \times Q_{1}\right) \times\left(P_{2} \times Q_{2}\right)$
is its chain selector.

Constructing $\varphi=\operatorname{diag}_{\#}$

Proposition (4)

The map diag : $X \rightarrow X \times X$ admits an acyclic-valued representation Diag : $X \rightrightarrows(X \times X)$ given by
$\operatorname{Diag}(x):=Q \times Q$ where $Q=\operatorname{ch}(x) \in \mathcal{K}(X)$.
We go by induction on $d=\mathrm{emb}(X)$.
Case $d=1$:

$$
\begin{gathered}
Q=[v] \Rightarrow \operatorname{diag}_{0}([v]):=[v] \times[v] \\
Q=\left[v_{0}, v_{1}\right] \Rightarrow \operatorname{diag}_{1}\left(\left[v_{0}, v_{1}\right]\right):=\left[v_{0}\right] \times\left[v_{0}, v_{1}\right]+\left[v_{0}, v_{1}\right] \times\left[v_{1}\right]
\end{gathered}
$$

Induction step:

$$
\begin{aligned}
\operatorname{diag}\left(x_{1}, \ldots, x_{d}\right) & =\left(x_{1}, \ldots, x_{d}, x_{1}, x_{2}, \ldots, x_{d}\right) \\
& =\tau\left(x_{1}, x_{1}, x_{2}, \ldots, x_{d}, x_{2}, \ldots, x_{d}\right) \\
& =\tau\left(\operatorname{diag}\left(x_{1}\right), \operatorname{diag}\left(x_{2}, \ldots, x_{d}\right)\right)
\end{aligned}
$$

We get

$$
\operatorname{diag}=\tau \circ\left(\operatorname{diag}^{X_{1}} \times \operatorname{diag}^{X^{\prime}}\right) \circ j,
$$

where τ is the permutation,

$$
j: X \hookrightarrow X_{1} \times X_{2} \subset \mathbb{R} \times \mathbb{R}^{d-1}
$$

the inclusion of X to the product of its projections.

Theorem (5)

Letemb $X>1$. Define $\operatorname{diag}_{\#}: \mathcal{C}(X) \rightarrow \mathcal{C}(X \times X)$ by

$$
\operatorname{diag}_{\#}:=\pi \circ \tau_{\#} \circ\left(\operatorname{diag}_{\#}^{X_{1}} \otimes \operatorname{diag}_{\#}^{X^{\prime}}\right) \circ \iota,
$$

where
(1) $\iota: \mathcal{C}(X) \rightarrow \mathcal{C}\left(X_{1} \times X^{\prime}\right)$ is the inclusion map;
(2) $\operatorname{diag}_{\#}^{X_{1}}$ and $\operatorname{diag}_{\#}^{X^{\prime}}$ are defined by induction hypothesis;
(3) $\operatorname{diag}_{\#}^{X_{1}} \otimes \operatorname{diag}_{\#}^{X^{\prime}}$ is give in Lemma 1;
(4) $\tau_{\#}$ is given in Corollary 3;
(5) $\pi: \mathcal{C}\left(X_{1} \times X^{\prime} \times X_{1} \times X^{\prime}\right) \rightarrow \mathcal{C}(X \times X)$ is the projection

$$
\pi(Q):= \begin{cases}Q & \text { if } Q \in \mathcal{K}(X \times X) \\ 0 & \text { otherwise }\end{cases}
$$

Then diag $_{\#}$ is a chain selector for Diag.

Explicit cup product formula

Induction on $d=\operatorname{emb}(X)$. Case $d=1$:
$k=p+q=0, R=[v]$. Then

$$
\begin{aligned}
\left\langle P^{\star} \smile Q^{\star}, R\right\rangle & =\left\langle P^{\star} \times Q^{\star},[v] \times[v]\right\rangle \\
& = \begin{cases}1 & \text { if } P=Q=[v] \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$k=p+q=1, R=\left[v_{0}, v_{1}\right]$. Then

$$
\begin{aligned}
\left\langle P^{\star} \smile Q^{\star}, R\right\rangle & =\left\langle P^{\star} \times Q^{\star},\left[v_{0}\right] \times\left[v_{0}, v_{1}\right]+\left[v_{0}, v_{1}\right] \times\left[v_{1}\right]\right\rangle \\
& = \begin{cases}1 & \text { if } P=\left[v_{0}\right] \text { and } Q=\left[v_{0}, v_{1}\right], \\
1 & \text { if } P=\left[v_{0}, v_{1}\right] \text { and } Q=\left[v_{1}\right], \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Theorem (6)

Let $X \subset \mathbb{R}$ and let $P, Q \in \mathcal{K}(X), P=[a, b], Q=[c, d]$ be elementary intervals, possibly degenerated. Then

$$
P^{\star} \smile Q^{\star}=\left\{\begin{array}{cl}
{[a]^{\star}} & \text { if } a=b=c=d \\
{[c, d]^{\star}} & \text { if } a=b=c=d-1 \\
{[a, b]^{\star}} & \text { if } b=c=d=a+1, \\
0 & \text { otherwise } .
\end{array}\right.
$$

In particular, $P^{\star} \smile Q^{\star}$ is either zero or a dual of an elementary interval.
Example Let $X=[a, a+1] \in \mathbb{R}$. We have
$[a]^{\star} \smile[a, a+1]^{\star}=[a, a+1]^{\star}$ and $[a, a+1]^{\star} \smile[a]^{\star}=0$.
Hence the graded commutative law for cohomology classes does not hold for chain complexes.

Induction step

Theorem (7)

Let emb $X=d>1$, and suppose that the formula for - is given for cochains with emb $=1, \ldots, d-1$.
Let $P=P_{1} \times P_{2} \in \mathcal{K}_{p}(X)$ and $Q=Q_{1} \times Q_{2} \in \mathcal{K}_{q}(X)$ with emb $P_{1}=\mathrm{emb} Q_{1}=1$ and emb $P_{2}=\mathrm{emb} Q_{2}=d-1$.
Let $x=P_{1}^{\star} \smile Q_{1}^{\star}, y=P_{2}^{\star} \smile Q_{2}^{\star}$ be computed using induction.
Then

$$
P^{\star} \smile Q^{\star}=\left\{\begin{array}{cl}
(-1)^{\operatorname{dim} P_{2} \operatorname{dim} Q_{1}} x \times y & \text { if }|x \times y| \in \mathcal{K}(X), \\
0 & \text { otherwise. }
\end{array}\right.
$$

Example Let $X=[0,1]^{2}, P=[0] \times[0,1]$, and $Q=[0,1] \times[0]$.
$P^{\star} \smile Q^{\star}=(-1)^{1 \cdot 1}\left([0]^{\star} \smile[0,1]^{\star}\right) \times\left([0,1]^{\star} \smile[1]^{\star}\right)=-[0,1]^{2 \star}$.
However, if $X=P \cup Q$, we get $P^{\star} \smile Q^{\star}=0$.

Coordinate-wise formula

Let

$$
P=I_{1} \times I_{2} \times \cdots \times I_{d} \text { and } Q=J_{1} \times J_{2} \times \cdots \times J_{d} .
$$

Let $P_{j}^{\prime}:=I_{j+1} \times I_{j+2} \times \cdots \times I_{d}$. Put

$$
\operatorname{sgn}(P, Q):=(-1)^{\sum_{j=1}^{d} \operatorname{dim} P_{j}^{\prime} \operatorname{dim} J_{j}}=(-1)^{\sum_{j=1}^{d}\left(\operatorname{dim} J_{j} \sum_{i=j+1}^{d} \operatorname{dim} I_{i}\right)}
$$

Corollary (8)
With the above notation,

$$
P^{\star} \smile Q^{\star}=\operatorname{sgn}(P, Q)\left(l_{1}^{\star} \smile J_{1}^{\star}\right) \times\left(l_{2}^{\star} \smile J_{2}^{\star}\right) \times \cdots \times\left(l_{d}^{\star} \smile J_{d}^{\star}\right),
$$

provided the right-hand side is supported in X, and $P^{\star} \smile Q^{\star}=0$ otherwise.

Example - cubical torus

$x^{1}=\sum(\text { solid line vertical edges })^{\star}, \quad x^{1}=\sum(\text { horizontal ones })^{\star}$
$x_{1}^{1} \smile x_{2}^{1}=-([1,2] \times[2,3])^{*}$ generator of $H^{2}(T)$.
Its support $\left|x^{1} \smile y^{1}\right|$ is the gray square.

Cohomology of S-complexes

S-complex defined by Mrozek et. al. (S, κ)
is a combinatorial setting for a CW-complex
with a chosen canonical basis $S=\left\{S_{k}\right\}$
and given incidence numbers κ in a ring of coefficients R
such that
$\kappa(a, b) \neq 0, a \in S_{k}$, then b is a $(k-1)$-face of a.
Particular cases: Any simplicial complex S,
$S=\mathcal{K}(X), X$ a cubical set.
This gives rise to the chain complex $R(S)$, its dual
$R^{\star}(S):=\operatorname{Hom}(R(S), R)$, the coboundary map $\delta^{\kappa}:=\left(\partial^{\kappa}\right)^{\star}$,

$$
\delta^{\kappa}\left(t^{\star}\right):=\sum_{s \in S} \kappa(s, t) s^{\star} t \in S
$$

and to the cohomology $H^{*}(S)$.

Reduction and coreduction pairs

Smith normal form algorithm is costly! Our goal: We want a low-cost method for removing as many generators as possible before applying it.
An S-subcomplex S^{\prime} is closed if $b d_{S} S^{\prime} \subset S^{\prime}$ and it is open if
$S \backslash S^{\prime}$ is closed.
Consider a pair $(a, b) \in S \times S$ with invertible $\kappa(Q, P)$.
It is a reduction pair if $\operatorname{cbd}_{S}(b)=\{a\}$.
It is a coreduction pair if $b d_{S}(a)=\{b\}$.
Theorem (9)
A reduction pair (a, b) is open in S and a coreduction pair is closed in S. In both cases $\{a, b\}$ and $\bar{S}:=S \backslash\{a, b\}$ are S-subcomplexes of S, and $H(\{a, b\})=H^{*}(\{a, b\})=0$.
Consequently,

$$
H(S) \cong H(\bar{S}) \text { and } H^{*}(S) \cong H^{*}(\bar{S}) .
$$

Homology Models

Attention: To compute the cohomology ring of a cubical set it is not sufficient to have the cohomology generators in a reduced S-complex.
It is necessary to construct the cohomology generators in the original cubical set.

Theorem (10)

Let (a, b) be a reduction or coredution pair in S. The maps $\psi=\psi^{(a, b)}: R(S) \rightarrow R(\bar{S}), \iota=\iota^{(a, b)}: R(\bar{S}) \rightarrow R(S)$,

$$
\begin{align*}
& \psi(c)=c-\frac{\langle c, a\rangle}{\langle\partial b, a\rangle} \partial b-\langle c, b\rangle b, \tag{1}\\
& \iota(c)=c-\frac{\langle\partial c, a\rangle}{\langle\partial b, a\rangle} b \tag{2}
\end{align*}
$$

are mutually inverse chain equivalences.

Reduction sequence

is a finite sequence

$$
\omega=\left\{\left(a_{i}, b_{i}\right)_{i=1,2, \ldots n\}} \in S\right.
$$

such that $\left(a_{i}, b_{i}\right)$ is a reduction or coreduction pair in $\left(S^{i-1}, \kappa^{i-1}\right)$,
starting at $S^{0}=S$ and ending at $S^{\omega}:=S^{n}$.
A homology model of S is S^{ω} together with the chain equivalences:

$$
\begin{aligned}
\iota^{\omega} & =\iota^{\left(a_{1}, b_{1}\right)} \circ \cdots \circ \iota^{\left(a_{n}, b_{n}\right)}: R\left(S^{\omega}\right) \rightarrow R(S), \\
\psi^{\omega} & =\psi^{\left(a_{n}, b_{n}\right)} \circ \cdots \circ \psi^{\left(a_{1}, b_{1}\right)}: R(S) \rightarrow R\left(S^{\omega}\right) .
\end{aligned}
$$

Dual chain equivalences

Idea: Use $\left(\iota^{\omega}\right)^{\star}$ to transport cochains on S to those in S^{ω} and $\left(\psi^{\omega}\right)^{\star}$ the reverse way.
Proposition (11)
The duals of ψ and ι are given by

$$
\begin{aligned}
& \psi^{\star}: R^{\star}(\bar{S}) \ni c \mapsto c-\frac{\left\langle b^{\star}, \delta c\right\rangle}{\langle\partial b, a\rangle} a^{\star} \in R^{\star}(S), \\
& \iota^{\star}: R^{\star}(S) \ni c \mapsto c-\frac{\left\langle b^{\star}, c\right\rangle}{\langle\partial b, a\rangle} \delta a^{\star} \in R^{\star}(\bar{S}) .
\end{aligned}
$$

Using models for cohomology

Note: There are even more benefits from the homology model for cohomology computation than for homology computation!
Theorem (12)
Let ω be a sequence consisting only of elementary coreduction pairs. Then $\left(\psi^{\omega}\right)^{\star}$ is an inclusion

$$
R^{\star}\left(S^{\omega}\right) \hookrightarrow R^{\star}(S),
$$

Consequence: For computing the ring structure of a cubical set X, when $S=\mathcal{K}(X)$, the cup product formula may be applied directly to the cohomology generators in the ω-reduction.

Wedge X and torus T

$X=S^{2} \vee S^{1} \vee S^{1} . H(X) \cong H(T)$, but $H^{*}(X) \not \not H^{*}(T)$ as rings.

Cubical model for X. Left: original, Right: coreduced. Cup product of H^{1}-generators computed easily in the coreduced complex is zero.

Cubical model for T. Left: original, Right: coreduced. Cup product of H^{1}-generators computed easily in the coreduced complex is a $H^{2}-$ generator.

Efficiency test on rescaled X and T

Past and future work

Origins of (singular) cubical approach:
J.P. Serre, Homologie singulière des espaces fibrés, Annals Math. (1951).
More recent computation oriented work:
R. González-Diáz and P. Real, Computation of cohomology operations on finite simplicial complexes, Homology, Homotopy \& Appl. (2003).
T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology, Springer 2004.
M. Mrozek and B. Batko, Coreduction homology algorithm,

Discrete \& Comput. Geom. (2009).
Related program libraries CHomP, CAPD-RedHom.
Future work:
Implementation and experimentation, joint work with P. Dłotko and M. Mrozek.

