
Nearly full rank:

higher dimensions



The gateway

Dimension 5 is the `gateway' through which we must pass to get at

higher dimensions; it is narrow, because there are few possibilities

for the symmetry groups of �nite regular 4-polytopes in E5.

The pattern of approach (in all dimensions) is

• pick a possible vertex-�gure Q,

• with H the group of Q, identify those groups G for which

H < G,
• from the axis of H in G, obtain the vertex-set V of the

corresponding polytope P ,

• check whether vertQ is an appropriate subset of V .

In E5, the group G must be a subgroup of A5 ×C 2 or C5, even (as

it turns out) for handed polytopes.



First Gosset class

These polytopes are derived by a mixing operation from a suitable

diagram Ed or Td+1; that is, a group [3r ,s,1]. The result is

Theorem

For each r > 0 and s > 2 with (r − 1)(s − 1) 6 4 there is a regular

polytope (or apeirotope) Grs of nearly full rank with the following

properties:

• it has rank r + s + 1,

• its group Grs is [3r ,s,1],
• it has the same vertices as the Gosset polytope rs1,

• its (r + 2)-faces are (r + 2)-cross-polytopes {3r , 4},
• its (s + 1)-cofaces are Petrie contractions {3s+1}$ of

(s + 2)-simplices.

Note that the 3-face of {3s+1}$ is {4, 6

2,3 | 3}.



The diagrams

There follow diagrams for the apeirotopal members of the class;

those for the polytopes are obtained by deleting nodes from the

head or tail of the horizontal part.

For the group generators, the pair X ,Y is replaced by the single

new generator T := XY ; as remarked, this is a mixing operation.

This, of course, is exactly how Petrie contraction is involved.

An important feature is that X ,Y can be recovered from the rest

of the symmetry group (S ,U are both necessary), which accounts

for the symmetry group being preserved.
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Twisting

Later, we have to twist diagrams with redundant generators.

Without redundancy, the only feasible diagrams are of the form
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Branches may carry marks, and either vertical branch may be

absent. The left and right branches form strings, and either may be

absent (including the nodes R or V ). The twist is denoted by T .



Example

The group generators of {3d−1}$ can be taken as the

permutations

R0 = (1 2),

R1 = (0 1)(2 3),

Rj = (j+1 j+2), for j = 2, . . . , d − 2.

However, we can also represent this by a diagram
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Here, the twist R1 is inner and proper. However, if we replace R1

by −R1 = −(0 1)(2 3), which removes the mark 3

2
from the

diagram (and places a mark 2 in the triangle, or 3

2
on one of the

other branches), then we have an outer and improper twist.

The polytope now obtained is actually {3d−1}ζ$, and so we have

doubled the order of the group, as we should expect.

A surprise (perhaps) is that some of the diagrams we twist are far

from slight modi�cations of the usual Coxeter diagrams. Indeed,

they may contain quite small subdiagrams which are already those

of in�nite groups.



Examples

We begin with an in�nite family which is already known. We have

remarked that the facet of the regular apeirotope {4, 3d−2, 4}κ is

full-dimensional but in�nite, and hence of nearly full rank. This

facet is {4, 3d−2}κ, and is derivable by an improper outer twist of

the diagram
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We have labelled the triangle rather than one of its branches; either

of its two slanting branches can carry the label 3

2
, but the twist

changes which is so labelled. The subdiagram formed by the four

leftmost nodes is of the in�nite group [4, 3, 4].



There are further in�nite families of diagrams which exhibit the

same phenomenon, namely, having a proper subdiagram of an

in�nite group. We �rst have
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with q = 3, 4. In e�ect, we have two families here, of which the

facets of the second form the �rst. Once again, the corresponding

apeirotopes are already known; they are {3d−1}κ if q = 3 or

{3d−2, 4}κ if q = 4.



When d = 4 (and q = 3), we can apply π to get the universal

{3, 3, 3}κπ = {{6, 4

1,2 | 3}, {
4

1,2 , 3 : 6

1,3}} ∼= {{6, 4 | 3},{4, 3}},

which is obtained by applying a proper outer twist to
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Reversing π shows that we originally had the universal

{{6, 6

1,3 | 3}, {
6

1,3 , 3 : 4

1,2}} ∼= {{6, 6 | 3},{6, 3 : 4}}.



We �nally mention
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of which the �rst or last nodes (or both) can be truncated to obtain

three other families. Here, the twist is outer and improper.

There are further relatives to these polytopes (we can apply π to

the 5-face, and so twist an unmarked hexagonal diagram), but we

shall not go into more details.



In this spirit, we can also derive the polytopes Grs from diagrams,

acted upon by a proper inner twist T . The crucial centre part of

the diagram is
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We will have r > 2 here, because we have already dealt with the

cases r = 0, 1 earlier (as two of the set of four families considered

together).

In a similar way, Gπ
13

can be derived from applying an improper

inner twist to a hexagonal diagram with unmarked branches and a

central mark 2 (the group is B6).



The polytopes Grs do not have geometric duals. Nevertheless, we

can remove the right branch from the previous diagram (beginning

with the node V ) and reverse it, to obtain the diagram below. The

mark 2 on the circuit indicates as before that one of the branches �

but not the vertical one � is to be thought of as marked 3

2
.

s
s
s s
s s

"
"
"s sb
b
b

s ss ss ss s︸ ︷︷ ︸
r

6
?

2

The group speci�ed by the diagram is, again as before, [3r ,2,1], so
that we must have r 6 5, with r = 5 the in�nite case. We can then

� potentially at least � apply an improper twist, to obtain a regular

polytope Pn of rank n = r + 3.



However, we do not obtain the full family as might be expected.

First, P4 = {4, 33}$π, the Petrial of the Petrie contraction of the

5-cube, whose 80 vertices are the mid-points of the edges of the

cube. Its facets {6, 4

1,2 | 3} (with 30 vertices) lie in central sections

of the cube; it follows that Pn−1 must be a central section of Pn for

n > 5, if the latter polytope exists. We immediately conclude � if

for no other reason � that we cannot actually have an apeirotope

P8 derived from [35,2,1].

In fact (to be brief), the situation is even worse: while P6 does

exist, the construction breaks down in rank 7. Calculations show

that P7 would have the 2160 vertices of 241 with the same group

[34,2,1]. But the vertex-�gure would have the whole symmetry

group [34,1,1] of its vertex-�gure, so that that P7 degenerates. From

the group order, it should actually have 192 · 10!/26 · 6! = 15120

vertices; in fact, the vertices collapse in 7s.



Second Gosset class

This family arises from [3r ,2,2] with a proper outer twist, namely,
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The group is in�nite for r = 2, so the only cases are r = 0, 1, 2.
The case r = 0 is the universal polytope

{{3, 4}, {4, 4

1,2 | 3}} ∼= {{3, 4},{4, 4 | 3}}.

The polytope Jr+4 (say � r + 4 is the rank) has as facet the

cross-polytope {3r+1, 4}, and for r = 1, 2 as vertex-�gure Jr+3; it is

then universal with this facet and vertex-�gure. The vertex-set is

that of r22, and each polytope has a geometric dual.



Petriality π cannot be applied to Jm, but halving η can. In fact, for

m = 4 we obtain a family

{4, 4

1,2 , 3}
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Here, we read {4, 4

1,2} as {4,
4

1,2 | 3} and {
4

1,2 , 4} as {
4

1,2 , 4 | 3}
(thus { 4

1,2 , 4,
4

1,2} = {{ 4

1,2 , 4 | 3}, {4,
4

1,2 | 3}}). All these polytopes

are universal of their types; the last has no geometric dual.



Now π is applicable to {4, 4

1,2 , 4} and {
4

1,2 , 4,
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1,2}, with rather

messy symbols. From the application of η, the group of the

polytope {4, 4

1,2 , 4} and its Petrial contains two twists; to

incorporate these into a diagram we need redundant generators.

Thus we have
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Applying π replaces R1 by the (twist) re�exion of the diagram in its

vertical line of symmetry.



For m = 5, a di�erent idea (coming from a simplex dissection

formula) leads to a sequence

{3, 3, 4, 4

1,2}, {3, 4, 4

1,2 , 4}, {4, 4

1,2 , 4,
4

1,2},

{ 4

1,2 , 4,
4

1,2 , 3}, {4, 4

1,2 , 3, 3};

it begins with J5 and Jη
5
, and reverses under geometric duality δ.

For m = 6, we similarly have
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with the same behaviour as for m = 5.



There are now two more opportunities to apply halving η; in what

follows, {4, 3, 4

1,2} = {4, 3, 4

1,2 | 3} is a toroid. Note the occurrence

of the 24-cell {3, 4, 3} as the 4-face of the latter.

{4, 4

1,2 , 4,
4

1,2}
η = {4, 3, 4

1,2 , 4},

{3, 4, 4

1,2 , 4,
4

1,2}
η = {3, 4, 3, 4

1,2 , 4}.

There are no further applications of π; however, there are of ζ or

κ, as appropriate, but again the results are of not of much interest,

except in so far as they complete classi�cations.



Rotational symmetry group

As it happens, in Ed for d > 5 there is just one handed polytope of

nearly full rank. This is

{{4, 5

1,2 : 5

1,2}, {
5

1,2 , 3 : 5

1,2}} ∼= {{4, 5 : 5},{5, 3 : 5}},

the universal regular 4-polytope of its type.

For handedness, the vertex-�gure must have mirror vector (2, 2, 2);
the initial considerations then eliminate all but those to which a

hyperplane re�exion (acting as the Petrie operation π or something

similar) can be adjoined, and �nally we are reduced to { 5

1,2 , 3 : 5

1,2}.

As might be suspected, this polytope is self-Petrie.



Applying ζ to {{4, 5

1,2 : 5

1,2}, {
5

1,2 , 3 : 5

1,2}} leads to a non-handed

polytope.

There are no handed apeirotopes of nearly full rank in E5, nor any

such polytopes in Ed for d > 6. The only possible vertex-�gure for

such a polytope of rank 5 is {{4, 5

1,2 : 5

1,2}, {
5

1,2 , 3 : 5

1,2}} itself. It
is tempting to look for a polytope with the vertices of 221 (for

example), but all possible constructions break down.

We conclude that the occurrence of handed regular polytopes (or

apeirotopes) of nearly full rank is a low-dimensional phenomenon.

And, of course, the symmetry group of a regular polytope of full

rank contains hyperplane re�exions, and so such a polytope cannot

be handed.



A remarkable polyhedron

The facet {4, 5 : 5} of {{4, 5 : 5},{5, 3 : 5}} is of considerable

interest in its own right. Both the facetting operation ϕ2 and the

combined operation of halving followed by the Petrie operation ηπ
result in regular polyhedra of type {4, 5} with the same group.

They are actually isomorphic copies of {4, 5 : 5}.

The polyhedron {4, 5 : 5} has three non-trivial diagonal classes,

with layer vector (1, 5, 5, 5). It may be seen that ϕ2 interchanges

the second and third diagonal classes, while ηπ permutes them

cyclically. Thus, on a general cosine vector, these two operations

have the following e�ect:

ϕ2 : (γ0, . . . , γ3) 7→ (γ0, γ1, γ3, γ2),

ηπ : (γ0, . . . , γ3) 7→ (γ0, γ2, γ3, γ1).



As a consequence, one general realization of {4, 5 : 5} will give rise

to �ve others with the same vertices. The pure realizations are all

5-dimensional, and the cosine matrix can be written in a nice

symmetric form: 
1 1 1 1
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 .

The handed polytope {{4, 5

1,2 : 5

1,2}, {
5

1,2 , 3 : 5

1,2}} has facet
{4, 5

1,2 : 5

1,2} =: P2 in the implied list, as can be checked directly

from the geometry. It is rigid, since it is the only realization with

planar faces {4}.


