
Realizations



Basic notions

Let G be a countable group acting transitively on a set V. Thus V
itself is countable, and so we can always think of V as ordered in

some way. Pick e ∈ V any element, and let H be the stabilizer of e

in V. Thus we may identify V with the family of (right) cosets Hx

of H in G , and write x for the corresponding element of V.
However, it is helpful to retain V as a separate entity.

Remark
In particular, we can identify e with the identity of G .



A realization of (V,G ) is a mapping Ψ : V × G → E×M, with M

the group of isometries on the euclidean space E, such that

(xg)Ψ = (xΨ)(gΨ)

for all x ∈ V and g ∈ G . In other words, Ψ is compatible with the

group action; in particular, Ψ induces a homomorphism on G .

We write G := GΨ and V := VΨ . Thus G is a group of isometries

of E which acts transitively on V .

Remark
Such a geometric situation is often a starting point, with (V ,G)
playing the rôle of (V,G ).

The set of points axisH of E �xed by H := HΨ is its axis; the

image v := eΨ is the initial point of the realization.



Quotients

If the realization Ψ is one-to-one on V and an isomorphism on G ,

then we call it faithful.

Remark
A more subtle concept of faithfulness will be introduced for

realizations of polytopes.

Remark
Observe that both conditions for faithfulness are important.

We say that another realization Ω of (V,G ) is a quotient of Ψ , if
there is an a�ne mapping Φ : E→ E′, with E′ another euclidean
space, such that Ω = ΨΦ.

Remark
Of course, Φ must take one group of isometries GΨ into another

such group GΩ.



There are two basic ways in which quotients can arise.

First, through a homomorphism Φ on G , with kernel N , say. Then

G and H are replaced by G/N and H/(N ∩H), respectively.

Remark
Observe that, if N 6 H , then Φ is one-to-one on V.

Second, G remains the same, but H is replaced by a subgroup H ′

with H < H ′ 6 G .

Remark
In general, therefore, a quotient map Φ will combine elements of

both forms, and so will induce identi�cations on both VΨ and GΨ .



Diagonal classes

A diagonal in V is a pair {x , y} of (distinct) elements of V (for the

moment unordered). A diagonal class consists of the family of

diagonals equivalent under G to a given one. Since V is countable,

the diagonal classes can be ordered in some �xed way.

If Ψ is a realization, let {x , y} represent the kth diagonal class, and

write

δk = δk(Ψ) := ‖xΨ − yΨ‖2.

Then ∆ = ∆(Ψ) := (δ1, δ2, . . .) is called the diagonal vector of Ψ .

Theorem
The diagonal vector ∆ determines the realization Ψ up to

congruence.



Realization cone

It is natural to identify two realizations Ψ and Ω if the

corresponding images VΨ and VΩ are congruent. We now use the

notation V to mean the family of congruence classes of these

realizations.

We scale a realization Ψ by λ ∈ R by x(λΨ) := λ(xΨ) for each

x ∈ V. We blend realizations Ψ and Ω to form Ψ #Ω, which is

de�ned by x(Ψ #Ω) := (xΨ, xΩ) in the product space.

Theorem
If Ψ and Ω are two realizations, then their diagonal classes satisfy

∆(λΨ) = λ2∆(Ψ),

∆(Ψ #Ω) = ∆(Ψ) +∆(Ω).

Thus V has the structure of a convex cone.



Polygons
A general regular polygon will be a blend of planar ones, possibly

also including the (line) segment {2} or the (linear) apeirogon {∞}.
A planar polygon will be of the form {p}, with p = r

s
> 2 generally

a fraction, always assumed to satisfy (r , s) = 1 and 1 6 s < 1

2
r .

The notation for a general regular polygon is then

{p} =

{
r

s1, . . . , sk

}
=

{
r

s1

}
# · · ·#

{
r

sk

}
,

where 0 6 s1 < · · · < sk 6 1

2
r with (r , s1, . . . , sk) = 1; the case

s1 = 0 gives {∞}, while sk = 1

2
r gives {2}. We call the entry p a

generalized fraction.

Remark
We exclude here apeirogons with irrational turns.

Example

An r -helix is an apeirogon { r
0,1}, usually with integer r .



Products

The product of representations of groups only makes sense when

they are orthogonal. Thus we now suppose that G is �nite, and

that all images of G under realizations are orthogonal groups. Then

the (tensor) product of realizations Ψ and Ω of V is Ψ ⊗Ω, given

by

x(Ψ ⊗Ω) := (xΨ)⊗ (xΩ)

for x ∈ V.

Since we identify congruent realizations, we have

Theorem
Products of realizations are associative and commutative.



It is clear that the product interacts with blends and scaling by

Theorem
If Φ, Ψ,Ω are realizations and λ ∈ R, then

Φ⊗ (Ψ #Ω) = (Φ⊗ Ψ) # (Φ⊗Ω),

(λΦ)⊗ Ψ = λ(Φ⊗ Ψ).

While we can calculate the diagonal vector ∆(Ψ ⊗Ω), it is far
better to work with inner products. Indeed, these obviously su�ce,

in view of

‖xΨ − yΨ‖2 = ‖xΨ‖2 + ‖yΨ‖2 − 2〈xΨ, yΨ 〉,

with ‖xΨ‖ = ‖yΨ‖ the radius of the sphere containing the

realization.



Cosine vectors

Up to scaling, we can assume all realizations to be normalized, with

points lying on the appropriate unit sphere. Instead of the diagonal

vector, we have the cosine vector Γ = Γ (Ψ) = (γ0, γ1, γ2, . . . , γr ),
given by

γk := 〈xΨ, yΨ 〉,

where, as before, {x , y} represents the k-th diagonal class. We

now adjoin γ0 := 1 to represent the degenerate diagonals {x , x}.

If a = (α0, . . . , αr ) and b = (β0, . . . , βr ), we shall write simply

ab := (α0β0, . . . , αrβr ).

Theorem
The product Ψ ⊗Ω has cosine vector Γ (Ψ ⊗Ω) = Γ (Ψ)Γ (Ω).



There is a multiplicative unit or henagon {1}, which consists of the

single point 1 ∈ R. As the trivial realization, its cosine vector will

be Γ0 = (1r+1), where αk in such expressions will stand for a

sequence α, . . . , α of length k .

Remark
To preserve the normalization, we must take blends of the kind

λΦ# µΨ , where λ2 + µ2 = 1. In terms of cosine vectors, this

reduces to taking convex combinations, which ensure that the

leading term (corresponding to the trivial diagonal class) remains 1.



Layer vectors

If the jth diagonal class from the initial vertex has `j members, then

Λ := (`0, `1, . . . , `r )

is the layer vector. As usual, `0 = 1 gives the trivial diagonal. Thus,

if a realization is centred, meaning that the centroid of its vertices is

the origin o, then its cosine vector Γ must satisfy the layer equation

〈Λ, Γ 〉 = 0.

More generally, a cosine vector Γ will satisfy the layer inequality

〈Λ, Γ 〉 > 0. Write |Λ| := `0 + `1 + · · ·+ `r for the total number of

points. If Γ = α0Γ0 + α1Γ1, a convex combination, with Γ1
corresponding to the centred component, then α0 = 〈Λ, Γ 〉/|Λ|.



Wytho�'s construction

Let G be a discrete group acting on a euclidean space E, which is

generated by re�exions R0, . . . ,Rm−1, that is, involutory isometries;

we may take the generating set to be minimal. We call G

connected if its generators cannot be partitioned into two subsets

whose elements mutually commute.

In its most general terms, a Wytho� construction is of the following

form. As usual, we identify a re�exion R with its mirror of �xed

points {x ∈ E | xR = x}. If K ⊆ M := {0, . . . ,m − 1}, then we

write WK :=
⋂
{Rj | j /∈ K}, which we call a Wytho� space. We

pick a (general) point v ∈WK. The images V := vG form the

vertex-set of the realization. Initial edges are of the form {v , vRj}
with j ∈ K, and their images under subgroups of G then �t

together to form polygonal 2-faces, polyhedral 3-faces, and so on

(we do not want to be too precise at this stage).



Regular polytopes

In this context, we have a string C-group G = 〈r0, . . . , rm−1〉, as
the automorphism group of an abstract regular polytope P, acting
on the distinguished subgroup H := G 0. Thus G = GΦ, say, is a
representation of G . Then the Wytho� space here is the axis

W := W0 of G0 = 〈R1, . . . ,Rm−1〉 = G 0Φ. With v ∈W \ R0, the

vertex-set of the initial k-face Fk is Vk := vGk ; a general k-face

has vertex-set VkΘ for some Θ ∈ G.

We think of the partially ordered family P of these vertex-sets as

the realization of the abstract regular m-polytope whose group is

G . Moreover, we now denote by P the space of congruence classes

of these realizations, as well as the abstract regular polytope with

group G . In this notation, we therefore write P ∈ P.

We now call the realization faithful if P , as a partially ordered set,

is isomorphic to P. The earlier concept is renamed vertex-faithful.



Faces and cofaces

It is obvious that a realization of a regular polytope P contains a

realization of each of its faces, with an induced subgroup of the

whole symmetry group G acting on it.

In fact, the same is true of the vertex-�gure, and more generally of

cofaces and sections. For the vertex-�gure, if v is the initial vertex

of the realization P and w := vR0, then we have two choices. The

narrow vertex-�gure has initial vertex 1

2
(v + w), while the initial

vertex of the broad vertex-�gure is w itself; in both cases,

G0 = 〈R1, . . . ,Rm−1〉 acts in the natural way.

The convenience of the `broad' de�nition is that the vertices of the

vertex-�gure form a subset of the original vertex-set.



However, for more general cofaces (and sections), the correct

approach is to take the `narrow' path. For the k-coface, we apply

Wytho�'s construction with group 〈Rm−k , . . . ,Rm−1〉 and initial

vertex some

wm−k ∈ R0 ∩ · · · ∩ Rm−k−1 ∩ Rm−k+1 ∩ · · · ∩ Rm−1.

The case k = m − 1 is, of course, just that of the narrow

vertex-�gure, as previously de�ned.

Now, the induced realization of a section is just that of the

appropriate face of a coface.



Rank and dimension
For the next part, it is convenient to take the ambient space A to

be a spherical space S or euclidean space E, with its instrinsic

dimension. In the spherical case, we ultimately add 1 to each

dimension.

There are two main results, both proved by induction using

vertex-�gures.

Theorem
If P is a faithful realization of P, then dimP > rankP − 1.

The mirror vector of the realization is

dim(R0, . . . ,Rm−1) := (dimR0, . . . , dimRm−1).

Theorem
For a faithful realization of P,

dim(R0,R1, . . . ,Rm−2,Rm−1) = (0, 1, . . . ,m − 2,m − 2).



Full rank

Say that the faithful realization P of P (with ambient space A as

before) is of full rank if dimP = rankP − 1.

Theorem
The mirror vector dim(R0, . . . ,Rm−1) of a faithful realization of full

rank satis�es

dimRj =

{
j or m − 2, if j = 0, . . . ,m − 3,

m − 2, if j = m − 2 or m − 1.

The key here is that the vertex-�gure Q must also be of full rank,

lying in a sphere S in A centred at the initial vertex v of P . For

j > 1, Rj is spanned by v and the corresponding mirror Sj−1 of Q,

while the edge-�gure also being of full rank forces R0 to be a point

or hyperplane. (If x ∈ R0 is not the mid-point of the initial edge,

then x〈R2, . . . ,Rd−1〉 spans a hyperplane.)



Finite polytopes

Until further notice, all regular polytopes P will be �nite; we shall

say a little about apeirotopes at the end of this part.

Remark
Actually, apeirotopes with �nitely many vertices will also �t in here.

We denote by n the number of vertices and r the number of

non-trivial diagonal classes of P. For each pure realization Ψ , let
d = d(Ψ) be the corresponding dimension, W = W (Ψ) the

Wytho� space and w = w(Ψ) := dimW its dimension.

In fact, what is more important is the essential Wytho� space W ∗,
and its dimension w∗ := dimW ∗. This factors out by non-scalar

centralizers of G in the orthogonal group O, and divides w by the

character norm � which is 1, 2 or 4 � to yield w∗. However, we shall
not encounter examples of this phenomenon here, though we note

it in what follows.



Fundamental relations

We have the following basic relations for pure realizations. We

write W for the Wytho� space of the simplex realization E with

vertex-set the standard orthonormal basis {e1, . . . , en} of En, and

w := dimW .

Theorem∑
Ψ w∗(Ψ)d(Ψ) = n,∑
Ψ

1

2
w∗(Ψ)(w∗(Ψ) + 1) = r + 1,∑

Ψ w∗(Ψ)w(Ψ) = w,

where the sums are over the irreducible representations Ψ of G .

Remark
Bear in mind the trivial realization {1}, for which d = w = w∗ = 1.

The core point is that each W ∗ contributes w∗ pure components to

E (accounting for n and w), but 1

2
w∗(w∗ + 1) to the dimension of

the realization cone (diagonal vectors are quadratic functions of

linear combinations of initial vertices in W ∗).



Cosine vectors

Recall that the diagonal classes of P split its vertex-set into layers

from the initial vertex e and that, if there are `s vertices in layer s,

then Λ := (`0, . . . , `r ) is the layer vector of P. As before, the entry

`0 = 1 always corresponds to the trivial diagonal; usually, `1
corresponds to the initial edge.

We now normalize, so that the vertices of all realizations P lie on

some unit sphere. The normalized realizations of P form the

realization domain N = N (P) of P.

Also recall that the cosine vector Γ = Γ (P) = (γ0, γ1, . . . , γr ) is

given by γk := 〈v , x 〉, where {v , x} represents the kth diagonal

class from the inital vertex v . The initial entry is γ0 := 〈v , v 〉 = 1.

Thus cosine vectors Γ are identi�ed with realizations in N .



Blends

First observe that, in the normalized case, diagonal and cosine

vectors are related by

δk = 2(1− γk).

A blend µP # νQ of two normalized realizations P,Q of P will also

be normalized just when µ2 + ν2 = 1. In terms of cosine vectors

(and diagonal vectors as well), this corresponds to taking convex

combinations. For the realization domain N , this says

Theorem
The realization domain N of a regular polytope P is a compact

convex set of dimension r , the number of non-trivial diagonal

classes of P.



We call a realization P ∈ P centred if the origin o is the centroid of

its vertices.

Theorem
If the centred realization P ∈ P has cosine vector Γ = (γ0, . . . , γr ),
then

〈Λ, Γ 〉 =
r∑

s=0

`sγs = 0.

The trivial realization P0 = {1} has cosine vector Γ0 = (1r+1), so
that 〈Λ, Γ0〉 = |Λ| = n, the number of vertices of P. More

generally, 〈Γ,Λ〉/|Λ| is the coe�cient of Γ0 in the expression of Γ
as a convex combination of pure cosine vectors.



Dimension equation

Theorem
If the simplex realization E = T n−1 of P is decomposed into pure

components P0, . . . ,Pk , where Pj has dimension dj and cosine

vector Γj for j = 0, . . . , k, then∑
j

djΓj = n(1, 0r ).

This follows from the fact that the radius ρj of Pj satis�es

ρ2j = dj/n. Of course, (1, 0r ) is the cosine vector of E .

Remark
If dimP = d , then P ⊗ P has a non-trivial component of dimension

at most
1

2
d(d + 1)− 1 = 1

2
(d − 1)(d + 2).



Central symmetry

The analogous expresssion for centrally symmetric polytopes is

Theorem
If the cross-polytope realization X n of a centrally symmetric

polytope P with 2n vertices is decomposed into pure components

P1, . . . ,Pk , where Pj has dimension dj and cosine vector Γj for
j = 1, . . . , k, then ∑

j

djΓj = n(1, 0r−1,−1).

The convention for central symmetry is that the last diagonal class

is that to the antipodal vertex; occasionally we go against this. The

sum for the realizations of P/2 will now be n(1, 0r−1, 1),
corresponding to the small simplex realization.



Simplex

We �rst give some basic examples. The d -simplex T d := {3d−1}
has only one non-trivial diagonal class, and so its layer vector is

Λ = (1, d). Thus the centred simplex P1 = T d itself must have

cosine vector

Γ1 = (1,− 1

d
),

as may be seen directly from the geometry.

There is only one non-trivial product, namely, T d ⊗ T d , with

cosine vector

Γ 2

1 = (1, 1

d2
) = 1

d
Γ0 + d−1

d
Γ1.

The invariable convention is that Γ0 is the cosine vector of the

henagon {1} as the trivial realization; here, Γ0 = (1, 1). Note that

the coe�cient of Γ0 is indeed given by

〈Λ, Γ 2

1 〉/|Λ| =
(
1 + d · 1

d2

)
/(d + 1) = 1

d
.



As a non-regular example, consider the cartesian product

P1 := T d × T d of centred congruent d -simplices, with symmetry

group (Sd+1 × Sd+1) o C 2. Then P1 itself (suitably scaled) has

cosine vector

Γ1 = (1, d−1
2d
,− 1

d
);

there are 2d vertices adjacent to the initial one. (Why can this be

thought of as Γ1 = 1

2

(
(1,− 1

d
,− 1

d
) + (1, 1,− 1

d
)
)
?).

If we take the vertices of the two copies to be the unit vectors

x0, . . . , xd and y0, . . . , yd , then the xj ⊗ yk clearly give the vertices

of another realization P2 in Ed2 . Its cosine vector will be

Γ2 = (1,− 1

d
, 1

d2
).

(This is (1,− 1

d
,− 1

d
)(1, 1,− 1

d
) � again, can you see why?)



Cross-polytope

The centrally symmetric d -cross-polytope X d := {3d−2, 4} has

layer vector Λ = (1, 2(d − 1), 1). Its standard centrally symmetric

realization P2 = X d has cosine vector Γ2 = (1, 0,−1).

Identifying opposite vertices to give X d/2 in e�ect collapses X d

onto its facet T d−1. We thus have the small simplex realization

P1 = T d−1, with cosine vector Γ1 = (1,− 1

d−1 , 1).

For the products P1 ⊗ P2 and P2 ⊗ P2, we have

Γ1Γ2 = Γ2 ( =⇒ T d−1 ⊗ X d = X d ),

Γ 2

2 = 1

d
Γ0 + d−1

d
Γ1.



Polygons

For p > 3, the p-gon {p} has b1
2
pc non-trivial pure realizations

{ p
sj
}, with sj = 1, . . . , b1

2
pc. If p is even, then the last of these is

the digon {2}.

In taking the product of two polygons, we can regard them as

covered by a common one. We then have (suppressing the scaling

constants 1√
2
)

Theorem
For p > q > 2 rational,

{p} ⊗ {q} =


{ pq

p − q

}
#
{ pq

p + q

}
, if p > q,{p

2

}
# {1}, if p = q.



Icosahedron

We give two further examples. The convex regular icosahedron

P2 := {3, 5} ∈ {3, 5}, with layer vector Λ = (1, 5, 5, 1), has vertices
all even permutations of (±τ,±1, 0). Its cosine vector is thus

Γ2 = (1, 1√
5
,− 1√

5
,−1).

The great icosahedron P3 := {3, 5
2
} (with the same vertices)

similarly has cosine vector

Γ3 = (1,− 1√
5
, 1√

5
,−1).



There are several ways of �nding the last cosine vector.

• Since the realization can only be of {3, 5}/2 = {3, 5 : 5},
whose vertices are those of the 5-simplex, it must be

Γ1 = (1,−1

5
,−1

5
, 1).

• Applying the dimension equation, with d1 = 12− 1− 3− 3 = 5

gives

Γ1 = 1

5

(
12(1, 0, 0, 0)− Γ0 − 3Γ2 − 3Γ3

)
= (1,−1

5
,−1

5
, 1).

• Since the simple group A5 has no non-trivial representations in

R or E2, the non-trivial component of P2 ⊗ P2 must be pure. Using

the layer equation, this gives

Γ 2

2 = (1, 1
5
, 1
5
, 1) = 1

3
Γ0 + 2

3
Γ1.



Dodecahedron

The regular dodecahedron {5, 3} with 20 vertices has layer vector

Λ = (1, 3, 6, 6, 3, 1). The hemi-dodecahedron {5, 3}/2 = {5, 3 : 5}
has 2 non-trivial diagonal classes, leaving 3 corresponding to faithful

realizations. Two of these are the convex dodecahedron P3 = {5, 3}
and great stellated dodecahedron P4 = {5

2
, 3}, with cosine vectors

Γ3 = (1,
√
5

3
, 1
3
,−1

3
,−
√
5

3
,−1),

Γ4 = (1,−
√
5

3
, 1
3
,−1

3
,
√
5

3
,−1).

The �nal pure faithful realization P5 must thus have dimension

d5 = 10− 3− 3 = 4, and � from the dimension equation � cosine

vector

Γ5 = 1

4

(
10(1, 0, 0, 0,−1)− 3Γ3 − 3Γ4

)
= (1, 0,−1

2
, 1
2
, 0,−1).



Just as for the icosahedron, one pure realization P2 of {5, 3 : 5}
will be the non-trivial component of P3 ⊗ P3 of dimension d2 = 5,

giving Γ 2
3

= 1

3
Γ0 + 2

3
Γ2 with

Γ2 = (1, 1
3
,−1

3
,−1

3
, 1
3
, 1).

Thus the �nal pure realization P1 has dimension

d1 = 10− 1− 5 = 4, and cosine vector

Γ1 = 1

4

(
10(1, 0, 0, 0, 0, 1)− Γ0 − 5Γ2

)
= (1,−2

3
, 1
6
, 1
6
,−2

3
, 1).

Among various product relations is

Γ3Γ4 = 8

9
Γ1 + 1

9
Γ2 =⇒ P3 ⊗ P4 = 2

√
2

3
P1 # 1

3
P2;

observe that P3 ⊗ P4 is centred.



In summary, then, the cosine matrix of {5, 3} is

1 1 1 1 1 1

1 −2

3

1

6

1

6
−2

3
1

1 1

3
−1

3
−1

3

1

3
1

1
√
5

3

1

3
−1

3
−
√
5

3
−1

1 −
√
5

3

1

3
−1

3

√
5

3
−1

1 0 −1

2

1

2
0 −1





Apeirotopes

The realization theory of regular apeirotopes is more complicated,

and so we shall say very little about it (the �nite theory applied to

vertex-�gures will su�ce). However, as an illustration, we give a

simple example.

Let

0 < ϑ1 < · · · < ϑk 6 π,

and de�ne

xn =
(
n, cos(nϑ1), sin(nϑ1), . . . , cos(nϑk), sin(nϑk)

)
∈ E2k+1

for n ∈ Z. For each k and choice of ϑj , this gives a (discrete)

regular apeirogon {. . . , x−1, x0, x1, x2, . . .}; thus the realization

space of the (abstract) apeirogon {∞} has uncountably in�nite

(algebraic) dimension.



Another curiosity is the following.

Theorem
If an abstract regular apeirotope P has a discrete faithful

realization P whose translation group is full-dimensional (in its

ambient space), then P has a faithful realization with no

translations in its symmetry group.

What happens here is that the translational symmetries of P are

destroyed by turning them into irrational apeirogonal symmetries,

as in the previous example.

Remark
If we drop discreteness, then we can �nd faithful realizations of

hyperbolic honeycombs in euclidean spaces, or even on spheres.


