
Full rank:

classical polytopes



All dimensions

There are three classical regular d -polytopes for all dimensions d ;

for d > 5, these are the only ones. These polytopes are

• the d -simplex {3d−1}, with d + 1 vertices and group the

symmetric group Ad
∼= Sd+1 of order (d + 1)!,

• the d -cross-polytope {3d−2, 4}, with 2d vertices ±ej for
j = 1, . . . , d and group Cd of order 2dd !,

• its dual the d -cube {4, 3d−2}, with 2d vertices (±1, . . . ,±1)
and the same symmetry group Cd .

Remark

In most dimensions, there is no neat expression for the vertex-set of

the simplex. However, in the hyperplane

Hd := {(ξ0, . . . , ξd ) ∈ Ed+1 | ξ0 + · · ·+ ξd = 0},

we can take all permutations of (d , (−1)d ).



Petrie polygons

We can easily work out the types of the Petrie polygons from the

recursive de�nition.

For the d -simplex with vertices a0, . . . , ad , say, a Petrie polygon of

one facet has successive vertices a0, . . . , ad−1. This polygon can

now only go to ad , and so the Petrie polygon C has length d + 1.

Since the product of the generating re�exions has single �xed point

o, it follows that the type of C must be{ d + 1

1, 2, . . . ,m

}
,

with m := b1
2
(d + 1)c.



For the d -cross-polytope with vertices ±e1, . . . ,±ed , a Petrie

polygon of one facet has successive vertices e1, . . . , ed . This
polygon can now only go to −e1. There are two consequences.

First, the Petrie polygon C must have length 2d . Second, going d

steps along C is the inversion −I in the origin, the single �xed point

of the product of the generating re�exions. Since therefore the

entries in the denominator of the generalized fraction must be odd,

it follows that the type of C is{ 2d

1, 3, . . . , 2m − 1

}
,

with m := b1
2
(d + 1)c as before.

The Petrie polygon of the d -cube has to be of the same type; this

can be shown independently of the previous argument.



4-dimensions

Since we have already treated the plane and ordinary space, we are

left with E4.

Before moving on the the 24-cell, we remark that, just as the

vertex-set of the 3-cube {4, 3} contains two copies of that of the

tetrahedron {3, 3} � actually, here

{3, 3} = {4, 3}η

� so the vertex-set of the 4-cube {4, 3, 3} contains two copies of

that of the 4-cross-polytope {3, 3, 4}.

The inscribed cross-polytopes do not have full symmetry; instead,

each has induced group B4 of index 2 in C4.



The 24-cell {3, 4, 3}

There are several di�erent constructions of the 24-cell. Since

quaternions provide such a nice approach to some 4-dimensional

problems, for our purposes we initially take the 24-cell to have

vertex-set 2Â, with Â the binary tetrahedral group of order 24.

Thus, as coordinate vectors, the vertices are all permutations of

(±2, 0, 0, 0), (±1,±1,±1,±1),

with all changes of sign. We immediately see that, among the

vertices of {3, 4, 3} are those of the cross-polytope and cube.

For the cube, this is explained by

{4, 3, 3} = {3, 4, 3}η.



Since Â is a subgroup of the binary octahedral group Ĉ of index 2,

another choice of vertex-set for {3, 4, 3} is
√
2B̂, with B̂ the other

coset of Â in Ĉ. As coordinate vectors, these vertices are all

permutations of

(±1,±1, 0, 0),

with all changes of sign.

This expression for the vertex-set shows that the vertices of {3, 4, 3}
are the mid-points of the edges of some cross-polytope {3, 3, 4}.



Petrie polygon

Since the vertex-�gure of {3, 4, 3} is the centrally symmetric cube

{4, 3}, it follows that its edge-graph contains diametral planar

polygons. In fact, these are hexagons: a typical one has vertices

(2, 0, 0, 0), (±1, 1, 1, 1) and their opposites.

If a, b, c , d , e are successive vertices of a Petrie polygon of {3, 4, 3},
then it is not hard to see that a, b, d , e are successive vertices of

the (broad) vertex-�gure of {3, 4, 3} at c . Thus a, c, e are

successive vertices of a diametral hexagon of {3, 4, 3}, which
implies that the Petrie polygon itself must be of type { 12

s,t } for
some s, t. Since two steps along it give a planar hexagon, we must

have s, t ≡ ±1 (mod 6), and it follows that s = 1, t = 5, giving the

Petrie polygon of type { 12
1,5}. See the picture following.
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Realizations of the 24-cell

We begin, of course, with P3 = {3, 4, 3} itself of dimension d3 = 4,

which shows that the layer vector is Λ = (1, 8, 6, 8, 1). Observe next
that {3, 4, 3} is 2-collapsible onto its face {3}; thus {3, 4, 3}/2
will have a pure component P1 = {3} of dimension d1 = 2. This is

enough information to describe the entire realization space, because

(apart from the trivial realization P0 = {1} of dimension d0 = 1)

{3, 4, 3}/2 must then have just one other pure component P2 of

dimension d2 = 12− 1− 2 = 9, leaving a last faithful pure

realization P4 of dimension d4 = 12− 4 = 8.

For the corresponding cosine vectors, we initially have

Γ0 = (1, 1, 1, 1, 1),

Γ1 = (1,−1

2
, 1,−1

2
, 1),

Γ3 = (1, 1
2
, 0,−1

2
,−1).



We then calculate Γ2, Γ4 by

Γ2 = 1

9

(
12(1, 0, 0, 0, 1)− Γ0 − 2Γ1

)
= (1, 0,−1

3
, 0, 1),

Γ4 = 1

8

(
12(1, 0, 0, 0,−1)− 4Γ3

)
= (1,−1

4
, 0, 1

4
,−1),

leading to the cosine matrix

1 1 1 1 1

1 −1

2
1 −1

2
1

1 0 −1

3
0 1

1 1

2
0 −1

2
−1

1 −1

4
0 1

4
−1


.

We can identify the vertices of P2 as those of three regular

tetrahedra in mutually orthogonal 3-dimensional subspaces of E9.



So far, we have not mentioned products. We easily �nd that

Γ 2

3 = 1

4
Γ0 + 3

4
Γ2,

Γ1Γ3 = Γ4.

In other words, P2 is the non-trivial component of P3 ⊗ P3, while

P4 = P1 ⊗ P3.

Notice as well that P1 ⊗ P2 = P2.



The 600-cell {3, 3, 5}

We can take the vertices of the (convex) 600-cell P5 := {3, 3, 5} in
E4 to be 2Ĝ, with Ĝ the binary icosahedral group or icosians. As

coordinate vectors, these are all even permutations with all changes

of sign of

(2, 0, 0, 0), (1, 1, 1, 1), (τ, 1, τ−1, 0),

where (as usual) τ := 1

2
(1 +

√
5).

This formulation shows that the symmetry group [3, 3, 5] consists
of all mappings of the form

x 7→ axb or a xb,

with a,b ∈ Ĝ.



Petrie polygon

The 600-cell has planar diametral polygons, since the vertex-�gure

{3, 5} is centrally symmetric. These subtend an angle

arccos(τ/2) = π/5 at the centre, and so are decagons {10}.

If a, b, c , d , e, f , g are successive vertices of a Petrie polygon of

{3, 3, 5}, then a, b, c, e, f , g are successive vertices of a Petrie

polygon of the (broad) vertex-�gure of {3, 3, 5} at d . Thus a, d , g
are successive vertices of a diametral decagon of {3, 3, 5}, so that

the Petrie polygon is of type { 30
s,t } for some 1 6 s < t 6 15. Since

three steps along give a planar decagon, we must have

s, t ≡ ±1 (mod 10). Because of the possible double rotations in

the group, s, t 6= 9; thus the Petrie polygon is of type { 30

1,11}. See
the following picture.
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Star polytopes

The only possible non-integer entry in the Schlä�i symbol of a

4-dimensional regular polytope is 5

2
. All the 4-dimensional star

polytopes are related by duality and vertex-�gure replacement. By

the latter is meant replacing an existing vertex-�gure by another

with the same vertices and symmetry group.

Theorem

A suitable sequence of vertex-�gure replacements and dualities

applied to a regular star polytope P will result in a convex polytope

Q. Then P will have the same vertices as Q or its dual Qδ. Every

regular star polytope is obtainable by reversing such processes.

In fact, the same idea holds in lower dimensions; however, in E3 we

found the star polyhedra in a di�erent way.



The 4-dimensional star polytopes

{5, 3, 3} {3, 3, 5}

{3, 5, 5
2
} {5

2
, 5, 3}

{5, 5
2
, 5}

{5, 3, 5
2
} {5

2
, 3, 5}

{5
2
, 5, 5

2
}

{5, 5
2
, 3} {3, 5

2
, 5}

{3, 3, 5
2
} {5

2
, 3, 3}

Duals are in the same row; vertex-�gure replacements are in the

same column.



Petrie polygons

If as before a, b, c , d , e, f , g are successive vertices of a Petrie

polygon of {3, 3, 5}, then the two adjacent facets of {3, 5, 5
2
} which

are the broad vertex-�gures of {3, 3, 5} at b, f meet on the trigon

c , d , e. Then a, c , d , e, g are successive vertices of a Petrie polygon

of {3, 5, 5
2
}; thus two steps along it go one step along a diametral

dodecagon. It follows that the Petrie polygon is of type { 20
1,9}. See

the following picture.

A similar argument shows that successive vertices of a Petrie

polygon of {5, 5
2
, 5} are alternate vertices of a Petrie polygon of

{3, 3, 5}, so that the Petrie polygon here is of type { 15
1,4}.

For {5, 3, 5
2
}, whose Petrie polygon will be of the same type as that

of its dual {5
2
, 3, 5}, we can argue that it is not altered by the

interchange 5↔ 5

2
, and so (of the permissible double rotations) it

can only be of type { 12
1,5}.
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Realizations

Since {3, 3, 5} ∼= {3, 3, 5} (the abstract polytope), we see that the

layer vector is Λ = (1, 12, 20, 12, 30, 12, 20, 12, 1). This gives initial
cosine vector

Γ5 = (1, τ
2
, 1
2
, τ
−1

2
, 0,− τ−1

2
,−1

2
,− τ

2
,−1).

Changing the sign of
√
5 gives the cosine vector

Γ6 = (1,− τ−1

2
, 1
2
,− τ

2
, 0, τ

2
,−1

2
, τ
−1

2
,−1)

of the stellated 600-cell P6 := {3, 3, 5
2
}.



For the rest, we dispose of Q := {3, 3, 5}/2 �rst. As a realization

of P, its simplex realization has cosine vector (1, 07, 1).

The non-trivial component P1 of P5 ⊗ P5 has dimension d1 = 9,

with cosine vector Γ1 given by Γ 2

5
= 1

4
Γ0 + 3

4
Γ1; thus,

Γ1 = (1, 1
3
τ, 0,−1

3
τ−1,−1

3
,−1

3
τ−1, 0, 1

3
τ, 1).

Similarly, Γ 2

6
= 1

4
Γ0 + 3

4
Γ2 gives pure component P2, again with

dimension d2 = 9, and cosine vector

Γ2 = (1,−1

3
τ−1, 0, 1

3
,−1

3
, 1
3
τ, 0, 1

3
τ−1, 1).

Next, de�ne P3 of dimension d3 = 16 by its cosine vector

Γ3 := Γ5Γ6 = (1,−1

4
, 1
4
,−1

4
, 0,−1

4
, 1
4
,−1

4
, 1).



We wrap up Q by observing that it has 4 non-trivial diagonals, and

so we only need one �nal pure realization P4 of dimension

d4 = 60− 1− 9− 9− 16 = 25, whose cosine vector is given by

Γ4 = 1

25

(
60(1, 07, 1)− Γ0 − 9Γ1 − 9Γ2 − 16Γ3

)
= (1, 0,−1

5
, 0, 1

5
, 0,−1

5
, 0, 1).

Remark

We know that P1,P2 must be pure, because P has inscribed copies

of {3, 4, 3}. Then P3 must be pure, because � being invariant

under the change of sign of
√
5 � having one of P1,P2 as a

component would force the other. Last, P4 is the only possibility to

�ll in the gap.



We similarly need 4 pure centrally symmetric realizations, of which

we already know P5,P6.

Now P8 := P1 ⊗ P6 = P2 ⊗ P5, with cosine vector

Γ8 = (1,−1

6
, 0, 1

6
, 0,−1

6
, 0, 1

6
,−1),

has dimension at most d8 = 4 · 9 = 36.

We then consider P5 ⊗ P5 ⊗ P5, with cosine vector

Γ 3

5 = (1
4
Γ0 + 3

4
Γ1)Γ5 = 1

4
Γ5 + 3

4
Γ1Γ5,

whose dimension is at most 20. Hence P1 ⊗ P5 cannot have a pure

component other than P5 of dimension more than 16.



Since we have 4 + 4 + 16 + 36 = 60, we see that P8 must be pure.

Moreover, the �nal pure component P7 does have dimension

d7 = 16, with cosine vector given by

Γ7 = 1

16
(60(1, 07,−1)− 4Γ5 − 4Γ6 − 36Γ8)

= (1, 1
4
,−1

4
,−1

4
, 0, 1

4
, 1
4
,−1

4
,−1).

Bear in mind that the cross-polytope realization of P will have

cosine vector (1, 07,−1).

Observe that

Γ1Γ5 = 1

3
Γ1 + 2

3
Γ7, Γ2Γ6 = 1

3
Γ6 + 2

3
Γ7.



Cosine matrix of {3, 3, 5}

In summary, the cosine matrix is

1 1 1 1 1 1 1 1 1

1 1

3
τ 0 −1

3
τ−1 −1

3
−1

3
τ−1 0 1

3
τ 1

1 −1

3
τ−1 0 1

3
τ −1

3

1

3
τ 0 −1

3
τ−1 1

1 −1

4

1

4
−1

4
0 −1

4

1

4
−1

4
1

1 0 −1

5
0 1

5
0 −1

5
0 1

1 1

2
τ 1

2

1

2
τ−1 0 −1

2
τ−1 −1

2
−1

2
τ −1

1 −1

2
τ−1 1

2
−1

2
τ 0 1

2
τ −1

2

1

2
τ−1 −1

1 1

4
−1

4
−1

4
0 1

4

1

4
−1

4
−1

1 −1

6
0 1

6
0 −1

6
0 1

6
−1





The 120-cell

We shall not say as much about the dual {5, 3, 3} to the 600-cell.

However, once again, quaternions give a neat way to investigate it.

It is not too hard to see that one vertex of the geometric 120-cell

{5, 3, 3} dual to the {3, 3, 5} with vertex set 2Ĝ is the quaternion
1√
2
(1+ i). Since Â 6 Ĝ with index 5, and B̂ ⊂ Ĉ is the other coset

of Â in Ĉ, we see that (with this initial vertex) the vertex-set of

{5, 3, 3} can be identi�ed with ĜB̂Ĝ.

We shall not list the vertices; the list is rather long. In any event, a

suitable scaling is needed to make them look tidier.



A further remark is in order. Suppose that p ∈ Ĝ is an element of

order 5, for example p := 1

2
(−τ + i+ τ−1j). Then the powers of p

are the (left or right) coset representatives of Â in Ĝ.

We can now write

vert{5, 3, 3} =
⋃
{p−r B̂ps | r , s = 0, . . . , 4}.

However, we may observe that b−1Ĝb = Ĝ† for any b ∈ B̂ � recall

that † changes the sign of
√
5. After a little manipulation, we �nd

an alternative expression

vert{5, 3, 3} =
⋃
{(p∗rpr Ĝ | r = 0, . . . , 4},

where pr := pr and x∗ := x† (= (x†)−1).



Now the points p∗rpr form the vertices of a regular 4-simplex, so

the last relation expresses vert{5, 3, 3} either as 120 copies of the

vertices of a 4-simplex, or as 5 copies of vert{3, 3, 5}.

There follows a somewhat remarkable result.

Theorem

The vertex-set vert{5, 3, 3} of the 120-cell contains the vertex-sets

of all the other classical regular 4-polytopes.

Since Â 6 Ĝ, we have already captured the remaining four.


