
Rigidity



Basic idea

We begin with an illustrative example.

Example

The small stellated dodecahedron has Schlä�i symbol {5
2
, 5}, which

distinguishes it from the great dodecahedron with Schlä�i symbol

{5, 5
2
}. Both are isomorphic to the abstract polyhedron {5, 5 | 3};

however, the �rst has pentagrams as faces and pentagons as

vertex-�gures, while the second is the other way round.

More importantly, a regular polyhedron whose faces are pentagrams

{5
2
} and vertex-�gures are pentagons {5} is a small stellated

dodecahedron {5
2
, 5}, uniquely up to similarity, rather than {5, 5

2
}.

It is to be noted that there is no need to specify the hole {3}.
On the other hand, the general realization of {5, 5 | 3} will be of

the form { 5

1,2 ,
5

1,2 | 3}, where now the hole must be given.



Fine Schlä�i symbols

A �ne Schlä�i symbol determines a family of geometric regular

polytopes by specifying in geometric terms the types of certain

regular polygons which occur among its vertices. Recall here the

fact that the vertices of sections can be asssumed to lie among the

vertices of the polytope itself (though not usually with the induced

symmetry).

The entries in these regular polygons will be generalized fractions.

For instance, { 6

1,3} = {6}# {2} is a skew hexagon inscribed in a

hexagonal prism, { 6

2,3} = {3}# {2} is a skew hexagon inscribed in

a trigonal prism, while { 3

0,1} = {∞}# {3} is a 3-helix.

If a �ne Schlä�i symbol uniquely determines the shape, or similarity

class, of a corresponding regular polytope P , then we call it rigid.

More generally, we may ask what shapes of polytopes a �ne Schlä�i

symbol does determine.



Remark
A complementary question asks whether a given geometric regular

polytope has a �ne Schlä�i symbol which speci�es its shape.

As an example, { 4

0,1 , 3 : 3

0,1} describes a regular apeirohedron

whose faces and Petrie polygons are 4- and 3-helices, respectively.

(The vertex-�gure is a trigon, by which we mean a regular triangle.)

In fact, { 4

0,1 , 3 : 3

0,1} is rigid; we shall shortly see why. In this case,

the �ne Schl�'a�i symbol gives no clue to the symmetry group; even

knowing that the apeirohedron is rigid, it is not clear why its group

is speci�ed by the fact that the translations induced by a certain

pair of face and Petrie polygon commute.



Realizations

In terms of realizations, a �ne Schlä�i symbol can be identi�ed with

a certain cone P, say, of geometric regular polytopes. Then P
being rigid means that it is 1-dimensional. Of course, P will be a

subcone of the realization cone of some abstract regular polytope.

If two �ne Schlä�i symbols P,Q are such that Q determines a

subcone of P, then we write Q 4 P or P < Q. If they determine

the same cone, so that P 4 Q 4 P, then we write P ≈ Q.

Example

Reverting to our earliest example, we can now write

{5, 5
2
} 4 {5, 5 | 3}.

This emphasizes that fact that the �ne Schlä�i symbol often

contains `hidden' information.



Criteria for rigidity

Theorem
If the �ne Schlä�i type P has rank at least 2, planar 2-faces and

rigid vertex-�gure Q, then P is rigid.

Corollary

The classical regular polytopes and honeycombs are rigid.

Theorem
If the �ne Schlä�i type P has rank at least 3, planar 2-faces, planar

holes of its 3-faces, and vertex-�gure of type Q# {2} with Q rigid,

then P is rigid.



Remark
As a generalization of the previous criterion, if the vertex-�gure of a

regular polyhedron P is a blend of at most k planar polygons

(including the segment {2}), and k j-holes or zigzags for distinct j

are speci�ed planar polygons, then P will be rigid.

As an example, {3, 3, 3}$ = {4, 6

2,3 | 3} ∼= {4, 6 | 3 : 5} is rigid.

Abstractly, its Petrie polygon needs to be speci�ed, but it is not

needed for the �ne Schlä�i symbol (the geometric Petrie polygon is

actually { 5

1,2}). Now, only the vertex-�gure distinguishes it from

{4, 6

1,3 | 3} ∼= {4, 6 | 3} (also rigid, but with Petrie polygon { 10
1,3}).

Indeed, for higher rank, one could have a vertex-�gure which was a

blend of rigid polytopes, rather than polygons. There is an obvious

di�culty: how can one �nd a �ne Schlä�i symbol to pin down such

a blend? This applies particularly to the second theorem.



Icosahedra

As an illustration, consider the icosahedron {3, 5}. The (convex)

icosahedron {3, 5} and great icosahedron {3, 5
2
} are classical, and

hence rigid.

The hemi-icosahedron (obtained by identifying opposite vertices,

edges and faces of {3, 5}) is

{3, 5

1,2 : 5

1,2} ≈ {3, 5 : 5},

which is also rigid. The general regular icosahedron is a blend of

these three and, of course, is not rigid.

Observe that we can write indi�erently

{3, 5

1,2 : 5

1,2} 4 {3, 5

1,2},

{3, 5 : 5} 4 {3, 5}.



Dodecahedra

For the regular dodecahedron {5, 3}, the situation is rather

di�erent. Once again, we have the classical (convex) dodecahedron

{5, 3} and great stellated dodecahedron {5
2
, 3}, which are rigid.

There is a third pure faithful 4-dimensional realization of {5, 3},
whose �ne Schlä�i symbol { 5

1,2 , 3 : 10

1,3} is actually also rigid. But

this is merely because there are no other pure faithful realizations,

and � since the Petrie polygon is speci�ed � { 5

1,2 , 3 : 10

1,3} cannot
have {5, 3} or {5

2
, 3} as a component.

However, all realizations of the hemi-dodecahedron {5, 3 : 5} have

�ne Schlä�i symbol { 5

1,2 , 3 : 5

1,2}; in particular, there is no way that

�ne Schlä�i symbols can distinguish the 4- and 5-dimensional pure

realizations. (Certain regular hexagons in the edge-graph could

make the distinction, but these cannot be speci�ed in terms of the

group generators.) Thus { 5

1,2 , 3 : 5

1,2} is, in general, 9-dimensional.



Polyhedra in E3

Example

As already observed, the classical regular polyhedra are all rigid,

because they have planar faces and planar vertex-�gures.

Example

The Petrials of the classical regular polyhedra are rigid. Here, it is

the planar Petrie polygons and planar vertex-�gures which ensure

rigidity.

Remark
In a sense, the faces of these Petrials do not need to be speci�ed.

We could, for example, write

{·, 3 : 3} = { 4

1,2 , 3 : 3} = {3, 3}π.



Apeirohedra in E3

Example

The Petrie-Coxeter sponges, such as {4, 6

1,3 | 4}, are rigid; their

faces and holes are planar polygons, and their vertex-�gures are

skew polygons (blends with two components).

Example

The Petrials of the Petrie-Coxeter sponges are rigid, without

needing to specify the full combinatorial type. In fact, we have

{ 4

0,1 ,
6

1,3 : 6} ∼= {∞, 6 : 6, 3},

{ 3

0,1 ,
6

1,3 : 4} ∼= {∞, 6 : 4, 4},

{ 3

0,1 ,
4

1,2 : 6} ∼= {∞, 4 : 6, 4}.



Without going into too much detail, the reason is that the planar

Petrie polygons determine the geometry of the helical faces (same

angle at the vertices), and this is enough to �x their shapes.

Observe, though, that we are now describing the apeirogonal faces

by more than just the abstract symbol {∞}.

An interesting consequence is that the Petrie-Coxeter sponges

admit alternative descriptions, in terms of their Petrials:

{6, 6

1,3 : 4

0,1} ∼= {6, 6 | 3},

{4, 6

1,3 : 3

0,1} ∼= {4, 6 | 4},

{6, 4

1,2 : 3

0,1} ∼= {6, 4 | 4}.

The geometric and abstract descriptions are now signi�cantly

di�erent. Note also that we can write {6, 6

1,3 : 4

0,1} ≈ {6,
6

1,3 | 3},
and so on.



Rigidity of { 4

0,1 , 3 : 3

0,1}

To prove the rigidity in this case, start with a 4-helical face

. . . , a−1, a0, a1, a2, . . .. Through each aj is a further edge {aj , bj}.
The 3-helical Petrie apeirogons . . . , bj−2, aj−2, aj−1, aj , bj , . . ., say,
imply that we have parallelisms aj−2 − bj−2 = bj − aj , and so

bj+4 − aj+4 = bj − aj for each j .

Let . . . , c−1, c0, c1, c2, . . . be the 4-helical face through c0 = b0
which does not contain the edge {a0, b0} and is such that

. . . , b−2, a−2, a−1, a0, b0 = c0, c1, c2, . . . is a Petrie apeirogon. It

follows that cj = aj−2 + (b0 − a−2) for j = 0, 1, 2.

Using the Petrie apeirogon . . . , b2, a2, a1, a0, b0 = c0, c−1, c−2, . . .
similarly shows that cj = aj+2 + (b0 − a2) for j = −2,−1, 0. In
view of the (local) translative symmetry aj 7→ aj+4 of the initial

helical face, we conclude that cj = aj−2 + (b0 − a−2) for all j .
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a−1
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a2
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a6
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We deduce that we have a family of 4-helical faces which are all

translates of the initial one; adjacent members are connected by

bridges like the {aj , bj} with cj = bj , for j ≡ 0 (mod 4).

There are two other such families, corresponding to the two other

4-helical faces which contain a0. For these, the edges {a0, a±1}
play the rôle of typical bridges to faces adjacent to initial 4-helical

faces . . . , b∓1, a∓1, a0, c0, c±1, . . ..

A crucial implication is that the apeirohedron is 3-dimensional, and

that the intrinsic translational symmetries of faces and Petrie

apeirogons extend to global symmetries of the whole apeirohedron.

The uniqueness of the shape of the apeirohedron is an immediate

consequence.



Remark
It may be observed that, while we used the regularity of the faces

and Petrie apeirogons, we did not appeal to the symmetries of the

vertex-�gure {3}.

Remark
We can apply the circuit criterion, showing that the basic

edge-circuits are irregular decagons, one of which appears near the

centre of the picture (we shall not go into the details). From one

particular such decagon, we obtain the relator

JKJ−1K−1, J = (01)4, K = (012)3,

where inverting an index sequence reverses its order. This relator

indeed corresponds to the fact that the translations associated with

a certain pair of face and Petrie apeirogon commute.



Rigidity of { 3

0,1 , 4 : 3

0,1}

The regular apeirohedron { 3

0,1 , 4 : 3

0,1} is also rigid, but the proof

here is a little di�erent.

Remark
It is of interest that the regular apeirohedron { 6

1,3 , 4 : 6

1,3} has
edge-graph isomorphic to that of { 3

0,1 , 4 : 3

0,1}, but is not rigid.
Indeed, since the faces and Petrie polygons are skew hexagons

{ 6

1,3}, we can blend the apeirohedron with a segment {2} to yield

an isomorphic apeirohedron.

Indeed, it can be shown that general apeirohedron with �ne Schlä�i

symbol { 6

1,3 , 4 : 6

1,3} is 4-dimensional.
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From faces (or Petrie apeirogons) . . . , cj , bj , a, bj+1, dj+1, . . . and
. . . , dj , bj , a, bj+1, cj+1, . . ., we obtain

bj − cj = dj+1 − bj+1, bj − dj = cj+1 − bj+1.

Since the vertex-�gures {4} are planar, the displacements

d(bj) := bj − 1

2
(cj + dj) = bj − 1

2
(a + hj)

satisfy

d(bj) = −d(bj+1) = d(bj+2) = · · ·

But this �rst says that the holes . . . , hj , bj , a, bj+2, hj+2, . . . are
zigzags, with d(a) = −d(bj), and then that d(a) = −d(a), or
d(a) = o. Thus the holes are linear apeirogons {1

0
}, and it easily

follows that { 3

0,1 , 4 : 3

0,1} is 3-dimensional.


