
Operations and constructions



There is a wide range of operations on (abstract) groups which may

yield C-groups. By and large, they fall into two main areas. First,

in mixing we pick suitable involutory elements in a given group.

Second, in twisting we augment a given group by means of suitable

automorphisms.

However, these notions are not mutually exclusive, since we �nd it

useful to allow inner automorphisms in twisting, and so, strictly

speaking, such an operation is mixing.

Further, we prefer to regard certain operations as examples of

constructions, particularly when the abstract and geometric part

company. Thus there is no hard-and-fast line to be drawn between

operations and constructions, and it is largely a matter of taste as

to how we categorize them.



Mixing

Most of the mixing operations are applied to C-groups, to yield new

closely related C-groups which may even be the same. The general

notation for operations will be bold Greek uncials, to distinguish

them from ordinary Greek letters used as (for example) real

numbers. These will then apply to the corresponding regular

polytopes as well.

A general principle is that, if a mixing operation is initially de�ned

for regular m-polytopes, then subsequently the same operation is

applied to the m-cofaces of polytopes of higher rank.



Duality

Strictly speaking, the duality operation

δ : (s0, . . . , sm−1) 7→ (sm−1, . . . , s0) =: (r0, . . . , rm−1)

is a mixing operation, and so �ts in here. The notation P := Qδ
for the dual P with group G (P) = 〈r0, . . . , rm−1〉 of Q with group

G (Q) = 〈s0, . . . , sm−1〉 conforms to the general pattern.

Remark
With duality, we �nd one of the sharpest divides between the

abstract and geometric theories, since a geometric regular polytope

need not have a geometric dual, at least in the same space, and

may even have no geometric dual which exhibits its combinatorial

structure at all.



Facetting

As an important case, the facetting operation ϕk applies to a

polygon Q (of rank 2), and is given on the generators of its group

H = 〈s0, s1〉 by

ϕk : (s0, s1) 7→ ((s0s1)
k−1s0, s1) =: (r0, r1),

to give a new C-group G = Hϕk := 〈r0, r1〉.

If Q is a q-gon with successive vertices v0, v1, . . . , vq−1 in cyclic

order, then successive vertices of the new polygon P = Qϕk are

v0, vk , v2k , . . .. Thus we may assume that 1 6 k 6 1

2
q. If

(q, k) = s > 1, then P is a (q/s)-gon, reducing to a digon {2} if

s = 1

2
q.



Theorem
The facetting operations applied to a regular q-gon satisfy

ϕiϕj = ϕk ,

with 1 6 k 6 1

2
q such that k ≡ ±ij (mod q).

This is obvious from the geometric description. On the algebraic

level, it is made more clear if we write (s0s1)
k−1s0 = (s0s1)

ks1, so

that

((s0s1)
is1 · s1)js1 = (s0s1)

ijs1.

For the most part, we have (q, k) = 1, so that ϕk is invertible, but

occasionally the case (q, k) > 1 plays a useful rôle.



Petrie operation

The Petrie operation π applies to a regular polyhedron Q (of rank

3), and is given on the generators of its group H = 〈s0, s1, s2〉 by

π : (s0, s1, s2) 7→ (s0s2, s1, s2) =: (r0, r1, r2),

to give a new group G = Hπ := 〈r0, r1, r2〉, and corresponding

polytope P := Qπ (when it exists).

We see that π is involutory; we call Qπ the Petrial of Qπ. Only on

very rare occasions in rank 3 is G not a C-group, but it can fail to

be in higher ranks, as we shall shortly see.



It is routine to verify

Theorem
In rank 3, duality δ and the Petrie operation π satisfy (πδ)3 = ε,
the identity.

It is sometimes useful to employ the dual operation

π∗ = δπδ = πδπ to π, which is given by

π∗ : (s0, s1, s2) 7→ (s0, s1, s0s2) =: (r0, r1, r2).

We can think of π∗ as the conjugate of π under δ.

The following is obvious.

Theorem
The Petrie operation π and facetting operation ϕk commute.

We shall write πk := ϕkπ = πϕk for their composition.



The most general circumstance under which the Petrie operation

breaks down in higher rank is given by

Theorem
Let H = 〈s0, . . . , sm−1〉 be a string C-group with m > 4. If

Hm−2,m−1 = 〈s0, . . . , sm−3〉 has a relator which contains sm−3 an

odd number of times, then Hπ is not a C-group.

Proof.
Let h be the relator (so that h is a word in s0, . . . , sm−3 such that

h = e), and suppose that h contains sm−3 an odd number k of

times. Let g be the element obtained by replacing sm−3 by

rm−3 = sm−3sm−1 (and s j by r j for other j). Then

g = hskm−1 = esm−1 = sm−1.

In G = Hπ we thus have rm−1 ∈ 〈r0, . . . , rm−3〉, violating the

intersection property.



Halving

The halving operation η initially applies to a regular polyhedron Q
with tetragonal 2-faces, and is

η : (s0, s1, s2) 7→ (s0s1s0, s2, s1) =: (r0, r1, r2),

to give a new group G = Hη := 〈r0, r1, r2〉, and corresponding

polytope P := Qη.

If Q is of Schlä�i type {4, q}, then P := Qη is a self-dual regular

polyhedron of type {q, q}, with duality induced by conjugation by

s0.

Theorem
If Q has an odd edge-circuit, then Qπ has the same vertices and

group as Q. If not, then the number of vertices and group order are

halved.



Petrie contraction

In a vague sense, Petrie contraction is related to the dual of the

Petrie operation. Formally, it is the mixing operation $ on the

group H = 〈s0, . . . , sm〉 of a regular polytope Q given by

$ : (s0, . . . , sm) 7→ (s1, s0s2, s3, . . . , sm) =: (r0, . . . , rm−1).

Thus we write G := 〈r0, . . . , rm−1〉 = H$, and P := Q$ for the

corresponding regular polytope, if it exists. Observe that $ reduces

rank by 1.

Under many circumstances, G = H ; the alternative cases are less

interesting, but still often worth noting. We shall postpone giving

examples until they are relevant.



Twisting

A twisting operation applies one or more (usually) involutory

automorphisms τ1, . . . to an existing (usually) C-group

H = 〈s1, . . .〉, to yield a new string C-group G = 〈r0, . . . , rm−1〉.
A similar notation to that for mixing can be employed:

(s1, . . . , τ1, . . .) 7→ (r0, . . . , rm−1),

where each r j is an sk or a τk .

We speci�cally allow inner rather than outer automorphisms, in

which case we genuinely have a mixing operation. Moreover, when

applied to a Coxeter diagram, a twist τ is proper if the unit

normals to the re�exion hyperplanes of the diagram can be chosen

so that τ permutes them (that is, does not change any of their

signs); otherwise τ is improper (and then usually inner).



We shall leave to the appropriate place most examples of twisting.

However, there is one striking example which is worth presenting

here.

Suppose that H = Cm
2 = C 2 × · · · × C 2, the elementary abelian

group of order 2m, with involutory generators s1, . . . , sm. Let
Sm = 〈τ1, . . . , τm−1〉 be the symmetric group on {1, . . . ,m}, with
τj := (j j+1) for j = 1, . . . ,m − 1. Then

(s1, . . . , sm, τ1, . . . , τm−1) 7→ (s1, τ1, . . . , τm−1) =: (r0, . . . , rm−1),

with the τj acting as indicated on the indices of the sk , gives the

automorphism group G := 〈r0, . . . , rm−1〉 of the (abstract) m-cube

{4, 3m−2}.



Constructions

By de�nition, constructions are usually geometric in nature, since it

is often (but not invariably) unclear what an appropriate abstract

analogue would look like.

Typically, a construction will modify one or more generating

re�exions of a given string C-group, or adjoin a new re�exion to it.

Note that such constructions do not always lead to C-groups.

We begin with an important observation.

Theorem
If S ,T1, . . . ,Tk are linear re�exions such that S 
 Tj for each

j = 1, . . . , k, then
S 
 T1 ∩ · · · ∩ Tk ,

with the usual identi�cation of geometric re�exions with their

mirrors.



Now let H := 〈S0, . . . , Sm−1〉 be a given geometric C-group, acting

on the euclidean space E, say. For each j , de�ne

Kk := Sk ∩ Sk+1 ∩ · · · ∩ Sm−1.

Using the previous observation, as a re�exion Kk 
 Sj for each

j 6= k − 1, but Kk does not commute with Sk−1.

Hence, if we de�ne the operation

κjk : (S0, . . . , Sm−1) 7→ (S0, . . . , Sj−1, SjKk , Sj+1, . . . , Sm−1)

=: (R0, . . . ,Rm−1),

then we cannot obtain a string C-group G := 〈R0, . . . ,Rm−1〉 when
k > 1 unless j = k − 2 or k . Since the case j = k is particularly

important, we abbreviate κk := κkk .



There are several special cases, beginning with k = 0. If H is the

symmetry group of an apeirotope, then K0 = ∅, so that κ0 is not

de�ned. Thus only the case of polytopes is of interest, and here we

adopt the notation Z := K0; thus Z is inversion in the centre of the

corresponding (�nite) regular polytope Q.

For (�nite) regular polytopes, we write ζj := κj0, which replaces Sj
by SjZ , and then further abbreviate ζ := ζ0. This is an operation

of central importance.

Remark
Unfortunately, there are rare occasions when Q is a polytope, but

P = Qζ is not. This means that the polytopality of P needs to be

checked.



Faces

We shall need to know how faces behave under ζ.

Theorem
Let F be an initial (proper) face with centre c of a �nite regular

polytope P with centre o. Then, under ζ, the corresponding initial

face F̂ of Pζ with centre ĉ is as follows:

• if F is not a blend with component {2} and c = o, then

F̂ = F ζ with ĉ = o;

• if F is not a blend with component {2} and c 6= o, then

F̂ = F ζ # {2} with ĉ = o;

• if F = G # {2} is a blend with component {2} and c = o,

then F̂ = G ζ with ĉ 6= o;

• if F = G # {2} is a blend with component {2} and c 6= o,

then F̂ = G ζ # {2} with ĉ 6= o and 〈c , ĉ 〉 = 0.



The proof of the last part is basically on hand of this picture:
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We often use the convenient shorthand

Q 3 {2} := Qζ # {2},

so that the faces occurring above could be written G 3 {2}.



An apeirotope construction

For apeirotopes, it is κ := κ1 which is of most interest, and here

there is an crucial extension of the notion. A natural convention is

to take the initial vertex of the apeirotope Q to be the origin o, so

that the group 〈S1, . . . , Sm−1〉 of the vertex �gure is an orthogonal

group. Now K := K1 = W , the Wytho� space, so that the mirror

of KS1 is W ⊕ S⊥
1
.

However, with a slight modi�cation the construction still applies

when Q is a �nite polytope. In the usual cases of apeirotopes, W is

a point-set. So, we de�ne P := Qκ as previously, but with

W = {v}, where v is the initial vertex of Q. Now P may be an

apeirotope of the same rank, which will be discrete just when Q is

crystallographic. Indeed, if G is a proper face of Q, then the face of

P of the same rank is F := Gκ. We shall give examples of this

construction later.



In terms of the group generators (whether the polytope is �nite or

not), we have Rj := Sj for j 6= 1, and R1 is de�ned by

xR1 := 2v − xS1.

An important consequence of the de�nition is the following.

Theorem
If G is a face of Q of rank k > 2, then the corresponding k-face of

P = Qκ is F = Gκ.

Another consequence is

Theorem
If P,Q are two regular polytopes, then

(P # Q)κ = Pκ # Qκ.



In the case of polygons, as before for p > 2 we de�ne p′′ by

1

p
+

1

p′′
=

1

2
,

with the natural conventions 2′′ =∞, ∞′′ = 2. Then we have

Theorem
For each p > 2,

{p}κ = {p′′}.

Corollary

For a general regular polygon {p} = {p1}# · · ·# {pk}, with
∞ > p1 > · · · > pk > 2,

{p}κ = {p′′} := {p′′k}# · · ·# {p′′1}.



Vertex-�gures

When κ is applied to an apeirotope P with vertex-�gure Q, the

vertex-�gure of Pκ is (by de�nition) Qζ . In the discussion of ζ, we
saw how blends with {2} are interchanged with lower dimensional

polytopes not having o as centre.

Of course, this interchange was the original motivation for applying

κ to �nite polytopes; here, the vertex-�gure Q is a polytope whose

centre is not the vertex v with respect to which ζ is being applied.



The free abelian apeirotope

Another important construction is that of the free abelian

apeirotope. Let Q be a �nite regular polytope, with symmetry

group H = 〈S0, . . . , Sm−1〉 and initial vertex w . De�ne

W := S0 ∩ · · · ∩ Sm−1 and let v ∈W . De�ne R0 := {w} as a
point-re�exion, Rj := Sj+1 for j > 1, and let G := 〈R0, . . . ,Rm〉.

The product of the point-re�exions in a, b ∈ E is the translation by

2(b − a). Thus G contains all translations by vectors 2(wk − wj),
with wj ,wk ∈ vertQ, and so will be discrete only if Q is rational,

meaning that its vertices have rational coordinates with respect to

some basis.

E�ectively, the only choice for v is v ∈ a� vertQ or v /∈ a� vertQ.

In the former case, the resulting apeirotope is denoted P := Qα;

the class of the latter apeirotopes is denoted apeirQ, whose general

member is of the form P # {2}.



Further comments

With both κ and α, polytopality of the result is not guaranteed,

and so must be checked in each individual case. In contrast, if Q is

a rational �nite regular polytope, then a general member

Qα # {2} ∈ apeirQ is always polytopal.

There are interesting connexions among these constructions. It is

clear from the de�nition that ακ = ζα.

However, considerably more interesting is a connexion involving

Petrie contraction: α$ = κ, as applied to �nite polytopes. To see

this is easy, since, with v as before the initial vertex of Q with

symmetry group 〈S0, . . . , Sm−1〉, the e�ect of α$ on the group

generators is

(S0, . . . , Sm−1) 7→ ({v}, S0, . . . , Sm−1) 7→ (S0, {v}S1, S2, . . . , Sm−1),

which is just that of κ.


