
Abstract regular polytopes



String C-groups

A string C-group is a group of the form G = 〈r0, . . . , rm−1〉, whose
generators r j satisfy (r j rk)

pjk = e, with

pjk =

{
1, if j = k ,

2, if |j − k | > 2.

Thus the r j are involutions. Moreover, G satis�es the intersection

property

〈r i | i ∈ J〉 ∩ 〈r i | i ∈ K〉 = 〈r i | i ∈ J ∩ K〉,

for each J,K ⊆ M := {0, 1, . . . ,m − 1}.

If there are no other relations on the r j , then we have the Coxeter

group [p1, . . . , pm−1], where we write pj := pj−1,j for each
j = 1, . . . ,m − 1. Here, we usually assume that pj > 3 for each j ,

to avoid degenerate cases.



Regular polytopes

We identify an (abstract) regular m-polytope P with its

(automorphism) group, which is a string C-group G as before. The

r j are the canonical generators. We also call m the rank of P.

A distinguished subgroup of G is one of the form

GK := 〈r j | j /∈ K〉,

for some K ⊆ M.

For each j ∈ M, the j-faces of P are the right cosets of the

distinguished subgroup G j := G {j}. The incidence relation between

faces is given by

G ja 6 G kb ⇐⇒ j 6 k and G ja ∩ G kb 6= ∅.

Set G−1 = Gm := G ; then P is a partially ordered set with unique

minimal and maximal elements.



Cofaces and sections

If G j−1a 6 G kb, then

{F ∈ P | G j−1a 6 F 6 G kb}

is called a (j , k)-section; its rank is k − j . If k = m, then we obtain

a (m − j)-coface.

Faces of rank j are called vertices, edges, ridges and facets for

j = 0, 1,m− 2 and m− 1, respectively. Cofaces of rank j are called

vertex-�gures and edge-�gures for j = m − 1 and m − 2.



Flatness

We call a regular polytope (or apeirotope) P (combinatorially) �at

if every vertex of P is incident with every facet. Flatness occurs

quite often, even in geometric regular polytopes.

The most important property of �atness is the following.

Theorem
Let P be a regular polytope. If the vertex-�gure or facet of P is

�at, then P itself is �at.

Corollary

If any proper section of a regular polytope is �at, then the polytope

itself is �at.



Proof.
Suppose that the vertex-�gure of P is �at; the proof for �at facets

is just the dual argument. Let V be any vertex and F any facet.

Choose some sequence

V = V0 < E1 > V1 < · · · < Ek > Vk

of incident vertices and edges such that Vk < F , and let Qj be the

vertex-�gure of P at Vj for each j . Then

Ek ,F ∈ Qk =⇒ Ek < F =⇒ Vk−1 < F .

Induction on k now completes the proof.

Remark
In the geometric context, it is usually �at vertex-�gures which

induce �atness of the whole polytope.



Diagonals

Pairs of vertices of P are called diagonals. These fall into diagonal

classes under the action of G , and thus each such class is

represented by a pair of the form {G 0,G 0a}, for some a ∈ G .

In some contexts, we need to distinguish between symmetric and

asymmetric diagonals. For the former, the ordered pairs (G 0,G 0a)
and (G 0a,G 0) are equivalent under G . Thus there is some b ∈ G
such that

(G 0,G 0a)b = (G 0a,G 0) ⇐⇒ a−1 ∈ G 0aG 0,

as can be seen by eliminating b.

It follows from this that diagonal classes (including the trivial one)

correspond to unions G 0aG 0 ∪ G 0a
−1G 0 of double cosets of G 0.



Regular pre-polytopes

A string group generated by involutions (sggi) is de�ned just as a

string C-group, with the omission of the intersection property. An

sggi G then determines a regular pre-polytope P in exactly the

expected way.

Various criteria satis�ed by an sggi make it a string C-group, of

which the most important is

Theorem
An sggi G = 〈r0, . . . , rm−1〉 is a string C-group if and only if its

distinguished subgroups G 0,Gm−1 are themselves string C-groups,

and are such that

G 0 ∩ Gm−1 = G 0,m−1.



Quotients

With G = 〈r0, . . . , rm−1〉 as before, we adopt the convention

r j := e whenever j > m.

Let Q be a regular k-polytope, with group H = 〈s0, . . . , sk−1〉. If
the mapping r j 7→ s j (for j = 0, . . . ,m − 1) induces a

homomorphism Φ : G → H , then we write Q := PΦ, and call Q a

quotient of P. Thus we must have k 6 m, but strict inequality is

allowed.

The numbers pj determine the Schlä�i type {p1, . . . , pm−1} of P.
We use the same symbol to denote the universal regular polytope,

whose automorphism group is the Coxeter group [p1, . . . , pm−1].
Thus the group of a regular polytope of Schlä�i type

{p1, . . . , pm−1} is a quotient of [p1, . . . , pm−1].



Quotient criteria

More generally, we may allow one or other of G ,H to be only an

sggi, and ask for criteria in terms of Φ or N := kerΦ which ensure

that it is a string C-group.

Theorem
If G is a string C-group and N ∩ G 0Gm−1 = {e}, so that N is

sparse, then H is a string C-group.

Theorem
If H is a string C-group, Φ ∩ G 0 = {e}, N 6 Gm−1 is such that

Gm−1/N is itself a C-group, then G is a string C-group.



Collapsing

We call the regular polytope P k-collapsible if 〈r0, . . . , rk−1〉 is a
quotient of G under the mapping induced by r j 7→ e for

j = k , . . . ,m − 1. This concept plays an important rôle in

realization theory.

If we denote by N+
k the normal closure of 〈rk , . . . , rm−1〉 in G ,

then the condition for k-collapsibility is

〈r0, . . . , rk−1〉 ∩N+
k = {e}.

Remark
The condition is also known as the �at amalgamation property with

respect to k-faces. An equivalent condition to the above is

G = N+
k o 〈r0, . . . , rk−1〉.



Central symmetry

We call the regular polytope P centrally symmetric if there is a

central involution z ∈ G which �xes no vertex.

Theorem
If P is a centrally symmetric regular m-polytope such that, for

every j 6 m − 2, each j-face G < P is determined by its vertex-set

vertG, then the quotient G/〈z 〉 is a C-group. It is therefore the

automorphism group of a regular polytope, which is denoted P/2.

Remark
Observe that P/2 cannot be polytopal if z /∈ G j for j = 0,m − 1,

but z ∈ G 0Gm−1. On the other hand, if z /∈ G 0Gm−1, then 〈z 〉 is
sparse, so that the quotient is a C-group.



Presentations
With each element g = r j(1) · · · r j(r) ∈ G is associated an index

sequence J = J(g) := j(1) . . . j(r) (not unique, of course). The

index sequence thus ignores the particular labels given to the

generators. Index sequences correspond to edge-paths, with each

occurrence of 0 giving an edge. Similarly, to an edge-circuit

corresponds an index cycle, and hence a relator in G .

We then have the circuit criterion.

Theorem
The group G of a regular polytope is determined by the group of

its vertex-�gure and its edge-circuits.

If P,Q are regular polytopes, with Q = PΦ a quotient of P, and
N = kerΦ = 〈n1, . . . ,nk 〉, say, let Ji be an index cycle associated

with ni for i = 1, . . . , k . Then we write

Q := P/〈〈J1, . . . , Jk 〉〉.



We have special notation for certain edge-circuits which are regular

polygons, whose groups have canonical (involutory) generators s, t,
say; we give the index sequences J,K of these generators.

For the Petrie polygon,

J = 024 . . . , K = 135 . . . ,

and for the deep hole,

J = 0, K = 123 . . . (m − 1)(m − 2) . . . 21.

A Petrie polygon C of a regular m-polytope P has the following

recursive de�nition: each successive m − 1 edges of C are edges of

some facet of P, but no m successive edges are. In other words, C
goes along some m− 1 edges of a facet F , say, and then departs to

the (unique) facet F ′ which meets F on the ridge containing the

previous m − 2 edges of C.



If P is determined solely by its Schlä�i type {p1, . . . , pm−1} and

length s of its Petrie polygon or t of its deep hole, then we write

{p1, . . . , pm−1 : s} := {p1, . . . , pm−1}/〈〈(JK)s 〉〉,
{p1, . . . , pm−1 | t} := {p1, . . . , pm−1}/〈〈(JK)t 〉〉,

respectively, with J,K as just de�ned.

We shall shortly see more elaborate notation for polyhedra.



Cubic toroids

{4, 3m−2, 4} is the abstract (m + 1)-apeirotope corresponding to

the tiling of Em by cubes, with vertex-set Zm. Let r > 2. If we

identify vertices of the cubic tiling by the sublattice generated by all

rej for j = 1, . . . ,m, then we obtain the cubic toroid

{4, 3m−2, 4 | r} = {4, 3m−2, 4}(r ,0m−1).

Similarly, identi�cation by the sublattice generated by the points

r(±1, . . . ,±1) yields

{4, 3m−2, 4 : rm} = {4, 3m−2, 4}(rm).

Remark
The third cubic toroid {4, 3m−2, 4}(r ,r ,0m−2) (for m > 3) does not

admit such a simple expression.



Polyhedra

For polyhedra (the case m = 3), we have extra notation. For the

k-zigzag, the index strings of the generators are

J = 02, K = (12)k−11;

for the k-hole, they are

J = 0, K = (12)k−11.

Thus the 2-hole is the deep hole, usually referred to just as the hole.

For a polyhedron P of Schlä�i type {p, q} determined by k-zigzags

of length sk and k-holes of length tk , we write

P = {p, q : s1, s2, . . . | t2, t3, . . .}.

An unnecessary sk or tk is replaced by ·, and each sequence

terminates with the last needed entry.



An interesting case

Theorem
For each q > 3 and r > 2,

{3, q | ·, r} = {3, q : 2r}.
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Corollary

The Petrie polygons of the Platonic polyhedra are as follows:

{4}, for {3, 3},
{6}, for {3, 4},

{10}, for {3, 5}.


