
4-dimensional polyhedra



Blended polyhedra

The �rst step is to note the blended polyhedra P # {2}, where P is

any one of the nine classical polyhedra or their Petrials. These are

all properly polyhedral.

Remark

These blended polyhedra fall into isomorphic pairs, since

P # {2} ∼= P 3 {2} := Pζ # {2}.

Each vertex of P # {2} is of the form (v , ε), with v ∈ vertP and

ε = ± 1. The isomorphism is then given by

(v , ε)←→ (εv , ε).



Mirror vectors

As with the 3-dimensional apeirohedra, mirror vectors play a crucial

rôle in the classi�cation of the pure 4-dimensional regular

polyhedra. The possible vectors are

• (3, 2, 3), (2, 2, 3), (1, 2, 3);
• (2, 3, 2);
• (2, 2, 2).

The reason for the grouping is as follows. In the �rst class, the

basic mirror vector is (3, 2, 3); polyhedra with the other mirror

vectors are derived from basic ones by Petriality π or ζ, or both.
The other two classes are preserved by π and ζ.

The third class is of additional interest, in that its members are

handed, meaning that their symmetry groups consist of rotations

alone.



Mirror vector (3, 2, 3)

These polyhedra are derived by twisting a diagram D1(p, q; r); they
have planar faces and holes, and skew vertex-�gures. A label j

indicates the generator Rj of the symmetry group; thus R1 is a

twist.
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The diagram D1(p, q; r)

Here, p cannot be a fraction with an even denominator, but q can

be. In the latter case, the derived polyhedron is of the form

P = Q$ for some classical regular 4-polytope Q.



Examples

From D1(2, 3; 3) (the diagram of the 4-simplex) are derived the

dual pair {4, 6

1,3 | 3} ∼= {4, 6 | 3} and {6, 4

1,2 | 3} ∼= {6, 4 | 3}. The
former doubly-covers {4, 6

2,3 | 3} = {3, 3, 3}$ ∼= {4, 6 : 5 | 3},
derived from D1(2, 3;

3

2
); this has no geometric dual (in E4).

In most cases, applications of π or ζ are not of much interest.

However, here we have

{4, 6

1,3 | 3}
ζ = { 4

1,2 ,
6

1,3 : 5

1,2} ∼= {4, 6 : 5},

{6, 4

1,2 | 3}
ζ = { 6

1,3 ,
4

1,2 : 5

1,2} ∼= {6, 4 : 5}.

These are again duals, but not geometrically (their mirror vectors

are (1, 2, 3)). The former also doubly-covers {4, 6

2,3 | 3}.



From D1(2, 4; 3) (the diagram of the 24-cell) is derived a pretty

family:

{8, 4

1,2 | 3}
δ←→ {4, 8

1,4 | 3}

ϕ3

xy
{8, 8

3,4 | 3}
δ←→ {8

3
, 8

1,4 | 3}

ϕ3

xy
{4, 8

3,4 | 3}
δ←→ {8

3
, 4 | 3}

These also employ the diagrams D1(4,
4

3
; 3) and D1(2,

4

3
; 3); note

the use of the facetting operator ϕ3.



Mirror vector (2, 3, 2)

These polyhedra are derived by twisting a diagram D2(p, q, r); they
have skew faces and Petrie polygons (Petriality π interchanges p

and r), and planar vertex-�gures. Now q cannot be a fraction with

an even denominator.

u u

u u

�
�
�
�
�
�
��@

@
@
@
@
@
@@

p p
r r

q

q

6
?

-�

1

0

2

The diagram D2(p, q, r)



Examples

Potentially, a diagram D2(p, q, r) can gives rise to six polyhedra,

related by duality δ and Petriality π. In practice, the family is

usually smaller, because � to obtain all six � none of p, q, r can be

a fraction with an even denominator. However, we obtain all six

possibilities from D2(3, 4,
4

3
):

{ 6

1,3 , 8 : 8

3,4}
δ←→ { 8

1,4 , 6 : 8

3,4}
π←→ { 8

3,4 , 6 : 8

1,4}

π

xy δ

xy
{ 8

3,4 , 8 : 6

1,3}
δ←→ { 8

1,4 ,
8

3
: 6

1,3}
π←→ { 6

1,3 ,
8

3
: 8

1,4}

Note the occurrence of (πδ)3 = ε, the identity. The symbols here

are abbreviated, and do not indicate the combinatorial types.



If we apply η to a polyhedron of type {4, q} with mirror vector

(3, 2, 3), then the result has mirror vector (2, 3, 2). So, for example,

{4, 6

1,3 | 3}
η = { 6

1,3 , 6 : 6

2,3},

{4, 8

1,4 | 3}
η = { 8

1,4 , 8 : 6

2,3},

{4, 8

3,4 | 3}
η = { 8

3,4 ,
8

3
: 6

2,3}.

The �rst of these is derived from the diagram D2(3, 3,
3

2
). More

generally, under η we have

D1(2, q; r)
η7−→ D2(q, q,

r
2
).

Observe that the latter two polyhedra above therefore belong to a

di�erent diagram from the previous family, namely, D2(4, 4,
3

2
).



In the same way,

D2(2, q, r)
η7−→ D1(q, q; r);

however, we cannot have r = 2 here, since any resulting polyhedron

would have digonal holes, and so would degenerate.

Remark

It is worth commenting on the tori of type {4, 4}, which are

associated with diagrams D1(2, 2; r) and D2(2, 2, r). If r = 2s is an

even integer, then

{4, 4

1,2 | 2s}
η = { 4

1,2 , 4 : 2s}, { 4

1,2 , 4 : 2s}η = {4, 4

1,2 | s}.

On the other hand, when r is odd,

{4, 4

1,2 | r}
η←→ { 4

1,2 , 4 | r}.



Mirror vector (2, 2, 2)

We tackle this class through quaternions. First note that

R : x 7→ axb is an involution just when a,b are pure imaginary

(ignoring the trivial case {a,b} = {±1}). So, for the group of a

regular polyhedron P , we look for generators Rj of this form, each

corresponding to a pair (aj ,bj) for j = 0, 1, 2.

The group 〈R1,R2〉 of the vertex-�gure cannot contain a double

rotation, and thus we may assume that

〈a1, a2〉 = 〈b1,b2〉 = − cos
(π
q

)
for some q. On the other hand, R0R1 must be a double rotation,

otherwise P is classical. Thus we have r1 6= r2 such that

〈a0, a1〉 = − cos
( π
r1

)
, 〈b0,b1〉 = − cos

( π
r2

)
.



Bearing in mind the connexion between quaternions and rotations

in E3, this associates P with a pair of spherical triangles (rj , 2, q);
the rotations will be about axes orthogonal to the planes of these

triangles. Taking r1 < r2 for the moment, the face of P will be a

polygon { p
s,t }, with

s

p
=

1

2

( 1

r1
− 1

r2

)
,

t

p
=

1

2

( 1

r1
+

1

r2

)
.

Now the Petrial Q of P will be a polyhedron of the same kind, with

rj replaced by hj , given by

cos2
(π
rj

)
+ cos2

(π
q

)
+ cos2

( π
hj

)
= 1.



An easy way to see this last is to choose coordinates (as we may)

so that

a0 = i,

a1 = cos
( π
r1

)
i+ cos

(π
q

)
j+ cos

( π
h1

)
k,

a2 = j.

We denote the resulting regular polyhedron (if it exists) by

P = {r1, q : h1} ./ {r2, q : h2}.

Not all choices of compatible spherical triangles do yield polyhedra,

as we shall see.



A better way to calculate such things as edge-lengths is to make a

di�erent choice:

a0 = α1i+ α2j, b0 = β1i+ β2j,

a1 = b1 = sin(π/q)j− cos(π/q)k,

a2 = b2 = k.

We now have

α1 =
cos(π/h1)

sin(π/q)
, α2 = −cos(π/r1)

sin(π/q)
,

and similarly for β1, β2. (We do not insist that rj > 1, so that

cos(π/rj) < 0 is permitted, and so on.)



Di�erent liftings of the rotation groups into Q change the signs of

the aj ,bj . We may impose these sign changes on the aj . Changing

that of a0 is ζ, and replaces (r1, h1) by (r ′
1
, h′

1
), with

1

r1
+

1

r ′
1

= 1,
1

h1
+

1

h′
1

= 1.

Further, a1 and a2 must change signs together (to preserve

〈a1, a2〉); doing that replaces r1 by r ′
1
, and hence changing all signs

replaces h1 by h′
1
.

A striking feature is that the left and right groups of quaternions

can be quite di�erent. Indeed, it is only when they are the same

that we can run into problems.



A bad example

For a putative polyhedron P = {3, 5 : 5

3
} ./ {5

2
, 5 : 3}, we can take

a0 = k, b0 = j,

a1 = b1 = −1

2
(τ i+ τ−1j+ k),

a2 = b2 = i.

Since (up to scaling) 1 is the initial vertex, it is not hard to see that

we obtain the icosians Ĝ as the vertex-set. However, since the

group here is just the rotation group [3, 3, 5]+ of the 600-cell, we

should obtain 7200/10 = 720 vertices; in other words, the vertices

coincide in sixes, and so P degenerates.



Remark

In fact, most non-self-Petrie polyhedra of this kind are degenerate.

It turns out that the self-Petrie polyhedra are precisely the ones

which can be obtained by a rather strange mixing operation σ∗

from those of type {4, q} with mirror vector (3, 2, 3). This
operation is related to halving η by

σ∗ := π∗ηπ∗ : (s0, s1, s2) 7→ (s0s1s0, s2, (s0s1)
2) =: (r0, r1, r2).

Here, π∗ := δπδ = πδπ is the dual operation to π, so that

π∗ : (s0, s1, s2) 7→ (s0, s1, s0s2) =: (r0, r1, r2).

Petriality π replaces r0 by r0r2 = s1; this is also got on conjugating

the generators by s0, an observation to be borne in mind.



Enumeration

We will not actually enumerate the polyhedra in this class; instead,

we point the way towards the enumeration. In the earlier discussion

of quaternions, we mentioned that the groups of interest were

D̂n, Ĉ, Ĝ.

These correspond to the triples {r , q, h} = {2, q, q′′}, {3, 3, 4} and
{3, 5, 5

2
}, with q > 2 (since {q} is a vertex-�gure) and q′′ de�ned

as usual by
1

q
+

1

q′′
=

1

2
;

moreover, n is the common numerator of q and q′′ (and so even).

The group Â does not occur here, since the corresponding rotation

group is not generated by involutions.



The cases involving the icosians are of most interest, because as

well as Ĝ we have the isomorphic, but not congugate, group Ĝ†,
obtained by changing the sign of

√
5. The subgroup consisting of

the mappings x 7→ b
†
xb, with b ∈ Ĝ, has order 60; it is just the

alternating group A5.

Allowing the various sign changes then gives a family of four

polyhedra, all familiar except possibly the last (the edge-graph of

this polyhedron is the generalized Petersen graph G (10, 3), just as
{ 5

1,2 , 3 : 5

1,2} corresponds to G (5, 3)):

{5, 3 : 5

3
} ./ {5

3
, 3 : 5} = { 5

1,2 , 3 : 5

1,2},

{5, 3 : 5

2
} ./ {5

3
, 3 : 5} = { 5

1,2 , 3 : 10

1,3},

{5, 3 : 5

3
} ./ {5

2
, 3 : 5} = { 10

1,3 , 3 : 5

1,2},

{5, 3 : 5

2
} ./ {5

2
, 3 : 5} = { 10

1,3 , 3 : 10

1,3}.



We shall say little about the other polyhedra in these families. For

example, if the left group is Ĉ and the right group is Ĝ, then we

obtain (in all) 16 polyhedra of type {40, 3 : 40} (obviously far from

universal), with 480 vertices and symmetry group of order 2880.

There are in�nitely many polyhedra

{2, q : q′′} ./ {q′′, q : 2} = { 2s
t,s−t

, q : 2s
t,s−t
},

where q = s/t in lowest terms.

Apart from these, since we can then only have q = 3, 4, 5, 5
2
, the

other families are all �nite.


