
Low dimensions



Dimensions 0, 1

There is not too much to be said about the low-dimensional regular

polytopes. In dimension 0, we just have the point-polytope. So far

as realizations are concerned, we introduced the notation {1} for
the henogon, consisting of the single point 1 ∈ R.

In R itself, the only �nite polytope is the (line) segment; again, the

digon has the two vertices ±1 ∈ R when we discuss realizations. Its

group is the cyclic group C1 = 〈R0〉 ∼= C 2 where, for ξ ∈ R,

ξR0 = −ξ.

The sole in�nite example in R is the apeirogon {∞} (= {1
0
}),

whose vertex-set we can take to be Z ⊂ R. Its group is the in�nite

dihedral group W2 = 〈R0,R1〉 where, for ξ ∈ R,

ξR0 = 1− ξ, ξR1 = −ξ.



Polygons

In E2, things are more interesting. First, for each rational p > 2,

we have the p-gon {p}, whose symmetry group 〈R0,R1〉 is given
(for example) by the matrices

R0 :=

[
1 0

0 −1

]
, R1 :=

[
cos π

p
sin π

p

sin π
p
− cos π

p

]
.

If p = s
t
in lowest terms, this is the (geometric) dihedral group

Ds
2
∼= Ds . With initial vertex v = (1, 0), successive vertices of {p}

are (cos 2kπ
p
, sin 2kπ

p
) for k = 0, 1, . . . , s − 1.



Remark

We have already, in e�ect, dealt with all possible realizations of

regular polygons, since they are either pure, or a blend with {2} or
{∞}. In the latter case, we can have helical apeirogons with

irrational turns; this is a rare occasion when they need to be

mentioned.

Note particularly the zigzag apeirogon { 2

0,1} = {2}# {∞}; up to

similarity, we can take its vertices to consist of all (k , (−1)kα) for

some α > 0.



Apeirohedra

Since we have e�ectively dealt with lower ranks, we are left with

the regular apeirohedra. Our assumption of discreteness restricts us

to the three planar tessellations

{3, 6}, {4, 4}, {6, 3},

and their Petrials, which can also be represented by the free abelian

apeirotope construction, because the initial re�exion R0 here is the

product of re�exions in two perpendicular lines, and so the re�exion

in a point:

{ 2

0,1 , 6} = {3, 6}π = {6}α,

{ 2

0,1 , 4} = {4, 4}π = {4}α,

{ 2

0,1 , 3} = {6, 3}π = {3}α.









The crystallographic regular polyhedra

Even though the order of the group of the tetrahedron {3, 3} and
its Petrial is half that of the octahedron, nevertheless all the

crystallographic 3-dimensional regular polyhedra �t into a single

family.

{3, 3} π←→ { 4

1,2 , 3 : 3}

ζ

xy ζ

xy
{ 6

1,3 , 3 : 4} π←→ {4, 3}

δ

xy
{3, 4} π,ζ←−−→ { 6

1,3 , 4 : 3}

Observe also the halving operation η : {4, 3} → {3, 3}.



The non-crystallographic classical regular polyhedra

The classical regular polyhedra with the symmetry group of the

icosahedron �t into a simple pattern, related by duality δ and the

facetting operation ϕ2.

{5, 3} δ←→ {3, 5}

ϕ2

xy
{5, 5

2
} δ←→ {5

2
, 5}

ϕ2

xy
{3, 5

2
} δ←→ {5

2
, 3}

This pattern is worth bearing in mind for the future.



The operations π and ζ both interchange the mirror vectors

(2, 2, 2) and (1, 2, 2). However, on the pentagonal polytopes, they

have di�erent e�ects, and group the polyhedra in fours with the

same vertex-�gure.

{5, 3} π←→ { 10
1,5 , 3 : 5}

ζ

xy ζ

xy
{ 10
3,5 , 3 : 5

2
} π←→ {5

2
, 3}



{3, 5} π←→ { 10
1,5 , 5 : 3}

ζ

xy ζ

xy
{ 6

1,3 , 5 : 5

2
} π←→ {5

2
, 5}

{3, 5
2
} π←→ { 10

3,5 ,
5

2
: 3}

ζ

xy ζ

xy
{ 6

1,3 ,
5

2
: 5} π←→ {5, 5

2
}

Of course, adding in duality ties all twelve into one family.



Blended apeirohedra

Each of the six regular apeirohedra in E2 can be blended with the

digon {2} or apeirogon {∞} to produce an apeirohedron in E3 of

nearly full rank. These are paired by Petriality π, just as the planar

ones are.

There is not much to say about these apeirohedra, except to note

those which turn up as facets of regular apeirotopes of full rank.

{3, 3}α has facet { 2

0,1 , 3 : 6}# {2},
{3, 4}α has facet { 2

0,1 , 3 : 6}# {2},
{4, 3}α has facet { 2

0,1 , 4 : 4}# {2},
{ 4

1,2 , 3 : 3}α has facet { 2

0,1 , 4 : 4}# {∞},
{ 6

1,3 , 4 : 3}α has facet { 2

0,1 , 6 : 3}# {∞},
{ 6

1,3 , 3 : 4}α has facet { 2

0,1 , 6 : 3}# {∞}.



Pure apeirohedra

The interest now lies in classifying the pure 3-dimensional regular

apeirohedra.

We attack the problem using mirror vectors. Analysis of the various

possibilities shows

Theorem

The mirror vectors of pure 3-dimensional regular apeirohedra are

(2, 1, 2), (1, 1, 2), (1, 2, 1), (1, 1, 1).

Any others give �nite polyhedra or blends, or are inconsistent.

Remark

The mirror vectors of the blended apeirohedra are sums of (1, 1, 1)
for the planar tessellations or (0, 1, 1) for their Petrials, and (0, 1, 1)
for {2} or (0, 0, 1) for {∞}.



There is a nice trick to proceed from this point. Let the group of

the pure regular apeirohedron P be G = 〈R0,R1,R2〉, with initial

vertex o ∈ R1 ∩ R2. Let S0 be the translate of R0 through o and

Sj = Rj for j = 1, 2, so that 〈S0, S1, S2〉 is the special or point

group of P . Let Tj := Sj or S
⊥
j as Sj is a plane or line, and

H := 〈T0,T1,T2〉. Then H is a crystallographic re�exion group,

and so is [3, 3], [3, 4] or [4, 3]. We now reverse this process to �nd

the 4 · 3 = 12 di�erent apeirohedra.



We list all these apeirohedra, and the related �nite polyhedra,

according to their mirror vectors.

(2, 2, 2) {3, 3} {3, 4} {4, 3}
(1, 2, 2) { 4

1,2 , 3 : 3} { 6

1,3 , 4 : 3} { 6

1,3 , 3 : 4}
(2, 1, 2) {6, 6

1,3 | 3} {6, 4

1,2 | 4} {4, 6

1,3 | 4}
(1, 1, 2) { 4

0,1 ,
6

1,3 : 6} { 3

0,1 ,
4

1,2 : 6} { 3

0,1 ,
6

1,3 : 4}
(1, 2, 1) { 6

1,3 , 6 : 4

1,2} {
6

1,3 , 4 : 6

1,3} {
4

1,2 , 6 : 6

1,3}
(1, 1, 1) { 3

0,1 , 3 : 4

0,1} {
3

0,1 , 4 : 3

0,1} {
4

0,1 , 3 : 3

0,1}

Remark

The Schlä�i symbols in the penultimate row do not provide

complete descriptions.





Connexions
The pure apeirohedra are related in various ways, other than those

indicated in the previous table.

First, apeirohedra in rows three and four are related by Petriality; in

each of rows �ve and six we have a Petrie pair and a self-Petrie

case.

As well as obvious duality δ and Petriality π, the apeirohedra with

�nite 2-faces are connected by halving η, while facetting provides

further connexions:

{4, 6

1,3 | 4}
η = { 6

1,3 , 6 : 4

1,2},

{ 4

1,2 , 6 : 6

1,3}
η = {6, 6

1,3 | 3},

{ 6

1,3 , 6 : 4

1,2}
ϕ2 = { 3

0,1 , 3 : 4

0,1},

{ 4

1,2 , 6 : 6

1,3}
ϕ2 = { 4

0,1 , 3 : 3

0,1}.



The Petrie-Coxeter apeirohedra arise in yet another way, through

applications of κ to the crystallographic polyhedra. Since κ and π
commute, we thus have

{3, 3}κ = {6, 6

1,3 | 3},

{3, 4}κ = {6, 4

1,2 | 4},

{4, 3}κ = {4, 6

1,3 | 4},

{ 4

1,2 , 3 : 3}κ = { 4

0,1 ,
6

1,3 : 6},

{ 6

1,3 , 4 : 3}κ = { 3

0,1 ,
4

1,2 : 6},

{ 6

1,3 , 3 : 4}κ = { 3

0,1 ,
6

1,3 : 4}.



Apeirotopes

There is just one classical regular 4-apeirotope in E3, namely, the

familiar tiling of space by cubes {4, 3, 4}. However, E3 actually

contains seven more regular 4-apeirotopes.

First, we can apply the Petrie operation π to the cubic tiling. This

yields

{4, 3, 4} π←−−→ {{4, 6

1,3 | 4}, {
6

1,3 , 4 : 3}}.

Second, we can apply the free abelian apeirotope operation α to

each of the six crystallographic regular polyhedra. Of course, the

results will then be further related by operations such as π and κ
(which is ζ applied to the vertex-�gure).

As applied to the tetrahedron, cube and their Petrials, the results of

α are not particularly interesting, except insofar as they begin

sequences in all dimensions; we shall revisit this topic later.



For the octahedron, since we shall have the same vertex-�gure as

that of the cubic tiling, we might expect a deeper connexion.

Indeed, the previous diagram can be expanded to

{4, 3, 4} π←−−→ {4, 6

1,3 , 4 : 3}/{13 · 2; 3}

κ02

xy κ02

xy
{ 2

0,1 , 3, 4 : 3

0,1}
π←−−→ { 6

1,3 , 4 : 3}α

Geometrically,

κ02 : (R0, . . . ,R3)←→ (R0(R2R3)
2,R1,R2,R3),

which just replaces the plane re�exion by the corresponding

re�exion in the mid-point of the initial edge.



Finally, we have applications of Petrie contraction $. Recall that,

for m > 3, (abstractly) $ is the operation

$ : (r0, . . . , rm−1) 7→ (r1, r0r2, r3, . . . , rm−1) =: (s0, . . . , sm−2).

In E3, there are eight potential examples of regular 4-apeirotopes to

which $ can be applied. However, six of them are free abelian

apeirotopes Qα, and for these we have Qα$ = Qκ; the other two

are the Petrie pair {4, 3, 4} and {{4, 6

1,3 | 4}, {
6

1,3 , 4 : 3}}.

The basic example {4, 3, 4}$ = {6, 4

1,2 | 4} gives another way into

the family derived from the Petrie-Coxeter sponges; indeed, this is

other of the �rst two found by Petrie. Since the Petrie operation π
commutes with $, we also have

({{4, 6

1,3 | 4}, {
6

1,3 , 4 : 3}})$ = {6, 4

1,2 | 4}
π = { 3

0,1 ,
4

1,2 : 6}.


