
Euclidean spaces and isometries



Euclidean spaces

We take for granted familiarity with euclidean spaces and their basic

properties. The inner (or scalar) product of x , y ∈ E is denoted

〈x , y 〉 = 〈y , x 〉, and the corresponding norm of x is ‖x‖ =
√
〈x , x 〉.

The euclidean distance between x and y is ‖x − y‖.

Remark
The linear hull of S ⊆ E � that is, the set of all linear combinations

of points of S � is denoted lin S .

Every k-dimensional linear subspace L 6 E has an orthonormal

basis {u1, . . . , uk}, so that

〈ui , uj 〉 =

{
1, if i = j ,

0, if i 6= j .



A�ne structure

An a�ne combination of points of E is one of the form

λ0a0 + · · ·+ λkak , such that λ0 + · · ·+ λk = 1.

The a�ne hull of S ⊆ E is the set of a�ne combinations of points

of S , and is denoted a� S ; we also say that S spans a� S a�nely.

A set A is an a�ne subspace or �at if a� A = A. For example, a

line is of the form

ab := {(1− λ)a + λb | λ ∈ R}.

Remark
A non-empty a�ne subspace A is a translate A = L + a of a

unique linear subspace L; here, a ∈ A is any point. Its dimension is

dimA := dimL; thus dim ∅ = −1 is a natural convention.



A set S ⊆ E is a�nely dependent if x ∈ a�(S \ {x}) for some

x ∈ S . The condition for this is that there are a0, . . . , ak ∈ S and

λ0, . . . , λk ∈ R, not all 0, such that

λ0a0 + · · ·+ λkak = o, λ0 + · · ·+ λk = 0.

Obviously, a set which is not a�nely dependent is a�nely

independent. An a�nely independent subset B of an a�ne

subspace A such that A = a� B is an a�ne basis of A. Each a�ne

basis of A contains dimA + 1 points; indeed, {a0, . . . , ak} is an
a�ne basis of A if and only if {a1 − a0, . . . , ak − a0} is a (linear)

basis of the linear subspace L = A− a0.



Convexity

A positive combination of points of E is one of the form

λ1a1 + · · ·+ λkak , such that λ1, . . . , λk > 0.

The positive hull of S ⊆ E is the set of positive combinations of

points of S , and is denoted pos S . A set C is a (convex) cone if

posC = C .

A convex combination is one which is both a�ne and positive. The

convex hull of S ⊆ E is the set of convex combinations of points of

S , and is denoted conv S . A set C is convex if convC = C .



Polyhedral sets and polytopes

A half-space is a set of the form H−(u, α) := {x ∈ E | 〈x , u〉 6 α};
u is an outer normal to H−(u, α), and is usually taken to be a unit

vector. Half-spaces are clearly convex. The intersection of �nitely

many half-spaces is a polyhedral set Q, whose dimension is de�ned

to be dimQ := dim a� Q.

A bounded polyhedra set Q is also called a (convex) polytope.

Equivalently

Theorem
Convex polytopes are the convex hulls of �nite point-sets.

A simplex is the convex hull of an a�nely independent set. A simple

cone is a polyhedral set of the form H−(u1, 0) ∩ · · · ∩ H−(uk , 0),
with {u1, . . . , uk} linearly independent.



Mappings

An a�ne mapping Φ preserves a�ne combinations; it is of the form

xΦ = xΨ + t for some linear mapping Ψ and translation vector t.

An isometry from one euclidean space to another is an a�ne

mapping which preserves distance. More generally, a similarity is a

mapping of the form x 7→ α(xΦ), where Φ is an isometry and

α 6= 0.

Orthogonal projection ΠL = Π on a linear subspace L 6 E is given

by

xΠ =
k∑

i=1

〈x , ui 〉ui ,

with {u1, . . . , uk} any orthonormal basis of L.



For the future, we need

Theorem
Suppose that L 6 E, that {e1, . . . , en} is an orthonormal basis of

E, and that aj := ejΠL for j = 1, . . . , n. Then

n∑
j=1

‖aj‖2 = dimL.

To see this, let {u1, . . . , uk} be any orthonormal basis of L. Since
aj =

∑k
i=1
〈ej , ui 〉ui for each j , and ui =

∑n
j=1
〈ui , ej 〉ej for each i ,

it follows that

n∑
j=1

‖ai‖2 =
n∑

j=1

k∑
i=1

〈ej , ui 〉2 =
k∑

i=1

‖ui‖2 = k = dimL,

as claimed.



Tensors

The tensor product X⊗Y of two vector spaces X,Y is the universal

vector space for bilinear mappings Φ on X× Y, which satisfy

(λ1x1 + λ2x2, y)Φ = λ1(x1, y)Φ+ λ2(x2, y)Φ

for x1, x2 ∈ X and scalars λ1, λ2, and similarly for linearity in Y.

Note that dim(X⊗ Y) = dimX · dimY.

The euclidean structure is induced on the tensor product of

euclidean spaces by the inner product

〈x1 ⊗ y1, x2 ⊗ y2〉 := 〈x1, x2〉〈y1, y2〉.

Finally, linear mappings Φ on X and Ψ on Y induce a linear

mapping Φ⊗ Ψ on the tensor product X⊗ Y by

(x ⊗ y)(Φ⊗ Ψ) := (xΦ)⊗ (yΨ).



NIP-sets

A nip-set (non-positive inner product set) is a set U = {u1, u2, . . .}
of (unit) vectors such that 〈uj , uk 〉 6 0 for each j 6= k .

We say that V = {v0, . . . , vm} is a minimal positively dependent

set if

λ0v0 + · · ·+ λmvm = o

for some λ0, . . . , λm > 0, but each proper subset of V is linearly

dependent.

Adding a suitable multiple of this relation to a general linear

combination in linV shows that

Theorem
A minimal positively dependent set positively spans its linear hull.



Theorem
A nip-set decomposes into mutually orthogonal minimal positively

dependent sets and a linearly independent set.

For the proof, �rst suppose that V is linearly dependent, so that we

can �nd U := {u0, . . . , uk} ⊆ V which is minimally linearly

dependent. For x = (ξ0, . . . , ξk) ∈ Ek+1 let Σ(U, x) =
∑k

j=0
ξjuj ,

and de�ne |x | := (|ξ0|, . . . , |ξk |). Then Σ(U, x) = o implies that

0 =
∥∥∥Σ(U, x)

∥∥∥2 =
k∑

i ,j=0

ξiξj〈ui , uj 〉

>
k∑

i ,j=0

|ξi ||ξj |〈ui , uj 〉 =
∥∥∥Σ(U, |x |)

∥∥∥2 > 0,

whence Σ(U, |x |) = o. Thus U is minimally positively dependent.



With this same U, de�ne L := linU, and suppose that v ∈ V \ U.

If 〈x , v 〉 6= 0 for some x ∈ L, then we can change the sign of x , if

necessary, and assume that

〈x , v 〉 > 0.

But x ∈ L implies that x = Σ(U, z) for some z = (ζ0, . . . , ζk) with

ζj > 0 for each j = 0, . . . , k . Hence 〈uj , v 〉 > 0 for at least one j ,

contradicting the assumption that V was a NIP-set.

The proof now proceeds by induction on the dimension, since

clearly dim lin(V \ U) < dimV . Eventually we conclude that V

must be �nite, and we end up with V decomposed into mutually

orthogonal minimal positively dependent subsets, and possibly a

residual linearly independent set. This completes the proof.



Fundamental regions

The mirrors (hyperplanes of re�exion) of a discrete group G

generated by re�exions in hyperplanes acting on a euclidean space E
divide the space into fundamental regions; these are polyhedral sets.

Remark
If, say, H = 〈S ,T 〉, with two hyperplane re�exions S ,T , then there

are two possibilities. Either (as hyperplanes) S and T are parallel,

in which case the outer normals are equal and opposite, or the

fundamental regions of H are (simple) cones whose dihedral angles

are some submultiple of π.

Theorem
If G is a discrete group generated by hyperplane re�exions, then the

set U of unit outer normal vectors to the bounding hyperplanes of a

fundamental region D of G is a nip-set.



Applying the remark to the subgroup H generated by any two

re�exions in bounding hyperplanes of D shows that the dihedral

angles of D are submultiples of π. Thus the outer normals do form

a nip-set, as claimed.

Corollary

A fundamental region for a discrete group generated by hyperplane

re�exions is a direct product of simplices and a simple cone.

We can con�ne our attention to irreducible groups; here, the

fundamental region of G is the product of a simplex with a linear

subspace, or a simple cone, the latter being the case when G is

�nite.



Coxeter diagrams

Let U = {u1, . . . , uk} be the set of unit outer normals to the

fundamental region D of a discrete group G generated by

hyperplane re�exions. With D we associate a Coxeter diagram D,
as follows. For each j = 1, . . . , k , D has a node labelled j . The

nodes i , j are joined by branch marked pij if 〈ui , uj 〉 = − cos(π/pij),
with the following exceptions:

• branches marked 2 are omitted � these correspond to re�exions

which commute;

• labels 3 on branches are omitted, due to their frequency.

Thus connected Coxeter diagrams are precisely those of irreducible

groups.



This leads very quickly to the familiar classi�cation of the �nite and

discrete in�nite hyperplane re�exion groups in euclidean spaces, in

terms of their Coxeter diagrams. The key is that, if D is a Coxeter

diagram of an irreducible in�nite group, whose fundamental region

is a simplex, then

• no mark on any branch of D can be increased,

• no new branch be added to D.

Increasing a mark, leading from normal set U to V , say, would

result in 〈vi , vj 〉 < 〈ui , uj 〉 for some i , j , and hence in

0 = ‖Σ(U, z)‖2 > ‖Σ(V , z)‖2 > 0,

where z > o is such that Σ(U, z) = o, a contradiction. Adjoining a

new branch would violate the decomposition condition of a nip-set.



Example

The unit vectors

u0 := −e1,
uj := 1√

2
(ej − ej+1) for j = 1, . . . , d − 1,

ud := ed ,

are minimally positively dependent; they satisfy

u0 +
√
2(u1 + · · ·+ ud−1) + ud = o.

They determine a fundamental region for Rd+1, the symmetry

group of the d -dimensional cubic tiling, with Coxeter diagram

s s ss ss s s
4 4



Notation Diagram Order

Ad
s s ss ss s s (d + 1)!
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Notation Diagram Order
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Notation Diagram
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Notation Diagram

T7

s s s s s

s
s
s

T8
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s
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s



Notation Diagram

U5

s s s s s
4

V3

s s s
6

W2

s s
∞



Products of re�exions

In the context of Petrie polygons, we need

Theorem
Let G be an irreducible discrete group generated by hyperplane

re�exions. If R1, . . . ,Rk are the re�exions in the bounding

hyperplanes of a fundamental region of G, then the �xed points of

the product R1 · · ·Rk are just the points of R1 ∩ · · · ∩ Rk (where

re�exions are identi�ed with their mirrors).

The proof (which we shall not give) is by induction on k . Note that

the order of the re�exions in the product is immaterial.



Rotation groups

Theorem
Each �nite rotation group in E3 is a subgroup of index 2 in some

re�exion group.

Corollary

Apart from cyclic groups, the �nite rotation groups in E3 are

[2, q]+ (for q > 2), [3, 3]+, [3, 4]+ and [3, 5]+.

The proof is on hand of the following diagrams. The key is that a

rotation Φ can be expressed as a product Φ = ST of two planar

re�exions, whose mirrors (for which we use the same notation)

contain the axis L of Φ. Moreover, either S or T can be chosen

freely.



Φ = RS , Ψ = ST

s s

s

b a

c

T

S

R

s
d

U



s s

s

b a

c

T

S

Rds
a′s



Quaternions

The quaternions consist of all x = ξ0 + ξ1i+ ξ2j+ ξ3k, where

i2 = j2 = k2 = ijk = −1.

They form an associative but not commutative division ring. The

conjugate of x is x := ξ0 − ξ1i− ξ2j− ξ3k; regarding x as a vector

in E4, its norm is given by ‖x‖2 = xx = xx. Note that xy = y x, so

that ‖xy‖ = ‖x‖‖y‖. A unit quaternion x satis�es ‖x‖ = 1.

The family Q of unit quaternions thus forms a group, with a−1 = a

for a ∈ Q. If a ∈ Q, then x 7→ −axa is the re�exion in the (linear)

hyperplane with unit normal a. As a consequence,

Theorem
The orthogonal group O4 consists of the mappings of the form

g(a,b) : x 7→ axb and g(a,b) : x 7→ a xb. The mappings g(a,b)
form the special orthogonal group SO4.



Finite quaternion groups

The pure imaginary quaternions x = ξ1i+ ξ2j+ ξ3k can be thought

of as forming the subspace E3. A general a ∈ Q can be written

a = cosϑ+ sinϑu for some ϑ, with u ∈ Q pure imaginary. If,

similarly, b = cosψ + sinψv, then g(a,b) is a double rotation in E4

through ϑ± ψ.

Theorem
The mapping g(a, a) induces a rotation in E3 through −2ϑ about

the axis in direction u. The induced homomorphism from Q to

SO3 has kernel {±1}.

Corollary

Apart from cyclic groups of odd order, each �nite subgroup of Q is

a 2-fold covering of a �nite subgroup of SO3.



For brevity, we identify x↔ (ξ0, ξ1, ξ2, ξ3). Ignoring the cyclic

groups, for the �nite groups coordinates can be chosen as follows.

Binary dihedral group D̂n of order 4n: all

(cos(kπ/n), sin(kπ/n), 0, 0), (0, 0, cos(kπ/n), sin(kπ/n)).

Binary tetrahedral group Â of order 24: all permutations of

(±1, 0, 0, 0), 1

2
(±1,±1,±1,±1).

Binary octahedral group Ĉ of order 48: Â together with B̂, all

permutations of
1

2
(±
√
2,±
√
2, 0, 0).

Binary icosahedral group Ĝ of order 120: Â together with all even

permutations of
1

2
(±τ,±1,±τ−1, 0),

where τ = 1

2
(1 +

√
5).



Remark
If we choose odd permutations instead, we get an isomorphic copy

Ĝ† of Ĝ, obtained by changing the sign of
√
5, or replacing τ by

−τ−1.

Theorem
The isomorphic copy Ĝ† of Ĝ is conjugate to Ĝ under any element

of B̂.

Remark
We shall see that Â can be regarded as the vertex-set of the regular

24-cell {3, 4, 3}, while Ĝ (or Ĝ†) is that of the 120-cell {3, 3, 5}.

The subgroup V̂ := {±1,±i,±j,±k} of index 3 in Â gives the

vertex-set of the 4-dimensional cross-polytope {3, 3, 4}, while its

complement Â \ V̂ gives the 4-cube {4, 3, 3}.


