Full rank:
non-classical polytopes



General considerations

We have seen that, if P is a d-dimensional faithful realization of a
finite abstract regular d-polytope P, with symmetry group
G = (Ro,...,R4_1), then (as mirrors)

dim B j+lord—1, ifj=0,...,d -3,
m [ =
O I ifj=d—2ord—1.

Similarly, if P is a d-dimensional discrete faithful realization of an
abstract regular (d + 1)-apeirotope P, with symmetry group
G= <R0, e Rd>, then

dimp, _ Jiord =1 ifj=0....d-2,
mRK; =
7 d -1, ifj=d—1ord.



Polytopes

First note that the operation P +— PS = P © {2} always pairs up
(finite) regular polytopes of full rank. This accounts for the change
in dimension d — 1 < 1 of the initial mirror Ry. Observe that, if
dim Ry = 1, then Ry" is a hyperplane.

As we saw, in dimension 3, for each P we have P¢ = QT for some
(usually) different polyhedron Q.

In general, we have

Theorem

In dimension d > 5, for j > 1 only the case dm R; = d — 1 can
occur.

The crucial case here is j = 1. The inductive proof uses the
classification of the regular (d — 1)-polytopes of full rank; it can be
assumed in the proof that dim R; = d — 1 for each j # 1.



For the d-simplex, {39711¢ has 2(d + 1) vertices (those of the
simplex and their opposites), and symmetry group Sy.1 x C» of
order 2(d + 1)\

For the cross-polytope, {3972, 4}¢ has the same 2d vertices and
the same symmetry group as {3972, 4}. However, the facets
{3921 & {2} = {3972} # {2} contain all 2d vertices, so that the
new polytope is flat (recall that this means that every vertex is
incident with every facet).

What happens for the d-cube depends on whether d is even or odd.
If d is even, then {4,3972}¢ = {4 3972} is an isomorphic (but not
congruent) copy. If d is odd, then {4,3972}¢ = {4 392} /o,
which is obtained from the cube by identifying opposite vertices.
For example, {4,3}¢ = {%73 : 3}, the Petrial of the tetrahedron.



The case d = 4 is only a little different. Here, the case dim Ry =2
can arise from the Petrie operation 7r; however, this is only valid for
the 4-cube @ := {4,3,3} and Q°. For the 4-cube,

Pi={4.3.3)7 = ({4, /5 | 4).{%.3:3}},

a locally toroidal polytope. The facets are tori {4, % | 4}, which
contain all 16 vertices of the cube; hence P is flat.

Further applying ¢ to P merely produces an isomorphic, but not
congruent, copy of P.

Remark

By halving, {3,4,3}" = {4,3,3}, an interesting connexion which,
nevertheless, yields nothing new. However, it implies that [3,3,4] is
a subgroup of [3,4,3], in fact of index 3, and that the 16 vertices
of {4, 3,3} occur among the 24 vertices of {3,4,3}.



Apeirotopes

We now deal with apeirotopes. If dim Ry = 0, then P = Q% is
obtained from some rational regular d-polytope @ (of full rank) by
the free abelian apeirotope construction . In theory, such a Q¢
could be non-polytopal but, in practice, for full rank this does not
occur.

In case @ = {391} or {4,392}, the apeirotopes P = Q% are
universal as regular apeirotopes with facets in apeir{39=?} or
apeir{4,3973}, respectively, and vertex-figures Q.

On the other hand,
{?)d727 4}& _ {47 3d7274}/¢027

with (invertible) ro, replacing the initial hyperplane mirror Ry by
the mid-point of the initial edge of the cubic tiling {4,392 4}.



The operation « applied to the classical regular honeycombs — that
is, ¢ applied to their vertex-figures — yields apeirotopes of much
interest, particularly in dimension 4. Their facets will be regular
apeirotopes of nearly full rank, so providing initial examples for the
future.

In each dimension d > 3, we have {4,3972 4}%. Since the new
vertex-figure {3972, 4}¢ is flat, so is the apeirotope itself. We shall
say more about the facets later; for now we just remark that the

3-faces are Petrie-Coxeter sponges {4, ;% s |4}
In a similar way, the 3-faces of {3,3,4, 3}” and {3,4,3,3}" ar
Petrie-Coxeter sponges {6, % | 3} and {6, ;% | 4}, respectlvely It

is striking that all three of these sponges occur as 3-faces.



It remains to note that P := {3.4,3,3}™ does exist; its facets are
. . 4
locally toroidal apeirotopes {{3,4},{4, {5 | 4}}.

Because its Schlafli symbol is of the form {3,4, 4,3}, it might be
thought that P is self-dual. However, it is not, because the
edge-figure {% 3:3} = {4,3}/2 is not the dual of the 3-face
{3,4} (that is the cube {4,3}).

We can further apply < to P = {3,4,3,3}7, but the result is a
little complicated to describe.

There is also an application of 7, but {3,3,4,3}"7 = {3,4,3,3} is
not new. However, it does show that [3, 3,4, 3] is isomorphic to a
proper subgroup of itself, actually of index 4. Further, the vertex-set
of {3,3,4,3} contains copies of that of its dual {3.4,3,3}.



