
Full rank:

non-classical polytopes



General considerations

We have seen that, if P is a d -dimensional faithful realization of a

�nite abstract regular d -polytope P, with symmetry group

G = 〈R0, . . . ,Rd−1〉, then (as mirrors)

dimRj =

{
j + 1 or d − 1, if j = 0, . . . , d − 3,

d − 1, if j = d − 2 or d − 1.

Similarly, if P is a d -dimensional discrete faithful realization of an

abstract regular (d + 1)-apeirotope P, with symmetry group

G = 〈R0, . . . ,Rd 〉, then

dimRj =

{
j or d − 1, if j = 0, . . . , d − 2,

d − 1, if j = d − 1 or d .



Polytopes

First note that the operation P 7→ Pζ = P ⊗ {2} always pairs up
(�nite) regular polytopes of full rank. This accounts for the change

in dimension d − 1↔ 1 of the initial mirror R0. Observe that, if

dimR0 = 1, then R⊥
0

is a hyperplane.

As we saw, in dimension 3, for each P we have Pζ = Qπ for some

(usually) di�erent polyhedron Q.

In general, we have

Theorem

In dimension d > 5, for j > 1 only the case dimRj = d − 1 can

occur.

The crucial case here is j = 1. The inductive proof uses the

classi�cation of the regular (d − 1)-polytopes of full rank; it can be

assumed in the proof that dimRj = d − 1 for each j 6= 1.



For the d -simplex, {3d−1}ζ has 2(d + 1) vertices (those of the

simplex and their opposites), and symmetry group Sd+1 × C 2 of

order 2(d + 1)!.

For the cross-polytope, {3d−2, 4}ζ has the same 2d vertices and

the same symmetry group as {3d−2, 4}. However, the facets

{3d−2}3 {2} ∼= {3d−2}# {2} contain all 2d vertices, so that the

new polytope is �at (recall that this means that every vertex is

incident with every facet).

What happens for the d -cube depends on whether d is even or odd.

If d is even, then {4, 3d−2}ζ ∼= {4, 3d−2} is an isomorphic (but not

congruent) copy. If d is odd, then {4, 3d−2}ζ ∼= {4, 3d−2}/2,
which is obtained from the cube by identifying opposite vertices.

For example, {4, 3}ζ = { 4

1,2 , 3 : 3}, the Petrial of the tetrahedron.



The case d = 4 is only a little di�erent. Here, the case dimR1 = 2

can arise from the Petrie operation π; however, this is only valid for

the 4-cube Q := {4, 3, 3} and Qζ . For the 4-cube,

P := {4, 3, 3}π = {{4, 4

1,2 | 4}, {
4

1,2 , 3 : 3}},

a locally toroidal polytope. The facets are tori {4, 4

1,2 | 4}, which
contain all 16 vertices of the cube; hence P is �at.

Further applying ζ to P merely produces an isomorphic, but not

congruent, copy of P .

Remark

By halving, {3, 4, 3}η = {4, 3, 3}, an interesting connexion which,

nevertheless, yields nothing new. However, it implies that [3, 3, 4] is
a subgroup of [3, 4, 3], in fact of index 3, and that the 16 vertices

of {4, 3, 3} occur among the 24 vertices of {3, 4, 3}.



Apeirotopes

We now deal with apeirotopes. If dimR0 = 0, then P = Qα is

obtained from some rational regular d -polytope Q (of full rank) by

the free abelian apeirotope construction α. In theory, such a Qα

could be non-polytopal but, in practice, for full rank this does not

occur.

In case Q = {3d−1} or {4, 3d−2}, the apeirotopes P = Qα are

universal as regular apeirotopes with facets in apeir{3d−2} or
apeir{4, 3d−3}, respectively, and vertex-�gures Q.

On the other hand,

{3d−2, 4}α = {4, 3d−2, 4}κ02 ,

with (invertible) κ02 replacing the initial hyperplane mirror R0 by

the mid-point of the initial edge of the cubic tiling {4, 3d−2, 4}.



The operation κ applied to the classical regular honeycombs � that

is, ζ applied to their vertex-�gures � yields apeirotopes of much

interest, particularly in dimension 4. Their facets will be regular

apeirotopes of nearly full rank, so providing initial examples for the

future.

In each dimension d > 3, we have {4, 3d−2, 4}κ. Since the new

vertex-�gure {3d−2, 4}ζ is �at, so is the apeirotope itself. We shall

say more about the facets later; for now, we just remark that the

3-faces are Petrie-Coxeter sponges {4, 6

1,3 | 4}.

In a similar way, the 3-faces of {3, 3, 4, 3}κ and {3, 4, 3, 3}κ are

Petrie-Coxeter sponges {6, 6

1,3 | 3} and {6,
4

1,2 | 4}, respectively. It
is striking that all three of these sponges occur as 3-faces.



It remains to note that P := {3, 4, 3, 3}π does exist; its facets are

locally toroidal apeirotopes {{3, 4}, {4, 4

1,2 | 4}}.

Because its Schlä�i symbol is of the form {3, 4, 4, 3}, it might be

thought that P is self-dual. However, it is not, because the

edge-�gure { 4

1,2 , 3 : 3} ∼= {4, 3}/2 is not the dual of the 3-face

{3, 4} (that is the cube {4, 3}).

We can further apply κ to P = {3, 4, 3, 3}π, but the result is a

little complicated to describe.

There is also an application of η, but {3, 3, 4, 3}η = {3, 4, 3, 3} is
not new. However, it does show that [3, 3, 4, 3] is isomorphic to a

proper subgroup of itself, actually of index 4. Further, the vertex-set

of {3, 3, 4, 3} contains copies of that of its dual {3, 4, 3, 3}.


