Abstract regular polytopes



String C-groups

A string C-group is a group of the form G = (rq, ..., ry,_1), whose
generators r; satisfy (rjry )P = e, with

1, =k
P= N0, i j— k| =2,

Thus the r; are involutions. Moreover, G satisfies the intersection
property

(r,-|i€J>ﬁ(r,-]i€K>:<r,-\ieJﬂK>,

for each JJ K C M :={0,1,....,m—1}.

If there are no other relations on the rj, then we have the Coxeter
group [p1,....pm-1], where we write p; := p;_; ; for each

J=1,...,m— 1. Here, we usually assume that p; > 3 for each j,
to avoid degenerate cases.



Regular polytopes

We identify an (abstract) regular m-polytope P with its
(automorphism) group, which is a string C-group G as before. The
rj are the canonical generators. We also call m the rank of P.

A distinguished subgroup of G is one of the form

Gk :=(rj|j ¢ K),
for some K C M.

For each j € M, the j-faces of 7 are the right cosets of the
distinguished subgroup G; := G;;. The incidence relation between
faces is given by

Gja< Gb = j < kandGaﬂGkb;«éﬁ

Set G 1 = G,, ;= G; then P is a partially ordered set with unique
minimal and maximal elements.



Cofaces and sections

If GJ 1a < Gyb, then

{F epP | = 1a< F < Gkb}
is called a (J, k)-section; its rank is k — j. If kK = m, then we obtain
a (m — j)-coface.

Faces of rank j are called vertices, edges, ridges and facets for
Jj=0,1,m—2and m — 1, respectively. Cofaces of rank j are called
vertex-figures and edge-figures for j = m — 1 and m — 2.



Flatness

We call a regular polytope (or apeirotope) P (combinatorially) flat
if every vertex of P is incident with every facet. Flatness occurs
quite often, even in geometric regular polytopes.

The most important property of flatness is the following.

Theorem
Let P be a regular polytope. If the vertex-figure or facet of P is
flat, then P itself is flat.

Corollary

If any proper section of a regular polytope is flat, then the polytope
itself is flat.



Proof.

Suppose that the vertex-figure of P is flat; the proof for flat facets
is just the dual argument. Let )V be any vertex and F any facet.
Choose some sequence

V=V <& >V << &>V

of incident vertices and edges such that V, < 7, and let O; be the
vertex-figure of P at V; for each j. Then

EFeEQry — E<F = Vi1 < F.
Induction on k now completes the proof. O

Remark
In the geometric context, it is usually flat vertex-figures which
induce flatness of the whole polytope.



Diagonals

Pairs of vertices of P are called diagonals. These fall into diagonal
classes under the action of G, and thus each such class is
represented by a pair of the form { Gy, Goa}, for some a € G.

In some contexts, we need to distinguish between symmetric and
asymmetric diagonals. For the former, the ordered pairs (Gg, Goa)
and (Goa, Gg) are equivalent under G. Thus there is some b € G
such that

(Go, Goa)b = (Goa, Go) — ale GoaGy,

as can be seen by eliminating b.

It follows from this that diagonal classes (including the trivial one)
correspond to unions GpaGy U Goa Gy of double cosets of G.



Regular pre-polytopes

A string group generated by involutions (sggi) is defined just as a
string C-group, with the omission of the intersection property. An
sggi G then determines a regular pre-polytope P in exactly the
expected way.

Various criteria satisfied by an sggi make it a string C-group, of
which the most important is

Theorem

An sggi G = (ro,...,rm_1) is a string C-group if and only if its
distinguished subgroups Go, Gm—_1 are themselves string C-groups,
and are such that

GoNGm_1=Gom-1.-



Quotients

With G = (ro,...,rm_1) as before, we adopt the convention
rj := e whenever j > m.

Let O be a regular k-polytope, with group H = (sqo, ..., s, 1). If

the mapping r; — s; (for j =0,....m — 1) induces a
homomorphism @: G — H, then we write O := P®, and call O a
quotient of P. Thus we must have k < m, but strict inequality is

allowed.

The numbers p; determine the Schlafli type {p1,...,pm_1} of P.
We use the same symbol to denote the universal regular polytope,
whose automorphism group is the Coxeter group [p1,...,pm—1].
Thus the group of a regular polytope of Schlafli type

{p1,...,pm—1} is a quotient of [p1,... pm_1].



Quotient criteria

More generally, we may allow one or other of G, H to be only an
sggi, and ask for criteria in terms of @ or N := ker & which ensure
that it is a string C-group.

Theorem

If G is a string C-group and NN GoG,,—1 = {e}, so that N is
sparse, then H is a string C-group.

Theorem
If H is a string C-group, ® N Gy = {e}, N < G,_1 is such that
Gn—1/N is itself a C-group, then G is a string C-group.



Collapsing

We call the regular polytope P k-collapsible if (rg,...,ry 1) is a
quotient of G under the mapping induced by r; — e for
j=k,...,m—1. This concept plays an important réle in

realization theory.

If we denote by N the normal closure of (ry.....rm 1) in G
then the condition for k-collapsibility is

Remark
The condition is also known as the flat amalgamation property with
respect to k-faces. An equivalent condition to the above is

G = NZ_ X <r0./...,rk_1>.



Central symmetry

We call the regular polytope P centrally symmetric if there is a
central involution z € G which fixes no vertex.

Theorem

If P is a centrally symmetric regular m-polytope such that, for
every j < m — 2, each j-face G < P is determined by its vertex-set
vert G, then the quotient G/(z) is a C-group. It is therefore the
automorphism group of a regular polytope, which is denoted P /2.

Remark

Observe that P /2 cannot be polytopal if z ¢ G for j =0, m — 1,
but z € GoGm—1. On the other hand, if z ¢ GoG,_1, then (z) is
sparse, so that the quotient is a C-group.



Presentations

With each element g = rj(;) - rj,) € G is associated an index
sequence J = J(g) :=j(1)...j(r) (not unique, of course). The
index sequence thus ignores the particular labels given to the
generators. Index sequences correspond to edge-paths, with each
occurrence of 0 giving an edge. Similarly, to an edge-circuit
corresponds an index cycle, and hence a relator in G.

We then have the circuit criterion.

Theorem
The group G of a regular polytope is determined by the group of
its vertex-figure and its edge-circuits.

If P, O are regular polytopes, with O = P® a quotient of P, and
N = ker® = (ny,....ny), say, let J; be an index cycle associated
with n; for i =1,..., k. Then we write

Q = P/<<J1,,Jk>>



We have special notation for certain edge-circuits which are regular
polygons, whose groups have canonical (involutory) generators s, t,
say; we give the index sequences J, K of these generators.

For the Petrie polygon,
J=024..., K=135...,
and for the deep hole,
J=0, K=123...(m—1)(m—2)...2L.

A Petrie polygon C of a regular m-polytope 7 has the following
recursive definition: each successive m — 1 edges of C are edges of
some facet of P, but no m successive edges are. In other words, C
goes along some m — 1 edges of a facet F, say, and then departs to
the (unique) facet 7’ which meets F on the ridge containing the
previous m — 2 edges of C.



If P is determined solely by its Schlafli type {p1,...,pm_1} and

length s of its Petrie polygon or t of its deep hole, then we write

{p1,- ipm-1:s}:={p1,. ... pm-1}/{((JK)*)),
{prse s pm-t [t} = {p1, - pm-1}/((IK))),

respectively, with J, K as just defined.

We shall shortly see more elaborate notation for polyhedra.



Cubic toroids

{4,3m=2 4} is the abstract (m + 1)-apeirotope corresponding to
the tiling of E™ by cubes, with vertex-set Z™. Let r > 2. If we
identify vertices of the cubic tiling by the sublattice generated by all
re; forj=1,..., m, then we obtain the cubic toroid

{4,3"72,4 | r} = {4,372, 4}, om1).

Similarly, identification by the sublattice generated by the points
r(£1,...,£1) yields

{4,3™2,4 : rm} = {4,372, 4} (,m).
Remark

The third cubic toroid {4, 3’"*2,4}(,:,70,,,72) (for m > 3) does not
admit such a simple expression.



Polyhedra

For polyhedra (the case m = 3), we have extra notation. For the
k-zigzag, the index strings of the generators are

J=02, K=(12)x11;
for the k-hole, they are
J=0, K=(12)k11.

Thus the 2-hole is the deep hole, usually referred to just as the hole.

For a polyhedron P of Schlafli type {p, g} determined by k-zigzags
of length s, and k-holes of length ¢, we write

P={p,q:s1,5,...| t, t3,...}.

An unnecessary s; or t; is replaced by -, and each sequence
terminates with the last needed entry.



An interesting case

Theorem
For each g >3 and r > 2,

{3,9]r}={3.q:2r}.

Corollary
The Petrie polygons of the Platonic polyhedra are as follows:

{4}, for {3,3},
{6}, for{3,4},
{10}, for {3,5}.



