Euclidean spaces and isometries



Euclidean spaces

We take for granted familiarity with euclidean spaces and their basic
properties. The inner (or scalar) product of x, y € £ is denoted

(x,y) = (y,x), and the corresponding norm of x is ||x|| = \/(x, x).
The euclidean distance between x and y is || x — y/||.

Remark
The linear hull of S C E — that is, the set of all linear combinations
of points of S — is denoted lin S.

Every k-dimensional linear subspace IL < [E has an orthonormal
basis {uy, ..., uk}, so that

1, ifi=,
(uj, uj) = P
0, ifi#j.



Affine structure

An affine combination of points of [E is one of the form
Xodo + -+ - + Akak, suchthat g+ - -+ A =1.

The affine hull of S C [E is the set of affine combinations of points
of S, and is denoted aff S; we also say that S spans aff S affinely.
A set A is an affine subspace or flat if aff A = A. For example, a
line is of the form

ab:={(1—\)a+Ab| A€ R}.

Remark

A non-empty affine subspace A is a translate A =1L + a of a
unique linear subspace IL; here, a € A is any point. Its dimension is
dim A :=dimIL; thus dim() = —1 is a natural convention.



A set S C [E is affinely dependent if x € aff(S \ {x}) for some
x € S. The condition for this is that there are ap,...,a, € S and
Ao, ..., Ak € R, not all 0, such that

Xodg+ -+ Mak =0, X+---+ =0

Obviously, a set which is not affinely dependent is affinely
independent. An affinely independent subset B of an affine
subspace A such that A = aff B is an affine basis of A. Each affine
basis of A contains dim A + 1 points; indeed, {ao,...,ax} is an
affine basis of A if and only if {21 — ag,...,ax — ap} is a (linear)

basis of the linear subspace L. = A — ag.



Convexity

A positive combination of points of [E is one of the form

Atar + -+ Agag, such that A\q,..., A\ > 0.

The positive hull of S C E is the set of positive combinations of
points of S, and is denoted posS. A set C is a (convex) cone if
pos C = C.

A convex combination is one which is both affine and positive. The
convex hull of S C [E is the set of convex combinations of points of
S, and is denoted conv S. A set C is convex if conv C = C.



Polyhedral sets and polytopes

A half-space is a set of the form H™ (v, ) == {x € E | (x,u) < a};
u is an outer normal to H™ (u, «), and is usually taken to be a unit
vector. Half-spaces are clearly convex. The intersection of finitely
many half-spaces is a polyhedral set @, whose dimension is defined
to be dim @ := dim aff Q.

A bounded polyhedra set @ is also called a (convex) polytope.
Equivalently

Theorem
Convex polytopes are the convex hulls of finite point-sets.

A simplex is the convex hull of an affinely independent set. A simple
cone is a polyhedral set of the form H™(u1,0) N --- N H™ (u,0),
with {1, ..., ux} linearly independent.



Mappings

An affine mapping @ preserves affine combinations; it is of the form
x® = xW¥ + t for some linear mapping ¥ and translation vector t.

An isometry from one euclidean space to another is an affine
mapping which preserves distance. More generally, a similarity is a
mapping of the form x — «(x®), where @ is an isometry and

a #0.

Orthogonal projection I, = IT on a linear subspace I < [E is given
by
k

xIT = Z (x, uj)uj,

i=1

with {u1, ..., ux} any orthonormal basis of L.



For the future, we need

Theorem
Suppose that L < E, that {e1,..., ey} is an orthonormal basis of
E, and that aj := ejIIy, for j =1,..., n. Then

n
> llajl? = dimL.
j=1

To see this, let {uy, ..., ux} be any orthonormal basis of L. Since
n

aj = ZL1 (e, uj)uj for each j, and u; = > 7 ; (u;. e))¢; for each J,
it follows that

n n k k
Dolail> =" {eu)® =" |luil* =k =dimL,
j=1 i=1

j=1 i=1

as claimed.



Tensors

The tensor product X ® Y of two vector spaces X, Y is the universal
vector space for bilinear mappings @ on X x Y, which satisfy

(A1x1 + Aox2, y)@ = Ai(x1,y)P + Xo(x2, y)P

for x1,x, € X and scalars A1, A2, and similarly for linearity in V.
Note that dim(X @ Y) = dimX - dim Y.

The euclidean structure is induced on the tensor product of
euclidean spaces by the inner product

(x1 @ y1,% @ y2) 1= (x1,x2){y1,¥2).

Finally, linear mappings @ on X and ¥ on Y induce a linear
mapping @ @ ¥ on the tensor product X ® Y by

(xRy)(PRV¥) = (xP) @ (y¥).



NIP-sets

A nip-set (non-positive inner product set) is a set U = {u1, w2, ...}
of (unit) vectors such that (u;, uy) < 0 for each j # k.

We say that V' = {vy,..., v} is a minimal positively dependent
set if
Xovo+ -+ Amvm =0

for some Aq, ..., Am > 0, but each proper subset of V is linearly

dependent.

Adding a suitable multiple of this relation to a general linear
combination in lin V shows that

Theorem
A minimal positively dependent set positively spans its linear hull.



Theorem
A nip-set decomposes into mutually orthogonal minimal positively
dependent sets and a linearly independent set.

For the proof, first suppose that V is linearly dependent, so that we

can find U := {ug,...,ux} C V which is minimally linearly
dependent. For x = (&y,..., &) € EFFllet X(U, x) = Z}(:o &juj,
and define |x| := (&0l ..., [ék|). Then X(U,x) = o implies that

0= HE(U,X)H2 ~ Zk: & {ur, uy)
ij=0
k

> 3l ) = | 2w | >0,

ij=0

whence Y(U, |x|) = o. Thus U is minimally positively dependent.



With this same U, define L := lin U, and suppose that v € V' \ U.
If (x,v) # 0 for some x € L, then we can change the sign of x, if
necessary, and assume that

(x,v) > 0.

But x € L implies that x = X (U, z) for some z = ((p, ..., (k) with
¢j > 0foreach; =0,..., k. Hence (uj, v) > 0 for at least one J,

contradicting the assumption that V' was a NIP-set.

The proof now proceeds by induction on the dimension, since
clearly dimlin(V \ U) < dim V. Eventually we conclude that V
must be finite, and we end up with V decomposed into mutually
orthogonal minimal positively dependent subsets, and possibly a
residual linearly independent set. This completes the proof.



Fundamental regions

The mirrors (hyperplanes of reflexion) of a discrete group G
generated by reflexions in hyperplanes acting on a euclidean space E
divide the space into fundamental regions; these are polyhedral sets.

Remark

If, say, H= (S, T), with two hyperplane reflexions S, T, then there
are two possibilities. Either (as hyperplanes) S and T are parallel,
in which case the outer normals are equal and opposite, or the
fundamental regions of H are (simple) cones whose dihedral angles
are some submultiple of 7.

Theorem

If G is a discrete group generated by hyperplane reflexions, then the
set U of unit outer normal vectors to the bounding hyperplanes of a
fundamental region D of G is a nip-set.



Applying the remark to the subgroup H generated by any two
reflexions in bounding hyperplanes of D shows that the dihedral
angles of D are submultiples of . Thus the outer normals do form
a nip-set, as claimed.

Corollary

A fundamental region for a discrete group generated by hyperplane
reflexions is a direct product of simplices and a simple cone.

We can confine our attention to irreducible groups; here, the
fundamental region of G is the product of a simplex with a linear
subspace, or a simple cone, the latter being the case when G is
finite.



Coxeter diagrams

Let U = {u1,...,ux} be the set of unit outer normals to the
fundamental region D of a discrete group G generated by
hyperplane reflexions. With D we associate a Coxeter diagram D,
as follows. For each j =1,....k, D has a node labelled ;. The
nodes 7, are joined by branch marked pj; if (uj, u;) = —cos(7/pjj),
with the following exceptions:

e branches marked 2 are omitted — these correspond to reflexions
which commute;

e labels 3 on branches are omitted, due to their frequency.

Thus connected Coxeter diagrams are precisely those of irreducible
groups.



This leads very quickly to the familiar classification of the finite and
discrete infinite hyperplane reflexion groups in euclidean spaces, in

terms of their Coxeter diagrams. The key is that, if D is a Coxeter
diagram of an irreducible infinite group, whose fundamental region

is a simplex, then

e no mark on any branch of D can be increased,

e no new branch be added to D.

Increasing a mark, leading from normal set U to V, say, would
result in (v, vj) < (uj, u;) for some i, j, and hence in

0=[I2(U,2)|* > |2(V,2)|* > 0,

where z > o is such that X (U, z) = o, a contradiction. Adjoining a
new branch would violate the decomposition condition of a nip-set.



Example

The unit vectors

upg \= —é1,

— 1 (. . P
UJ.—%(ej—eﬁl) foryj=1,...,d -1,
Ug = €q,

are minimally positively dependent; they satisfy
UO+\[2(U1+"'+Ud_1)+Ud:0-

They determine a fundamental region for Ry, the symmetry
group of the d-dimensional cubic tiling, with Coxeter diagram



H Notation Diagram Order H
Ay — o o ----—0o——0o—9 (d+1)!
By o o - - - - 29-141
Cy ———eo— 0o — - - — - —O—QTO 2d I
Dg p 2p
G; 5 120
Gq = 14400




H Notation Diagram Order H
F, 7 1152
Es 72 - 6!
E; 8-9!
192 - 10!




H Notation

Diagram

Pyt

— o o - - —--—0o—o—o
4 4
-——————9o—9




H Notation

Diagram

T

Ts

——

W




H Notation

Diagram

Us
V3

W,

r— 00—




Products of reflexions

In the context of Petrie polygons, we need

Theorem
Let G be an irreducible discrete group generated by hyperplane
reflexions. If Ry, ..., Ry are the reflexions in the bounding

hyperplanes of a fundamental region of G, then the fixed points of
the product Ry - - - Ry are just the points of Ry N --- N Ry (where
reflexions are identified with their mirrors).

The proof (which we shall not give) is by induction on k. Note that
the order of the reflexions in the product is immaterial.



Rotation groups

Theorem
Each finite rotation group in E3 is a subgroup of index 2 in some
reflexion group.

Corollary

Apart from cyclic groups, the finite rotation groups in B3 are
2,q]* (for g > 2), [3,3]*, [3,4]" and [3,5]".

The proof is on hand of the following diagrams. The key is that a
rotation @ can be expressed as a product ® = ST of two planar
reflexions, whose mirrors (for which we use the same notation)
contain the axis L of . Moreover, either S or T can be chosen
freely.



$=RS, W=ST







Quaternions

The quaternions consist of all x = & + &1i + &) + &3k, where
=P =k?>=ijk=-1.

They form an associative but not commutative division ring. The
conjugate of x is X := & — &1 — &) — &3k; regarding x as a vector
in E%, its norm is given by ||x||? = Xx = xx. Note that xy = y X, so
that [|xy|| = ||x]|||y|l. A unit quaternion x satisfies ||x| = 1.

The family Q of unit quaternions thus forms a group, with a—! =2
fora e Q. If a € Q, then x — —axa is the reflexion in the (linear)
hyperplane with unit normal a. As a consequence,

Theorem

The orthogonal group Q4 consists of the mappings of the form
g(a,b): x — axb and g(a,b): x — axb. The mappings g(a,b)
form the special orthogonal group SO.



Finite quaternion groups

The pure imaginary quaternions x = £1i + &) + &3k can be thought
of as forming the subspace [2*. A general a € Q can be written

a = cos ¥ + sinYu for some ¥, with u € Q pure imaginary. If,
similarly, b = cos ) + sin v, then g(a, b) is a double rotation in E*
through © + .

Theorem

The mapping g(a,a) induces a rotation in E® through —21 about
the axis in direction u. The induced homomorphism from Q to
SO3 has kernel {£1}.

Corollary

Apart from cyclic groups of odd order, each finite subgroup of Q is
a 2-fold covering of a finite subgroup of SO3.



For brevity, we identify x < (&0, &1, &2, &3). Ignoring the cyclic
groups, for the finite groups coordinates can be chosen as follows.

Binary dihedral group D, of order 4n: all
(cos(km/n),sin(km/n),0,0), (0,0,cos(km/n),sin(km/n)).
Binary tetrahedral group A of order 24: all permutations of

(£1,0,0,0), 3(£1,+£1,41,£1).

Binary octahedral group C of order 48: A together with B, all
permutations of

L(£v2,+£v2,0,0).

Binary icosahedral group G of order 120: A together with all even
permutations of

)

(7, £1,£7710)
where 7 = 5(1 +/5).



Remark

If we choose odd permutations instead, we get an isomorphic copy
G' of G, obtained by changing the sign of \/5, or replacing 7 by
—7r 1

Theorem o R

The isomorphic copy G' of G is conjugate to G under any element
of B.

Remark R
We shall see that A can be regarded as the vertex-set of the regular
24-cell {3,4,3}, while G (or G') is that of the 120-cell {3,3,5}.

The subgroup V= {+£1, +i,+j, £k} of index 3 in A gives the
vertex-set of the 4-dimensional cross-polytope {3,3,4}, while its
complement A \ V gives the 4-cube {4,3,3}.



