
4-dimensional 4-apeirotopes



Preliminary remarks

A number of topics introduced in this part will carry over to higher

dimensions. Conversely, the applications of some constructions

(particularly) which work in all dimensions will not be treated here.

Thus we shall largely concentrated on those aspects which are

peculiar to 4-dimensional space.

In fact, as we have seen already, E4 admits a rich variety of regular

polyhedra; there is similarly a rich variety of 4-dimensional regular

apeirotopes of rank 4, since these polyhedra constitute their

vertex-�gures.

Mirror vectors provided the way in for the polyhedra. In contrast,

for the apeirotopes, the groups themselves form the necessary

framework for the classi�cation.



Nearest-point criterion

The following obvious result is frequently useful. If X is a �nite set

of points in an ambient space A (a sphere or euclidean space) and

v /∈ X is a further point, denote by α(v ,X ) the smallest angle

subtended at v in A by some pair of points of X .

Theorem

Let P be a regular polytope (apeirotope) with initial vertex v , and

let X be the set of vertices of P (other than v) nearest to v. Then

α(v ,X ) > π/3 (α(v ,X ) > π/3, respectively).

Proof.

If the given condition failed to hold, then two points of X would be

closer to each other than they are to v , a contradiction to the

de�nition of X and the regularity of P . (Note that the angle of a

spherical equilateral triangle is greater than π/3.)



Blends

Naturally, among the 4-dimensional regular apeirotopes of nearly

full rank will be the blends of the eight 3-dimensional pure regular

4-apeirotopes with the digon {2} or apeirogon {∞}.

Among the blends with {2} are the general members of apeirQ,

with Q a 3-dimensional crystallographic polytope (one of

{3, 3}, {3, 4}, {4, 3} and their Petrials).

Blends with {2} are the only regular 4-apeirotopes of nearly full

rank which can have 3-dimensional vertex-�gures. Thus we can

con�ne our attention to the apeirotopes whose vertex-�gures are

4-dimensional regular polyhedra Q, which we have previously

discussed. Furthermore, we need not consider the free abelian

apeirotopes Qα for such rational Q.



Blended vertex-�gures

An apeirotope here is obtained by applying κ to a crystallographic

regular 4-polytope Q. These 4-polytopes are paired up by ζ.

Each classical crystallographic 4-polytope Q is the facet of a

honeycomb P ; thus Qκ will correspondingly be the facet of Pκ.

Since the 2-faces of an apeirotope Qκ are even (or apeirogons),

Petriality π can always be applied; note that πκ = κπ in case Qπ

exists.

Note that, if Q is a classical regular polytope with 2-faces {p},
then the 2-faces of Qζκ are helices { p

0,1}.

Remark

Similar results hold for applications of κ to regular polytopes of any

full rank.



It may help here to indicate how the mirror vectors change under

these operations (note that ζ must be applied before κ or κπ).

(3, 3, 3, 3)
κ←−−→ (3, 1, 3, 3)

π←−−→ (3, 2, 3, 3)

ζ

xy ζ

xy ζ

xy
(1, 3, 3, 3)

κ←−−→ (1, 1, 3, 3)
π←−−→ (1, 2, 3, 3)

At top left are the classical regular 4-polytopes; moreover, the

facets at top middle are Petrie-Coxeter apeirohedra (in two cases,

those at top right are as well).



Possible groups

From now on, we can assume that the vertex-�gure of our discrete

regular 4-apeirotope P is a 4-dimensional regular polyhedron Q.

Moreover, if we leave until last the discussion of handed

vertex-�gures, the symmetry group G of P will be a hyperplane

re�exion group, possibly acted on by outer automorphisms.

As a consequence, G will be a subgroup of one of

• (V3 × V3) o C 2, the product of two groups of the triangular

plane tiling acted on by an involutory automorphism;

• P5 oD5, the unmarked pentagon acted on by the dihedral

group;

• U5 = [3, 3, 4, 3].
The last subsumes the group R5 = [4, 3, 3, 4] of the cubic tiling.



The case (V3 ×V3) o C 2

The basic picture here is the following diagram A2(p, r) with twists.
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The decomposition E4 = E2 × E2 suggests the use of complex

coordinates. Our starting point is the case (p, r) = (3
2
, 6), but note

that many of the same arguments apply to the other euclidean

triangular diagrams, namely, the cases (p, r) = (3, 3), (2, 4).



A useful operation

With z = (x , y), and writing ω := exp(2iπ/3) = 1

2
(−1 +

√
3) and

ϕ := −ω2 = exp(iπ/3) = 1

2
(1 +

√
3), the symmetry group of

{4, 4

1,2 | 6}
α has generators

Sj : z 7→


(1− x , 1− y), if j = 0,

(ϕx , y), if j = 1,

(y , x), if j = 2,

(x , y), if j = 3.

The initial vertex is the origin, and that of the vertex-�gure is (1, 1).

We now de�ne

T := (S2S3)
2 : z 7→ (x , y),

set R0 := S0T and Rj := Sj for j = 1, 2, 3.



This yields an apeirotope {{ 6

2,3 , 4 : 4

1,2}, {4,
4

1,2 | 6}}, to which we

can successively apply halving η. However, observe that

z(R1R2R1R0) = (1 + ωy , 1 + ωx),

so that z(R1R2R1R0)
3 = (y , x) = zR2. Consequently, when we

apply

η : (R0, . . . ,R3) 7→ (R0,R1R2R1,R3,R2)

the �rst time, the new group violates the intersection property,

which means that we obtain a non-polytope.

However, a double application of η e�ectively leads us to the

diagram A2(3, 3); then we have

{{ 6

1,3 , 4 : 4

1,2}, {4,
4

1,2 | 3}}
δ = {{4, 4

1,2 | 3}, {
4

1,2 , 6 : 4

1,2}},

{{ 6

1,3 , 4 : 4

1,2}, {4,
4

1,2 | 3}}
η = {{6, 4

1,2 |
6

1,2}, {
4

1,2 , 4 | 3}}.



The notation for the last is de�cient.

We shall not go further into this class, except to note that,

although we can apply various other operations such as π or κ, in
many cases the results degenerate, or � even if they do exist � they

are relatively uninteresting. In any event, usually we cannot

determine the combinatorial type with any ease.



The case P5 oD5

In fact, here we only have the group P5 o C 2. The apeirotopes in

this family take their start from {3, 3, 3}κ, which we discussed

earlier.

It is worth noting that the full group P5 oD5 does occur as that of

the facet { 5

1,2 ,
4

1,2 |
6

1,3}
π of {3, 3, 3}ζκπ; here,

{ 5

1,2 ,
4

1,2 |
6

1,3} ∼= {5, 4 | 6}

is universal. Further,

{3, 3, 3}κπ = {{6, 4

1,2 | 3}, {
4

1,2 , 3 : 6

2,3}} ∼= {{6, 4 | 3},{4, 3}}

is also universal.



The last of these apeirotopes has a geometric dual

{{3, 4}, {4, 6

1,3 | 3}} ∼= {{3, 4},{4, 6 | 3}},

to which κ can be applied. This yields the universal

{{3, 4}, {4, 6

1,3 | 3}}
κ = {{6, 4

1,2 | 4}, {
4

1,2 ,
6

1,3 : 5

1,2}}
∼= {{6, 4 | 4},{4, 6 : 5}}.

Observe that the facet is a Petrie-Coxeter sponge.

We can now apply π to the last, to obtain

{{6, 4

1,2 | 4}, {
4

1,2 ,
6

1,3 : 5

1,2}}
π = {{6, 5

1,2 | 4}, {
5

1,2 ,
6

1,3 : 4

1,2}}.

The facet and vertex-�gure are universal of their kinds; whether the

whole apeirotope is universal is unclear.



There are also applications of η, after which other operations will

apply.

{{3, 4}, {4, 6

1,3 | 3}}
η = {{4, 6

1,3 | 3}, {
6

1,3 , 6 : 6

2,3}},

{{4, 6

1,3 | 3}, {
6

1,3 , 6 : 6

2,3}}
π = {{4, 6

2,3 | 3}, {
6

2,3 , 6 : 6

1,3}},

{{4, 6

1,3 | 3}, {
6

1,3 , 6 : 6

2,3}}
δ = {{ 6

1,3 , 6 : 6

2,3}, {6,
4

1,2 | 3}}.

The vertex-�gures here are not universal by any means.

These are jumping-o� points for applying κ,π.



{{ 6

1,3 , 6 : 6

2,3}, {6,
4

1,2 | 3}}
κ←→ {{ 3

0,1 ,
6

2,3 : 6

0,1}, {
6

2,3 ,
4

1,2 : 5

1,2}}

π

xy π

xy
{{ 6

1,3 ,
10

1,3 : 6

2,3}, {
10

1,3 ,
4

1,2 : 6, 3} κ←→ {{ 3

0,1 ,
5

1,2 : 6

0,1}, {
5

1,2 ,
4

1,2 : 6

2,3}}

There is an analogous set derived from {{ 6

1,3 , 4 : 6

1,3}, {4,
6

2,3 | 3}},
which is closely related to {4, 6

2,3 | 3}
α (the point re�exion is

replaced by one in a line). However, we shall not list these, in part

because their exact combinatorial structures are still not

determined.



The case [3, 3, 4, 3]

In the �nal part, we shall deal with applications of the various

operations which result in in�nite families related to the simplices,

cross-polytopes and cubes. Here, we brie�y look at the 24-cell and

its related tessellations.

First consider {3, 4, 3}κ. The general discussion of how κ works

shows that its facet is the apeirohedron

{3, 4}κ = {6, 4

1,2 | 4};

this is one of the Petrie-Coxeter sponges. Similarly, the new

vertex-�gure is

{4, 3}3 {2} = {4, 3}ζ # {2} = { 4

1,2 , 3 : 3}# {2} = { 4

1,2 , 3 : 6

2,3}.



The last �ne Schlä�i symbol does specify the geometry of the

vertex-�gure. Indeed, we now have a �ne Schlä�i symbol for

{3, 4, 3}κ itself, namely,

{3, 4, 3}κ = {{6, 4

1,2 | 4}, {
4

1,2 , 3 : 6

2,3}}.

This is actually rigid, because the facets are rigid, and the planar

2-face {6} �xes the relative sizes of the components { 4

1,2 , 3 : 3}
and {2} of the blended vertex-�gure.

We shall not say more about the family resulting from this.

Moreover, the families derived by κ from {3, 3, 4} and {4, 3, 3} will
be discussed in the next part; by and large, the extra apeirotopes

obtained by applying π are not of much interest, except from the

viewpoint of a complete enumeration.



We leave U5, though, with an interesting subfamily:

{{ 6

1,3 , 4 : 6

1,3}, {4,
4

1,2 | 4}}
η−→ {{ 2

0,1 ,
4

1,2 : 4

1,2}, {
4

1,2 , 4 : 4

1,2}}

τ

xy τ

xy
{{3, 4}, {4, 4

1,2 | 4}}
η−→ {{4, 4

1,2 | 4}, {
4

1,2 , 4 : 4

1,2}}

δ

xy
{{4, 4

1,2}, {
4

1,2 , 4 : 4

1,2}}
η←− {{ 4

1,2 , 4 : 4

1,2}, {4,
4

1,2 | 4}}

Here, τ replaces a hyperplane re�exion by one in a line. Recall that

{ 2

0,1} is the zigzag apeirogon; at bottom left, the facet is

isomorphic to {4, 4}.



Handed vertex-�gures

Most of the putative handed vertex-�gures are excluded by the

nearest-point criterion, particularly those whose left and right

quaternion groups constituting their symmetry groups are di�erent.

Of course, acceptable polyhedra must be `crystallographic', in a

sense which we shall not make too precise.

And, of those potential vertex-�gures which survive this winnowing,

many only permit the free abelian apeirotope construction α.

Unfortunately, these include the pentagonal polyhedra, such as the

hemi-dodecahedron { 5

1,2 , 3 : 5

1,2}, the dodecahedron { 5

1,2 , 3 : 10

1,3}
and its Petrial, and { 10

1,3 , 3 : 10

1,3}.

Remark

In fact, some do lead to pre-apeirotopes, which become polytopal

on blending with {2}.



We �nally conclude that the only polyhedra of this kind which can

be vertex-�gures in a non-trivial way are

{2, 3 : 6} ./ {6, 3 : 2} = { 6

12
, 3 : 6

1,2},

{2, 4 : 4} ./ {4, 4 : 2} = { 8

1,3 , 4 : 8

1,3},

{2, 6 : 3} ./ {6, 3 : 2} = { 12
1,5 , 3 : 12

1,5}.

De�ning ϕ := exp(2iπ/q), with q = 3, 4, 6, respectively, the
symmetry groups of the vertex-�gures are generated by

R1 : z 7→ (y , x),

R2 : z 7→ (x , ϕy),

R3 : z 7→ (x , y).



The di�erent choices for R0 are

z 7→ (1− x ,∓y) or (1− x ,∓y).

The mirror R0 then has dimension 0, 2, 1, 3, respectively.

In every case, 〈R1R0R1,R2,R3〉 is the group of the planar tiling

{p, q} (for the appropriate p). This then excludes mirror

dimensions 1, 3 in case q = 6, because an odd edge-circuit would

take the vertex-�gure back into its enantiomorphic copy. All other

choices give rise to genuine regular apeirotopes.

Remark

Few of the regular polyhedra Q in mirror class (2, 2, 2) are rational,

which is necessary that Qα be de�nable.


