Universal algebra for CSP Lecture 2

Ross Willard

University of Waterloo

Fields Institute Summer School
June 26-30, 2011
Toronto, Canada

Exactly one of the following conditions holds:
(1) There exists a reflexive not-symmetric digraph \mathbb{G} which is compatible with some member of $\operatorname{HSP}(\mathbf{A})$; or
(2) There exists $f \in \mathcal{C}_{[3]}$ which satisfies $f(x, x, y) \approx y$ and $f(x, y, y) \approx x$.

In case (1), the proof found such \mathbb{G} compatible with $\mathbf{F} \leq \mathbf{A}^{|A|^{2}}$.
Question raised: do we really need to look that "deeply" into $\operatorname{HSP}(\mathbf{A})$?

Example. For any finite set A, the Słupecki clone S_{A} on A is the union of:

- \{all operations that depend on at most one variable\},
- \{all operations that are not surjective $\}$.

Let $\mathbf{A}=\left(A ; S_{A}\right)$. Clearly \mathbf{A} is not in case (2).

Exercise: if $|A|>2 n$, show that no member of $\operatorname{HS}\left(\mathbf{A}^{n}\right)$ has a reflexive not-symmetric compatible digraph.

Fixed-Template Constraint Satisfaction Problems

Fix a relational structure $\mathbb{G}=(A ; \mathcal{R})$ with A and \mathcal{R} finite.

Definition

$\operatorname{CSP}(\mathbb{G})$ is either of the following equivalent decision problems:

Constraints version
Input: Set V of variables, "constraints" on tuples of variables (requiring them to belong to prescribed relations in \mathcal{R}).
Query: Is there an assignment $V \rightarrow A$ which satisfies all the constraints?

Homomorphism version
Input: a finite relational structure $\mathbb{H}=(B, \mathcal{S})$ of the same "signature" as \mathbb{G}.
Query: Does there exist a homomorphism $\mathbb{H} \rightarrow \mathbb{G}$?

Archetypal examples

$\mathbb{G}_{1}=\left(\{0,1\} ;\left\{R_{a b c}: a, b, c \in\{0,1\}\right\}\right)$ where

$$
R_{a b c}=\{0,1\}^{3} \backslash\{(a, b, c)\} .
$$

E.g., the constraint " $(x, y, z) \in R_{101}$ " says " $\neg x$ or y or $\neg z$."
$\operatorname{CSP}\left(\mathbb{G}_{1}\right)$ is equivalent to 3-SAT, which is NP-complete.
$\mathbb{G}_{2}=\left(\{0,1\} ;\left\{S_{0}, S_{1}\right\}\right)$ where

$$
\begin{aligned}
& S_{0}=\{(x, y, z): x \oplus y \oplus z=0\} \\
& S_{1}=\{(x, y, z): x \oplus y \oplus z=1\} .
\end{aligned}
$$

Instances of $\operatorname{CSP}\left(\mathbb{G}_{2}\right)$ are systems of linear equations (each in 3 variables) over \mathbb{Z}_{2}.

Such systems can be checked for consistency by Gaussian elimination; thus $\operatorname{CSP}\left(\mathbb{G}_{2}\right)$ is in P.
$\mathbb{G}_{4}=\left(\{0,1\} ;\left\{L E, C_{0}, C_{1}\right\}\right)$ where

$$
\begin{aligned}
L E & =\{(0,0),(0,1),(1,1)\} \\
C_{0} & =\{0\} \\
C_{1} & =\{1\}
\end{aligned}
$$

Instances of $\operatorname{CSP}\left(\mathbb{G}_{4}\right)$ can only "say" $x \leq y, x=0$, or $x=1$.
There is only one way to get a contradiction: by saying

$$
x_{1}=1 \text { and } x_{n}=0 \text { and } x_{1} \leq x_{2} \text { and } x_{2} \leq x_{3} \text { and } \ldots \text { and } x_{n-1} \leq x_{n} .
$$

$\operatorname{CSP}\left(\mathbb{G}_{4}\right)$ is equivalent to REACHABILITY, which is in P (in fact, in NL).

$$
\mathbb{G}_{3}=\left(\{0,1\} ;\left\{=, C_{0}, C_{1}\right\}\right) .
$$

Similar to \mathbb{G}_{4}, but "undirected."
$\operatorname{CSP}\left(\mathbb{G}_{3}\right)$ encodes Undirected REACHABILITY, which is in L (Reingold, 2005).
$\mathbb{G}_{5}=\left(\{0,1\} ;\left\{R_{110}, C_{0}, C_{1}\right\}\right)$.
" $(x, y, z) \in R_{110}$ " is equivalent to " $(x$ and $y)$ implies z."
Similar to \mathbb{G}_{4}, but with directed paths replaced by directed binary trees. $\operatorname{CSP}\left(\mathbb{G}_{5}\right)$ is equivalent to Horn 3-SAT, which is P-complete.
$\mathbb{K}_{n}=(A ;\{\neq A\})$ where $A=\{0,1, \ldots, n-1\}$.

\mathbb{K}_{2}

\mathbb{K}_{3}
$\operatorname{CSP}\left(\mathbb{K}_{n}\right)$ is equivalent to n-COLOURABILITY, which is

- NP-complete for $n \geq 3$, and
- $\ln P($ in fact, in $L)$ if $n=2$.

Summary:

Comparing CSPs

We will use the following tools:
(1) Simulations, pp-definitions
(2) Polymorphisms
(3) Reduction to the "idempotent case"
(9) Algebraic substructures, Pp -constructions

Simulation

Consider again $\mathbb{G}_{5}=\left(\{0,1\} ; R_{110}, C_{0}, C_{1}\right)$.
Suppose we modify \mathbb{G}_{5} by adding $R_{1110}=\{0,1\}^{4} \backslash\{(1,1,1,0)\}$:

$$
\mathbb{G}_{5}^{\prime}=\left(\{0,1\} ; R_{110}, C_{0}, C_{1}, R_{1110}\right) .
$$

Is $\operatorname{CSP}\left(\mathbb{G}_{5}^{\prime}\right)$ harder than $\operatorname{CSP}\left(\mathbb{G}_{5}\right)$?
NO! $\quad R_{110}$ can simulate R_{1110} as follows:

- " $(x, y, z, w) \in R_{1110}$ " means " $(x \& y \& z) \Rightarrow w$."
- Given any constraint $(x \& y \& z) \Rightarrow w$, introduce a new variable t and replace the constraint with two new constraints

$$
(x \& y) \Rightarrow t \quad \text { and } \quad(t \& z) \Rightarrow w
$$

Key: $R_{1110}(x, y, z, w)$ is defined in \mathbb{G}_{5} by $\exists t\left[R_{110}(x, y, t) \& R_{110}(t, z, w)\right]$.

Pp-definability

In general:

Definition

(1) A primitive positive ($p p$) formula is any first-order formula of the form

$$
\exists \cdots\left[\bigwedge_{i} \text { atomic }_{i}\right]
$$

where each atomic $_{i}$ is a basic relation or equality $(x=y)$.
(2) Given a relational structure $\mathbb{G}=(A ; \mathcal{R})$ and a relation S on A, we say that S is pp-definable in \mathbb{G} if there exist a pp-formula using relations from \mathcal{R} whose set of solutions in \mathbb{G} is S.

Theorem (Folklore; Larose \& Tesson 2007)
Suppose \mathbb{G}, \mathbb{H} are finite relational structures with the same domain. If every relation of \mathbb{H} is pp-definable in \mathbb{G}, then $\operatorname{CSP}(\mathbb{H}) \leq_{L} \operatorname{CSP}(\mathbb{G})$.

Testing pp-definability

How can we test whether a relation is pp-definable in a structure?

Theorem (Bodnarčuk et al; Geiger 1968)
Let $\mathbb{G}=(A ; \mathcal{R})$ with A finite, and let E be an n-ary relation on A. TFAE:
(1) E is pp-definable in \mathbb{G}.
(2) E is compatible with every polymorphism of \mathbb{G}.

Proof sketch $(2) \Rightarrow(1) \ldots$

Corollary

If \mathbb{G}, \mathbb{H} are finite relational structures with the same domain and the same polymorphisms, then $\operatorname{CSP}(\mathbb{G})$ and $\operatorname{CSP}(\mathbb{H})$ have the same complexity.

Proof ...

Polymorphism algebra of a structure

Definition

Given a finite relational structure $\mathbb{G}=(A ; \mathcal{R})$, the polymorphism algebra of \mathbb{G} is the algebra

$$
\operatorname{PolAlg}(\mathbb{G})=(A ; \operatorname{Pol}(\mathbb{G}))
$$

where $\operatorname{Pol}(\mathbb{G})=\{$ all polymorphisms of $\mathbb{G}\}$.

By previous slide, $\operatorname{PolAlg}(\mathbb{G})$ determines the complexity of $\operatorname{CSP}(\mathbb{G})$.

This is the first insight of the "Algebraic approach" to CSP.

Examples revisited

$$
\begin{aligned}
\mathbb{G}_{1}=\left(\{0,1\} ;\left\{R_{a b c}: a, b, c\right.\right. & \in\{0,1\}\}) \text { where } \\
& R_{a b c}=\{0,1\}^{3} \backslash\{(a, b, c)\} .
\end{aligned}
$$

$\operatorname{Pol}\left(\mathbb{G}_{1}\right)=\{$ projections $\}$. (Exercise: prove it!)
$\operatorname{PolAlg}\left(\mathbb{G}_{1}\right)=(\{0,1\} ;\{$ proj's $\}) "="(\{0,1\} ; \varnothing)=$ the 2 -element set $!$
$\mathbb{G}_{2}=(\{0,1\} ;\{$ " $x \oplus y \oplus z=0$," "x $x \oplus y \oplus z=1 "\})$.
$\operatorname{Pol}\left(\mathbb{G}_{2}\right)=\{$ all boolean sums of an odd number of variables $\}=: \mathcal{C}_{2}$.
$\operatorname{Pol} \operatorname{Alg}\left(\mathbb{G}_{2}\right)=\left(\{0,1\} ; \mathcal{C}_{2}\right) "="(\{0,1\} ; x \oplus y \oplus z)=$ like a vector space!
$\mathbb{G}_{4}=\left(\{0,1\} ;\left\{L E, C_{0}, C_{1}\right\}\right)$ where $L E=\{(0,0),(0,1),(1,1)\}$.
$\operatorname{Pol}\left(\mathbb{G}_{4}\right)=\{f: f$ is monotone and "idempotent" $\}=: \mathcal{C}_{4}$.
("Idempotent" means $f(0,0, \ldots, 0)=0$ and $f(1,1, \ldots, 1)=1$.)
$\operatorname{PolAlg}\left(\mathbb{G}_{4}\right)=\left(\{0,1\} ; \mathfrak{C}_{4}\right) "="(\{0,1\} ; \max , \min)=$ the 2-element lattice!
$\mathbb{G}_{3}=\left(\{0,1\} ;\left\{=, C_{0}, C_{1}\right\}\right)$.
$\operatorname{Pol}\left(\mathbb{G}_{3}\right)=\{$ all idempotent boolean functions $\}=: \mathcal{C}_{3}$.
$\operatorname{PolAlg}\left(\mathbb{G}_{3}\right)=\left(\{0,1\} ; \mathcal{C}_{3}\right)=$ almost a boolean algebra!
$\mathbb{G}_{5}=\left(\{0,1\} ;\left\{R_{110}, C_{0}, C_{1}\right\}\right)$.
(Recall that $\operatorname{CSP}\left(\mathbb{G}_{5}\right)$ encodes Horn 3-SAT, which is in P.)
Exercise:
(1) Every $f \in \operatorname{Pol}\left(\mathbb{G}_{5}\right)$ is monotone and idempotent.
(2) $\min \in \operatorname{Pol}\left(\mathbb{G}_{5}\right)$ but $\max \notin \operatorname{Pol}\left(\mathbb{G}_{5}\right)$. (Exercise: prove it.)
$\operatorname{PolAlg}\left(\mathbb{G}_{5}\right) "="(\{0,1\} ; \min)=$ the 2-element semi-lattice!
\mathbb{K}_{n}. For $n \geq 3$,

- $\operatorname{Pol}\left(\mathbb{K}_{n}\right)=\{$ permutations (in a single variable) $\}$.
- I.e., $\operatorname{PolAlg}\left(\mathbb{K}_{n}\right)$ is a set with permutations.
$\operatorname{Pol}\left(\mathbb{K}_{2}\right)$ is much richer:
(1) Consists of all "self-dual" functions, i.e., functions f which satisfy

$$
f\left(\neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}\right) \approx \neg f\left(x_{1}, \ldots, x_{n}\right) .
$$

(2) Includes $x \oplus y \oplus z$ (which is a "Maltsev" operation), $\operatorname{maj}(x, y, z)$, etc. Almost a boolean algebra!

Polymorphism algebras as measure of CSP:

Core and idempotent structures

Let $\mathbb{G}=(A, \mathcal{R})$ be a finite structure.

Definition

(1) \mathbb{G} is core if every endomorphism $f: \mathbb{G} \rightarrow \mathbb{G}$ is a bijection.
(2) \mathbb{G} is idempotent if \mathcal{R} contains the relation $C_{a}=\{a\}$ for every $a \in A$.

Remarks:
(1) \mathbb{G} is core iff all its 1 -ary polymorphisms are permutations.
(2) \mathbb{G} is idempotent $\Rightarrow \operatorname{PolAlg}(\mathbb{G})$ is an idempotent algebra \Leftrightarrow every C_{a} is pp-definable in $\mathbb{G} \Leftrightarrow$ the identity map is the only 1 -ary polymorphism of \mathbb{G}.
(3) For every finite \mathbb{G} there exists an induced substructure \mathbb{G}^{\prime} which is core and for which there exists a retract mapping \mathbb{G} onto \mathbb{G}^{\prime}.

- This \mathbb{G}^{\prime} is unique up to isomorphism, and is called the core of \mathbb{G}.
(9) $\mathbb{G}^{c}:=\left(A ; \mathcal{R} \cup\left\{C_{a}: a \in A\right\}\right)$; it is idempotent.

```
Lemma
If }\mathbb{G}\mathrm{ is finite and core( }\mathbb{G})\mathrm{ is its core, then }\operatorname{CSP}(\mathbb{G})\equiv\operatorname{CSP}(\operatorname{core}(\mathbb{G}))\mathrm{ .
```

Proof: An input maps homomorphically to \mathbb{G} iff it maps homomorphically to core (\mathbb{G}).

Lemma (???, Larose \& Tesson 2007)
Suppose \mathbb{G} is core. Then $\operatorname{CSP}(\mathbb{G}) \equiv \angle \operatorname{CSP}\left(\mathbb{G}^{c}\right)$.

Proof: it suffices to reduce $\operatorname{CSP}\left(\mathbb{G}^{c}\right)$ to $\operatorname{CSP}(\mathbb{G})$. There is a trick to do this.

Conclusion: For CSP, we always assume the template \mathbb{G} is idempotent.

Algebraic substructures

Definition

Let $\mathbb{G}=(A ; \mathcal{R})$ be a finite structure and $\mathbb{H}=\left(B ;\left.\mathcal{R}\right|_{B}\right)$ an induced substructure. We say that \mathbb{H} is an algebraic substructure of \mathbb{G} if B is (the domain of) a subalgebra of $\operatorname{PolAlg}(\mathbb{G})$.

Example:

$$
\mathbb{H}=\mathbb{K}_{2}
$$

\mathbb{K}_{3}
\mathbb{H} is not an algebraic substructure of \mathbb{K}_{3}.

Observe: if $\mathbb{H}=(B ; \ldots)$ is an algebraic substructure of \mathbb{G}, then

- B is preserved by all polymorphisms of $\mathbb{G} \ldots$
- ...so B is pp-definable in \mathbb{G}.

More generally, given \mathbb{G} we will permit "substructures" whose:

- Domains are pp-definable subsets of G^{2} (or G^{3}, etc.) ...
- ... modulo pp-definable equivalence relations ...
- ... and whose relations need not be induced, merely pp-definable.

Pp-constructible structures

Example: \mathbb{K}_{3}.
Let Δ be the 3-ary relation defined by the formula

$$
\delta(x, y, z):(x \rightarrow y) \&(y \rightarrow z) \&(z \rightarrow x)
$$

So

$$
\Delta=\{(0,1,2),(1,2,0),(2,0,1),(2,1,0),(0,2,1),(1,0,2)\} .
$$

Let E be the 6 -ary relation defined by the formula $\varepsilon\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right)$:

$$
\begin{aligned}
\exists x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime} \quad[& \delta(x, y, z) \& \delta\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \& \delta\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right) \& \\
& \left(x \rightarrow x^{\prime \prime}\right) \&\left(x^{\prime \prime} \rightarrow x^{\prime}\right) \&\left(y \rightarrow y^{\prime \prime}\right) \&\left(y^{\prime \prime} \rightarrow y^{\prime}\right) \\
& \left.\&\left(z \rightarrow z^{\prime \prime}\right) \&\left(z^{\prime \prime} \rightarrow z^{\prime}\right)\right]
\end{aligned}
$$

$E=\{(0,1,2),(1,2,0),(2,0,1)\}^{2} \cup\{(2,1,0),(0,2,1),(1,0,2)\}^{2}$, which is an equivalence relation on Δ (with two blocks).

Let R be the 6 -ary relation defined by the formula

$$
\begin{aligned}
& \exists x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime} \quad\left[\quad \delta(x, y, z) \& \delta\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \& \delta\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right) \&\right. \\
& \varepsilon\left(x, y, z, x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right) \& \\
& \left.\left(x^{\prime}=x^{\prime \prime}\right) \&\left(y^{\prime}=z^{\prime \prime}\right) \&\left(z^{\prime}=y^{\prime \prime}\right)\right] \text {. } \\
& R=\{(0,1,2),(1,2,0),(2,0,1)\} \times\{(2,1,0),(0,2,1),(1,0,2)\} \cup \\
& \{(2,1,0),(0,2,1),(1,0,2)\} \times\{(0,1,2),(1,2,0),(2,0,1)\} .
\end{aligned}
$$

So $(\Delta / E ; R / E) \cong \mathbb{K}_{2}$.

We say that \mathbb{K}_{2} is pp-constructible from \mathbb{K}_{3} via the above pp-formulas.
(Note from the audience: a simpler formula can define R.)

Let \mathbb{G}, \mathbb{H} be finite relational structures.
Write $\mathbb{G}=(A ;\{\ldots\})$ and $\mathbb{H}=\left(B ;\left\{R_{1}, R_{2}, \ldots\right\}\right)$ with $\operatorname{arity}\left(R_{i}\right)=n_{i}$.

General Definition

\mathbb{H} is pp-constructible from \mathbb{G} iff there exist:

- $k \geq 1$
- Pp-definable relations of \mathbb{G} :

$$
\begin{aligned}
& U \subseteq A^{k} \\
& \Theta \subseteq U^{2} \quad\left(\subseteq\left(A^{k}\right)^{2}=A^{2 k}\right) \\
& S_{i} \subseteq U^{n_{i}} \quad\left(\subseteq\left(A^{k}\right)^{n_{i}}=A^{n_{i} k}\right) \text { for } i=1,2, \ldots
\end{aligned}
$$

such that

- Θ is an equivalence relation on U.
- $\mathbb{H} \cong\left(U ; S_{1}, S_{2}, \ldots\right) / \Theta$.

Notation: $\mathbb{H} \leq_{p p c} \mathbb{G}$.

Theorem (Bulatov, Jeavons, Krokhin 2005; Larose, Tesson (2007))
Suppose \mathbb{G}, \mathbb{H} are finite structures. If \mathbb{H} is pp-constructible from \mathbb{G}, then $\operatorname{CSP}(\mathbb{H}) \leq_{L} \operatorname{CSP}(\mathbb{G})$.

Proof: similar to the proof that pp-definable relations can be simulated.

> Corollary
> If $\mathbb{K}_{3}\left(o r \mathbb{G}_{1}=\left(\{0,1\} ;\left\{R_{a b c}:\right.\right.\right.$ abc $\left.\left.\in\{0,1\}^{3}\right\}\right)$ is pp-constructible from \mathbb{G}, then $\operatorname{CSP}(\mathbb{G})$ is NP-complete.

Theorem

Let \mathbb{G}, \mathbb{H} be finite relational structures. TFAE:
(1) \mathbb{H} is pp-constructible from \mathbb{G}.
(3) \mathbb{H} is compatible with some member of $\operatorname{HSP}(\operatorname{PolAlg}(\mathbb{G}))$.

Proof sketch (2) $\Rightarrow(1)$. Write $\mathbb{G}=(A ; \ldots), \mathbb{H}=\left(B ;\left\{R_{1}, R_{2}, \ldots,\right\}\right)$.
Let $\mathbf{A}=\operatorname{PolAlg}(\mathbb{G})$. Assume \mathbb{H} is compatible with $\mathbf{B} \in \operatorname{HSP}(\mathbf{A})$.
WLOG, $\mathbf{B}=\mathbf{U} / E$ for some $\mathbf{U} \in \operatorname{SP}(\mathbf{A})$ and some congruence E of \mathbf{U}. Say $\mathbf{U} \leq \mathbf{A}^{k}$. We can view $E \subseteq A^{2 k}$.

Similarly, we can "pull back" each n-ary relation R_{i} to a $k n$-ary relation R_{i}^{*} on A.

All of $U, E, R_{1}^{*}, R_{2}^{*}, \ldots$ are compatible with \mathbf{A}.
Hence they are all pp-definable in \mathbb{G}...
\ldots and give a pp-construction of \mathbb{H} from \mathbb{G}.

Corollary

For a finite relational structure \mathbb{G}, TFAE:
(1) $\mathbb{G}_{1}=\left(\{0,1\} ;\left\{R_{a b c}: a b c \in\{0,1\}^{3}\right\}\right)$ is pp-constructible from \mathbb{G}.
(2) $\operatorname{HSP}(\operatorname{PolAlg}(\mathbb{G}))$ contains the 2-element set $(\{0,1\} ; \varnothing)$.

If either holds, $\operatorname{CSP}(\mathbb{G})$ is NP-complete.

The Algebraic Dichotomy Conjecture, due to Bulatov, Jeavons and Krokhin, states:

Conjecture: If \mathbb{G} is idempotent and neither condition above holds, then $\operatorname{CSP}(\mathbb{G})$ is in P.

