
Background Lecture Notes

Fields Institute Summer Thematic Program on the

Mathematics of Constraint Satisfaction

Graph Theory and Combinatorics

Jaroslav Nešetřil
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1 Introduction

First of all, a graph G is an ordered pair G = (V ,E ), where V is a set (the vertex set) and E ⊆
(V

2

)

(the set of edges). Here and throughout these notes, the symbol
(V

k

)

will mean the set of all

k-element subsets of the set V ;
(V

k

)

= {W ⊆V : |W | = k}.
All graphs considered in these notes are finite (i.e., their vertex set is finite), unless we explic-

itly allow infinite graphs.
The set of all positive integers less than or equal to n will be denoted by [n]= {1,2, . . . ,n}.
Let G = (V ,E ) and G ′ = (V ′,E ′) be two graphs. A mapping f : V → V ′ is a homomorphism

from G to H , if whenever {x, y} ∈ E , then { f (x), f (y)} ∈ E ′. We can say that homomorphisms are
mappings that preserve edges.

Notice that we have no other assumptions on homomorphisms than preserving edges: we do
not require that the mapping is surjective nor that non-edges are mapped to non-edges.

Example 1.1. If G is a subgraph of G ′, then the identity mapping on V (G) is a homomorphism
from G to G ′.

Example 1.2. A graph theorist’s favorite graph is the Petersen graph P . Obviously C5 → P but
K3 9 P . It is not so obvious but true that P 9 C5. A way to prove it is to check all 510 possible
mappings. A shorter proof consists in realizing that since a potential homomorphism cannot
be injective and any two vertices of P lie in a copy of C5, the homomorphic image would have
to contain a triangle, but C5 contains none.

Example 1.3. Homomorphisms are a generalization of graph coloring: a homomorphism of G

to Kn is the same as a coloring of G with n colors.

Example 1.4. An important example: C2k+1 →C2l+1 if and only if k ≥ l . Which part is easier to
prove?

Example 1.5. A more involved example: The vertices of G are exams to be scheduled, and there
is an edge between them if they share a student or a professor, so they cannot be scheduled on
the same day. The vertices of H are slots for exams (described, for example, by the day, time and
room where they take place), and there is an edge if the two slots are not on the same day. A
homomorphism from G to H is understood as a feasible schedule of exams.
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Example 1.6. The definition of a homomorphism can easily be extended to graphs with loops
(note that allowing multiple edges does not bring any new concept!). The graph K ∗

2 has two
vertices, 0 and 1, an edge connecting 0 and 1 and a loop at the vertex 0.

Any graph G is homomorphic to K ∗
2 : the constant mapping that maps all vertices of G to 0 is

a homomorphism. However, the correspondence f 7→ f −1(0) is a one-to-one correspondence
of homomorphisms from G to K ∗

2 and independent sets of vertices in G . Therefore the number
of homomorphisms from G to K ∗

2 is equal to the number of independent sets in G .

Homomorphisms can also be defined for other kinds of structures. Let ∆ = (δi ; i ∈ I ) be a
finite sequence of positive integers. A relational structure of type ∆ (or a ∆-structure) is a pair
A = (V , (Ei : i ∈ I )), where V is a nonempty finite set and Ei are relations such that Ei ⊆ V δi for
all i ∈ I . In this way, directed graphs are relational structures for ∆= (2).

Let A = (V , (Ei : i ∈ I )) and B = (W, (Fi : i ∈ I )) be two relational structures of the same type ∆.
A function f : V →W is a homomorphism from A to B , if for any i ∈ I and any (v1, v2, . . . , vδi

) ∈ Ei

we have ( f (v1), f (v2), . . . , f (vδi
)) ∈ Fi . We write f : A → B .

We say that A is homomorphic to B and write A → B if there exists a homomorphism f : A →

B . If A → B and B → A, we say that A and B are hom-equivalent and write A ∼ B . Notice that
this is not the same as being isomorphic; e.g., all directed graphs containing a loop are pairwise
hom-equivalent.

Example 1.7. An application in directed graphs: Let Tn be the transitive tournament on n ver-
tices, i.e., V (Tn) = {1,2, . . . ,n} and E (Tn) = {( j ,k) : j < k}. Then for a directed graph G with
|V (G)| = n we have G → Tn if and only if G contains no directed cycle. The homomorphism
f is a linear extension or a topological sort of G .

It is an easy (but key) observation that the composition of two homomorphisms is a homo-
morphism as well.

2 Cores

A graph C is called a core if every homomorphism f : C →C is an automorphism. The following
lemma states several easy properties of cores.

Lemma 2.1.

1. If C and C ′ are two finite cores such that C ∼C ′, then C and C ′ are isomorphic.

2. Every graph G has a unique (up to isomorphism) subgraph C such that G ∼ C and C is a

core (the core of G).

3. The core C of a graph G is a retract of G, i.e., there exists a homomorphism r : G → C such

that r ↾C is the identity mapping.

4. If two graphs G and H are hom-equivalent, then their cores are isomorphic.
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Proof. 1. Let f : C → C ′ and g : C ′ → C . Then g ◦ f : C → C is an automorphism and so
g is a surjection. Similarly, as f ◦ g : C ′ → C ′ is an automorphism, f is also a surjection.
Therefore C and C ′ are isomorphic.

2. Let C be a graph with the least number of vertices in the set { f [G] : f : G →G}. Uniqueness
follows from 1 and the transitivity of ∼.

3. Let f : G → C . There are distinct positive integers m > n such that f m ↾C = f n ↾C . Let
r = f m−n .

4. A consequence of 1.

Remark. Deciding whether a graph is a core is a co-NP-complete problem. So is the problem of
determining hom-equivalence of two graphs. Computing the core of a graph is hard.

Remark. Let C be the set of all non-isomorphic finite cores. Then the binary relation ≤, defined
by G ≤ H if and only if G → H , is a partial order on C . We will mention several properties of this
order later.

Example 2.1. Any vertex-critical k-chromatic graph G is a core, because if H is a subgraph of G

with |V (H )| < |V (G)|, then χ(H ) < k and therefore G 9 H .
The Petersen graph is a core.

3 Asymmetric and rigid graphs

A graph is called asymmetric if its only automorphism is the identity mapping. A graph is called
rigid if it only has the identity endomorphism. Obviously a rigid graph is asymmetric.

3.1 Almost all graphs are asymmetric

Theorem 3.1. Asymptotically almost all graphs are asymmetric, i.e., the probability that the ran-

dom graph Gn,1/2 is asymmetric tends to 1 as n grows to infinity.

Proof. Let V = {1,2, . . . ,n}. We will count the number of graphs on V with a non-identity auto-
morphism.

We can assume that all vertices have degree at least n
2 (1−ǫ) and any two vertices have at most

n
4 (1+ǫ) common neighbors. Asymptotically almost all graphs satisfy this property, see below.

Let φ : V →V be an automorphism such that φ(x) = y for some x 6= y . Let M = {v ∈V : φ(v) 6=
v} be the set of all vertices that are moved by φ, or the non-fixed points of φ. Let V ′ =

(V
2

)

. We
define the mapping φ′ : V ′ → V ′ by φ′({u, v}) = {φ(u),φ(v)}. The mapping φ′ is a permutation
on V ′.

According to our assumption, there exist at least n
2 (1−ǫ)− n

4 (1+ǫ) = n
4 (1−3ǫ) vertices that are

connected by an edge to x but not to y . All these vertices are moved by the automorphism φ.
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Hence |M | ≥ cn for a suitable constant c . Thus the number of pairs of vertices that are moved by
this automorphism, or the number of non-fixed points of φ′ is at least

(cn
2

)

−n ≥ c ′n2 for some
constant c ′ and sufficiently large n. Therefore the number of cycles (or orbits) of φ′ is at most
k =

(n
2

)

−c ′n2/2.
If φ is an automorphism of a graph G , then all pairs in one cycle of φ′ are either edges or they

are all non-edges of G . Therefore there are at most 2k graphs such that φ is their automorphism.
There are n! possible choices of φ, so we get that there are at most

n! ·2k = n! ·2(n
2)−c ′n2/2

graphs on V with a non-identity automorphism.
Thus the probability that a random graph on n vertices has a non-identity isomorphism is at

most
n! ·2(n

2)−c ′n2/2

2(n
2)

≤
nn

2c ′n2/2

which tends to 0 as n →∞.

An even stronger result can be proved.

Theorem 3.2 (Erdős, Rényi [2]). For an arbitrary positive real number ǫ, asymptotically almost

all random graphs Gn,1/2 =G = (V ,E ) have the following property: If G ′ = (V ′,E ′) is a graph such

that V ′ =V and

|E ′△E | ≤
|V |

2
(1−ǫ),

then G ′ is asymmetric.

No explicit construction of such graphs (which are in majority) is known.

3.2 Almost all graphs are rigid

Theorem 3.3. Asymptotically almost all graphs are rigid.

Sketch of proof. It can be proved (e.g., using linearity of expectation and the Chernoff bound)
that asymptotically almost all graphs G have the following properties for any positive ǫ:

1. for every vertex v , n
2 (1−ǫ) ≤ degG v ≤ n

2 (1+ǫ);

2. the number of common neighbors of any two vertices is at least n
4 (1−ǫ) and at most n

4 (1+
ǫ);

3. both the largest clique and the largest independent set have fewer than 2log2(1+ǫn) ver-
tices;

4. each set of m > 30log2 n vertices induces a subgraph with at most 3
4

(m
2

)

edges;
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5. there is a set of m > 60ln n disjoint pairs of vertices ai bi , i = 1,2, . . . ,m, such that for some
3
4

(m
2

)

pairs at least one of {ai , a j }, {ai ,b j }, {bi , a j }, {bi ,b j } is an edge.

If G and H are graphs on n vertices satisfying conditions 1–5, then every homomorphism
f : G → H is injective. Therefore any graph satisfying conditions 1–5 is a core; so asymptotically
almost all graphs are cores.

A graph that is both asymmetric and a core is rigid.

3.3 Ulam’s problem

How many mutually incomparable graphs can we find on a given set X ? We are looking for a
set G of graphs such that G 9 G ′ for any two graphs G ,G ′ ∈G .

For finite X , the probabilistic analysis sketched in the previous lecture together with Sperner’s
theorem gives the answer

(

(n
2)

1
2 (2

2)

)

(1−ǫ)

n!

Now, however, we are interested in infinite X . (This is the only place where we consider infinite
graphs but it is an interesting niche.)

The class of all cardinal numbers will be denoted by Card. Wherever we use κ, it will be a
cardinal number. The letter ω is used to denote the cardinality of the set of all non-negative
integers (or the set of all non-negative integers itself). The cofinality of a cardinal κ is the least
cardinal α such that there exists a mapping f : α→κ satisfying the condition that for every λ∈κ

there exists β ∈α with f (β) ≥λ. We write cf(κ) =α.

Theorem 3.4 ([10]). For any κ≥ 1 there exists a rigid digraph G = (X ,R) with |X | = κ.

Proof. If κ is finite, let G be the oriented path of length κ− 1. If κ = ω, let R = {(x, x + 1): x ∈

ω}∪ {(0,5)}. Then (ω,R) is a rigid graph.
Let κ>ω. The vertex set X will be described gradually as we describe the whole graph. First,

take κ× {0,1}∪ {a,b,c , a′,b′,c ′}. When convenient, we will use α to denote (α,0) and α′ to de-
note (α,1).

We start with edges (0, a), (a,b), (b,c), (c ,0), (a,c), (0′, a′), (a′,b′), (b′,c ′), (c ′,0′), (b′,0′). Add
edges (α,β) and (α′,β′) for all α<β< κ and (α′,α) for all α< κ.

For every β < κ such that cf(β) = ω, fix some countable increasing sequence of cardinals
{β0,β1, . . . } so that limβn = sup{βn : n < ω} = β. Add an oriented path of length n + 2 joining
β′ and βn for every n < ω and for every β with countable cofinality (all these paths are vertex-
disjoint).

The graph has κ vertices because we start with 2κ+6 = κ vertices and add κ×ω=κ vertices.
Let f : G →G be a homomorphism. A complete graph on κ vertices must map to a complete

graph again, so κ× {0} maps either to κ× {0} or to κ× {1}. An oriented cycle must map to an
oriented cycle, therefore 0 maps either to 0 or to 0′. The edges (0,b) and (a′,c ′) enforce that
f (0) = 0 and f (0′) = 0′. As f is a homomorphism, we have α≤β⇒ f (α) ≤ f (β).
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Figure 1: A rigid graph on an arbitrarily large set

If there was β such that f (β) < β, then, since f is a homomorphism, β> f (β) > f ( f (β)) > . . .
would be an infinite decreasing sequence of cardinals. Such a sequence does not exist and
therefore f (β) ≥β.

Suppose there is β such that f (β) > β. Let β0 = β, βn+1 = f (βn). We have an increasing
sequence β0 < β1 < β2 < . . . . Let β = limβn = sup{βn : n < ω}. We have a fixed sequence {βn }
with limβn =β. The sequences {βn} and {βn} interlace (meaning that for any βn there is βk >βn

and vice versa). The definition ofβn implies that the sequences {βn } and { f (βn)} interlace as well
and therefore lim f (βn) =β.

The existence of oriented paths from β′ to βn implies that f (βn) = βn . Since the sequences
{βn} and {βn} interlace, there have to be k and n such that βk ≤βn <βk+1; that is a contradiction
since βk ≤βn but f (βn) =βn <βk+1 = f (βk ).

We have shown that f is the identity mapping and therefore G is rigid.

Theorem 3.5. For any cardinal κ, there exists a rigid (undirected) graph G = (V ,E ) with |V | = κ.

Proof. We use the arrow construction. Schematically, it is indicated in Fig. 2. Formally, if G is a
directed graph and (I , a,b) is an undirected graph with two fixed (distinct) vertices, we define

V (G ∗ (I , a,b)) =V (G)∪ ((V (I ) \ {a,b})×E (G))

and

E (G ∗ (I , a,b))=
⋃

e∈E(G)

({

{(x,e), (y,e)} : {x, y} ∈ E (I ), {x, y}∩ {a,b} =;

}

∪

{

{u, (x,e)} : e = (u, v), {a, x} ∈ E (I )
}

∪

{

{v, (x,e)} : e = (u, v), {b, x} ∈ E (I )
})

.

Using a suitable rigid indicator (I , a,b) can force that homomorphisms G → H are in one-to-
one correspondence with homomorphisms G∗(I , a,b)→ H ∗(I , a,b). Let G be the rigid digraph
from Theorem 3.4. Then G ∗ (I , a,b) is rigid.
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I

b

a

G

G  (I,a,b)*

Figure 2: The arrow construction

Theorem 3.6. For any cardinal κ, there exists a family of 2κ mutually incomparable directed

graphs.

Proof. Take all orientations of a rigid undirected graph with κ edges, which exists by Theo-
rem 3.5.

Theorem 3.7. For any cardinal κ, there exists a family of 2κ mutually incomparable undirected

graphs.

Proof. Use the arrow construction once again on a family of 2κ mutually incomparable directed
graphs.

Remark. It is undecidable in set theory, whether there exists a class of graphs G = {Gα : α ∈ Card}
such that |V (Gα)| =α and Gα 9 Gβ for any α 6=β.

4 No-homomorphism lemma

For a graph G , let ω(G) denote its clique number (the size of its largest complete subgraph), let
α(G) denote its independence number (the size of its largest independent set of vertices), and
let χ(G) denote its chromatic number (see also next section).

If G → H , then obviouslyχ(G) ≤χ(H ) andω(G) ≤ω(H ). It is not true, however, that G → H im-
plies that α(G) ≤α(H ) or that α(G) ≥α(H ). The following theorem shows an interesting relation
between the sizes maximal independent sets and the sizes of the vertex sets of homomorphi-
cally comparable graphs.

We say that a graph H is vertex-transitive, if for any two of its vertices x and y there is an
automorphism f of G such that f (x) = y .

Theorem 4.1 (no-homomorphism lemma). If G is an arbitrary graph and H is a vertex-transitive

graph and if G → H, then
α(G)

|V (G)|
≥

α(H )

|V (H )|
.
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Proof. Let
A = {A : A ⊆V (H ) independent, |A| =α(H )},

let mx = |{A ∈A : x ∈ A}|. Since H is vertex-transitive, for any two vertices x and y of H we have
mx = my =m.

Consider the number of pairs (v, A) such that v is a vertex of H and v ∈ A ∈A . Obviously,

|V (H )| ·m = |{(v, A) : v ∈ A ∈A }| = |A | ·α(H ). (∗)

Let f : G → H be a homomorphism. Then we have

∣
∣ f −1[A]

∣
∣ ≤ α(G),

∑

A∈A

∣
∣ f −1[A]

∣
∣ ≤ α(G) · |A |.

On the other hand, we have

∑

A∈A

∣
∣ f −1[A]

∣
∣=

∑

A∈A

∑

v∈A

∣
∣ f −1(v)

∣
∣= m · |V (G)|.

Combining this and (∗) we get
α(H )

|V (H )|
=

m

|A |
≤

α(G)

|V (G)|
.

Remark. The above proof implies that if f : G → H , H is vertex-transitive and

α(G)

|V (G)|
=

α(H )

|V (H )|
,

then
∣
∣ f −1[A]

∣
∣=α(G)

for any A ∈A .

The no-homomorphism lemma is so-called because it is usually used to show that if H is
vertex-transitive and the inequality of the independence ratios is not true then G 9 H .

Finally, we present two interesting applications of the no-homomorphism lemma.

Corollary 4.2. The cycle C2k+1 is homomorphic to C2k ′+1 if and only if k ′ ≤ k.

Proof. The non-existence of a homomorphism is a consequence of the no-homomorphism
lemma and the fact that, if k ′ > k ,

α(C2k+1)

|V (C2k+1)|
=

k

2k +1
<

k ′

2k ′+1
=

α(C2k ′+1)

|V (C2k ′+1)|
.

The existence is left as an exercise.

9



For a positive integer k and 1 ≤ d ≤ k/2, the circulant clique Kk/d is be the graph whose vertex
set is {0,1, . . . ,k −1} and {i , j } is an edge if and only if d ≤ |i − j | ≤ k −d . It is easy to show that
α(Kk/d ) = d .

The Kneser graph is the graph K
(k

d

)

= (V ,E ), where

V =

(

{0,1, . . . ,k −1}

d

)

and
E = {{A,B } : A,B ∈V , A∩B =;}.

Let f : Kk/d → K
(k

d

)

with f (i ) = {i , i +1, . . . , i +d −1}. It is easy to check that the Kneser graph is
vertex-transitive and that f is a homomorphism. Using the no-homomorphism lemma, we get

α
(

K
(k

d

))

(k
d

) =
α

(

K
(k

d

))

∣
∣
∣V

(

K
(k

d

))
∣
∣
∣

≤
α(Kk/d )

|V (Kk/d )|
=

d

k
.

Realizing that an independent set in the Kneser graph is an intersecting family of d-element
subsets of a k-element set, we obtain the famous Erdős-Ko-Rado theorem:

α
(

K
(k

d

))

≤

(

k

d

)

·
d

k
=

(

k −1

d −1

)

.

5 Graph coloring and chromatic numbers

5.1 The chromatic number

A k-coloring of a graph G is a partition of the vertex set into k disjoint sets satisfying the following
property: whenever e is an edge of G , for every 1 ≤ i ≤ k it is true that |e ∩Vi | ≤ 1. Equivalently,
a k-coloring may be regarded as a mapping c : V → {1,2, . . . ,k} such that c(x) 6= c(y) whenever
e = {x, y} is an edge of G ; equivalently we can say that neighboring vertices are assigned different
colors.

The chromatic number of a graph G is defined as

χ(G) = min{k : G has a k-coloring}.

Example 5.1. The chromatic number of the complete graph Kn = ([n],
([n]

2

)

) is obviously χ(Kn) =
n and the minimal coloring is the partition of the vertex set [n] into n one-point sets.

Example 5.2. Another example, less trivial than the previous one, is C5—the cycle of length 5.
Its chromatic number is three. However, we have to prove two separate claims: firstly, that the
chromatic number is at most three, i.e., that there is a 3-coloring of the graph C5; and secondly,
that the chromatic number is greater than two. In general, there is no known way to prove both
these claims at the same time.

In the particular case of C5 we are lucky. It can be proved that for a 2-colorable connected
graph, there is always a unique coloring. So both claims are easy to see.
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Having seen the two examples, one could easily become optimistic about the complexity of
determining the chromatic number of graphs. That would not be wise. Notice that the task of
determining whether for an input graph G , the chromatic number χ(G) ≤ 3, is an NP-complete
task. There are good bounds for certain classes of graphs (every planar graph can be colored
by four colors). In many cases, however, it is not easy even to provide a good estimate for the
chromatic number.

There is a simple algorithm for coloring a graph. First order the vertices of the graph. Then
assign each vertex the least color that has not been used for any of its neighbors.

This algorithm implies that for any graph G , its chromatic number χ(G) ≤ ∆(G)+ 1, where
∆(G) = max{degG (x) : x ∈ V (G)} is the maximum degree of the graph G . In fact, the famous
Brooks’ theorem states that χ(G) ≤∆(G) unless the graph G (or any of its components) is a com-
plete graph or an odd cycle.

Johansen and Kim proved using the probabilistic method that, if G does not contain triangles
as subgraphs, χ(G) =O(d/log d ).

5.2 A scale of chromatic numbers

The notion of the circular chromatic number is very useful when solving various channel as-
signment problems. A (k ,d )-coloring of a graph G = (V ,E ) is any mapping c : V → {0,1, . . . ,k −1}
satisfying the condition that if {x, y} ∈ E is an edge, then d ≤ |c(x)− c(y)| ≤ k −d . The circular

chromatic number of a graph G is defined as

χc(G) = inf
{

k/d : G has a (k ,d )-coloring
}

.

We already know that a k-coloring of a graph G is the same as a homomorphism of G to Kk .
It is easy to observe that a (k ,d )-coloring of a graph G is the same as a homomorphism of G

to Kk/d . Therefore
χc(G) = inf{k/d : G →Gk/d }.

Notice that χc(Kk/d )= k/d .

Theorem 5.1. For positive integers k ≥ d and k ′ ≥ d ′, the graph Kk/d is homomorphic to Kk ′/d ′ if

and only if k/d ≤ k ′/d ′.

Proof. If Kk/d is homomorphic to Kk ′/d ′ , then k/d ≤ k ′/d ′ by the no-homomorphism lemma.
Observe that Kk/d is hom-equivalent to Kck/cd . To see this, notice that f : x 7→ cx is a homo-

morphism Kk/d → Kck/cd and g : y 7→ ⌊y/c⌋ is a homomorphism Kck/cd → Kk/d .
If kd ′ ≤ k ′d , then Kkk ′/k ′d is a (spanning) subgraph of Kkk ′/kd ′ , so we have

Kk/d ∼ Kkk ′/k ′d → Kkk ′/kd ′ ∼ Kk ′/d ′ .
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Theorem 5.1 and the fact that Kk/1
∼= Kk imply that the relation between the chromatic num-

ber of a graph and its circular chromatic number is very tight: χ(G)− 1 ≤ χc(G) ≤ χ(G). We
shall prove that the circular chromatic number of a graph is always rational and that it is the
minimum of the above set.

For k ≥ 2d , the graph Kk/d is a core if and only if k and d are relatively prime. Thus we get a
natural isomorphism of the posets ({q ∈ Q : q ≥ 2},≤) and ({Kk/d : k ≥ 2d ∧ (k ,d ) = 1},≤) where
for any two graphs A and B we have defined A ≤ B if and only if A → B .

We present another generalization (due to X. Zhu). Let Cr be the graph whose vertices are
intervals of length at least 1/r on the unit-length circle. Two vertices are connected by an edge
if and only if the intervals do not intersect. The following theorem can be proved.

Theorem 5.2. For a graph G we have

χc(G) = inf{r : G →Cr }.

Another way to ascertain the circular chromatic number of a graph is the following. For a
circuit C in the graph G , given an orientation of the circuit, let C+ be the set of edges of C that
are in positive direction (relative to the orientation of the circuit) and C− the set of edges of C

that are in negative direction.

Theorem 5.3. For a graph G we have

χc(G) = min
~G

max
C

(
|C+|

|C−|
+1

)

,

where the minimum is taken over all orientations ~G of G and the maximum is taken over all

circuits C with a given orientation in ~G.

There is an interesting connection to the (ordinary) chromatic number. Let Ir be the graph
whose vertices are segments of the interval [0,1] of length at least 1/r . Two segments—vertices
of the graph—are joined by an edge if and only if they are disjoint. Then we get

χ(G) = inf{r : G → Ir }

since Ir is a perfect graph.

Let us now turn our attention to yet another chromatic number: the fractional chromatic
number. It can be computed by means of linear programming and gives a lower bound on the
(ordinary) chromatic number of a graph. Unfortunately, the linear program has exponentially
many variables and does not provide an efficient algorithm for computing the fractional chro-
matic number. Indeed, the fractional chromatic number of a graph is NP-hard to compute.

We introduce the notion of multi-coloring—colors will now be sets of positive integers. A k-

tuple n-coloring of a graph G = (V ,E ) is a mapping m : V →
([n]

k

)

such that whenever v and v ′

are connected by an edge, m(v)∩m(v ′) = ;. The fractional chromatic number of a graph G is
defined as

χf(G) = inf
{

n/k : G has a k-tuple n-coloring
}

.

12



For any graph G , it is true that
χf(G) ≤ χc(G) ≤χ(G).

Not surprisingly, a d-tuple k-coloring of a graph G is just a homomorphism of G to the Kneser
graph K

(k
d

)

.

Theorem 5.4. For a graph G we have

χf(G) = inf
{

k/d : G → K
(k

d

)}

.

The measure graph Mr is the graph whose vertices are subsets of the interval [0,1] of Lebesgue
measure at least 1/r . Two vertices are connected if and only if they are disjoint sets.

Theorem 5.5. If G is a graph, then

χf(G) = inf{r : G → Mr }.

5.3 Chromatic number and girth

Is the chromatic number bounded for graphs without short cycles? The answer is no. It is a very
famous result due to Erdős [1] who, using the probabilistic method, showed that for arbitrary
positive integers k and g there exists a graph Gk ,g with girth at least g and chromatic number at
least k .

Let us take a look at the so-called shift graphs. Given a positive integer n, the shift graph Sn

is the graph with the vertex set V (Sn) =
([n]

2

)

(the vertices of the shift graph can be regarded as
the edges of the complete graph on n vertices). Two vertices {i , j } and {k , l } of the shift graph are
connected by an edge if i < j = k < l .

It is easy to see that shift graphs contain no triangles and that they contain 4-cycles as their
subgraphs (if n ≥ 4). We will prove in the next lecture that χ(Sn) = ⌈log n⌉, so the chromatic
number of the shift graphs is unbounded.

We can generalize the shift graphs in this way: Sn,l has
([n]

l

)

as its vertex set. Two vertices v

and v ′ are joined by an edge if v = {i , j1, j2, . . . , jl−1}, v ′ = { j1, j2, . . . , jl−1,k} and i < j1 < j2 < ·· · <

jl−1 < k . It can be shown that
χ(Sn,l ) ∼ log log . . . log

︸ ︷︷ ︸

l times

n,

so the chromatic number is again unbounded and Sn,l does not contain odd cycles of length
less than 2n.

5.4 Shift graphs

We shall define the shift graphs in a more general way now. Let G = (V ,E ) be a simple directed
graph, i.e., E ⊆ V 2 and G has no loops or multiple edges. The shift graph of the graph G will be
the (directed) graph ∂G = (E ,E (∂G)), where E (∂G) = {((x, y), (y, z)) : (x, y), (y, z)∈ E }.

13



Note that the shift graph of the transitive tournament Tn on n vertices is an orientation of the
shift graph Sn introduced in the first lecture.

The chromatic number of a directed graph is defined in the same way as for undirected
graphs. A k-coloring of a graph G has the property that two distinct vertices x and y of the
graph G get different colors whenever (x, y) is an edge or (y, x) is an edge.

Theorem 5.6. For an arbitrary simple directed graph G, it is true that

logχ(G) ≤ χ(∂G) ≤min
{

k : χ(G) ≤
( k
⌊k/2⌋

)}

.

Both the lower and the upper bound are the best possible.

Proof. First let us prove the lower bound. It suffices to show that if ∂G is t -colorable, then G is
2t -colorable.

Let V (∂G) = E (G) = E1 ∪E2 ∪ ·· · ∪Et be a t -coloring of the graph ∂G . In the graph (V ,Ei ),
every vertex is either a source or a sink (otherwise there would be a monochromatic edge in the
graph ∂G). So there is a homomorphism fi of the graph (V ,Ei ) to P1, the directed path of length
one. The mapping f : V (G) → {0,1}t such that f (v) = ( f1(v), f2(v), . . . , ft (v)) is a 2t -coloring of
the graph G .

The lower bound is the best possible: suppose that n = 2t and consider G = Tn (G is the
transitive tournament with the vertex set V (G) = {0,1, . . . ,n−1} whose edges are pairs (k , l ) such
that k < l ). Define a t -coloring of ∂G so that V (∂G) =E (G) =E1 ∪·· ·∪Et with

Ei = {(k , l ) : k < l and i is the first binary digit where k and l differ}.

Thus χ(∂G) ≤ t = log n = logχ(G).

Remark. As the shift graph Sn,3 is an orientation of ∂∂Tn , Sn,4 is an orientation of ∂∂∂Tn , etc. we
obtain the claim from the first lecture that

χ(Sn,l ) ∼ log log . . . log
︸ ︷︷ ︸

l times

n.

The proof of the upper bound is more difficult and at the same time more interesting. We
need to introduce a number of new ideas related to partial orders.

For a partially ordered set P = (X ,≤), the symbol A (P) will denote the set of all antichains
(independent sets) in P .

Remark. Determining the number of antichains in a partially ordered set is an unsolved prob-
lem known as Dedekind’s problem.

We define a partial order ¹ on the set A (P) so that

A ¹B if and only if (∀a ∈ A)(∃b ∈ B ) a ≤ b.

Let G = (V ,E ) be a digraph and P = (X ,≤) a partially ordered set. A mapping f : V → X is an
A-map if f (x) 6≤ f (y) whenever (x, y) is an edge of G . The fact that there exists an A-map of G

to P will be denoted by G
A

−→ P .
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Let Dk denote the poset Dk = ({1,2, . . . ,k}, {(x, x) : 1 ≤ x ≤ k}), the k-element antichain. Notice
that there exists an A-map of G to Dk if and only if G is k-colorable.

To finish the proof of the upper bound, we will make use of the following theorem.

Theorem 5.7. Let G be a simple digraph and P a partially ordered set. Then G
A

−→ A (P) if and

only if ∂G
A

−→ P.

Now we finish the proof of the upper bound. We know that χ(∂G) ≤ k if and only if ∂G
A

−→ Dk

if and only if G
A

−→ A (Dk ). However, A (Dk ) is isomorphic to the poset (2[k],⊆). According to
Sperner’s theorem, there is an independent system of t =

( k
⌊k/2⌋

)

subsets of 2[k]. So if we can find

a t -coloring of the graph G , we can also find an A-map f : V (G) → 2[k] to satisfy the condition
that f (x) 6⊆ f (y) for every edge (x, y) of the graph G . Therefore if G is t -colorable, then ∂G is
k-colorable.

To show that the upper bound is tight, consider a graph G = (V ,E ) such that (x, y) ∈ E if and
only if (y, x) ∈ E . Then ∂G is k-colorable if and only if there is a mapping f : V (G) → 2[k] such that
f (x) ∥ f (y) whenever (x, y) is an edge of G . Sperner’s theorem implies that if ∂G is k-colorable,
then G is t -colorable for t =

( k
⌊k/2⌋

)

.

Proof (of Theorem 5.7). First, let f : G
A

−→ A (P). If e = (x, y) ∈ E (G) = V (∂G), then f (x) 6¹ f (y),
so there exists an element u ∈ f (x) such that u ≤ v for no v ∈ f (y). Set F (e) = u (if there are
more such elements, pick any of them). The mapping F : V (∂G) → X is an A-map, because if
((x, y), (y, z)) is an edge of ∂G , then F (y, z) ∈ f (y) and therefore F (x, y) 6≤ F (y, z).

Conversely, let F : ∂G
A

−→ P . For x ∈ V (G) define Sx = {(x, y) : (x, y) ∈ E (G)}. Define the map-
ping f : V (G) →A (P) so that f (x) is the set of maximal elements of F [Sx ].

Let (x, y) be an edge of the graph G . There exists an element u of f (x) such that F (x, y) ≤ u.
If there was an element v = F (y, z) ∈ f (y) such that u ≤ v , then F (x, y) ≤ u ≤ v = F (y, z), but
since ((x, y), (y, z)) is an edge of ∂G , that would contradict the fact that F is an A-map. Therefore
f (x) 6¹ f (y) and f is an A-map.

5.5 Coloring order density

Let C be the set of all non-isomorphic finite cores. Then the binary relation ≤, defined by G ≤ H

if and only if G → H , is a partial order on C . We write G < H if G → H and H 9 G .

Theorem 5.8 (Welzl [16]). If G1 and G2 are two core graphs such that G1 <G2, then there exists a

graph G such that G1 <G <G2 unless (G1,G2) ∈ {(K0,K1), (K1,K2)}.

Proof. If (G1,G2) = (K0,K2), let G = K1. Otherwise G2 is not bipartite and so it contains an odd
cycle. Let H be a graph with odd girth greater than the odd girth of G2 with

χ(H ) > |V (G1)||V (G2)|.

We know such a graph exists—we may take a suitable shift graph Sn,k described earlier.
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Let G = G1 ∪ (G2 × H ). Obviously G1 → G and G → G2. We have to show that G2 9 G and
G 9 G1.

We can assume that G2 is connected. We know that G2 9 G1. The product G2 × H is not
bipartite because otherwise G2 or H would have to be bipartite. Let p : G2 × H → H be the
projection. If C is an odd cycle in G2 ×H , then its image p[C ] in H contains an odd cycle that is
at most as long as C . Therefore the odd girth of G2 ×H is greater or equal to the odd girth of H

and that is greater than the odd girth of G2. This implies that G2 9 G2 ×H and so G2 9 G .
Suppose that there is a homomorphism f : G2 × H → G1. To each vertex x of the graph H ,

assign the mapping fx : V (G2) → V (G1) such that fx (u) = f (u, x). Consider the mappings fx

as colors assigned to the vertices of the graph H . There are k = |V (G1)||V (G2)| possible map-
pings of V (G2) to V (G1), but χ(H ) > k , so there must be an edge {x, y} of H with fx = fy . If
{u, v} ∈ E (G2), then {(u, x), (v, y)} ∈ E (G2 ×H ) and so { f (u, x), f (v, y)} ∈ E (G1) because f is a ho-
momorphism. However, f (u, x) = fx (u) and f (v, y) = fy (v) = fx (v), so { fx (u), fx (v)} ∈ E (G1)
and fx is a homomorphism of G2 to G1, contradicting the assumption that G2 9 G1. Therefore
G2 ×H 9 G1 and G 9 G1 either.

5.6 The classes Ck

We shall now show how each k-colorable graph is an induced subgraph of a power of a single
graph.

We define the join G+G ′ of two graphs G = (V ,E ) and G ′ = (V ′,E ′) (supposing that V ∩V ′ =;)
in the following way:

V (G +G ′) = V ∪V ′

E (G +G ′) = E ∪E ′∪ {{v, v ′} : v ∈V ∧v ′ ∈V ′}

Let C be a set of graphs. The symbol SP(C ) will denote the class of all induced subgraphs of
(finite) products of some elements of C . If the set C consists of a single graph, we will use SP(G)
instead of SP({G}). The symbol P3 denotes the path of length three.

Theorem 5.9. Let k ≥ 2, let Ck be the class of all k-colorable graphs. Let Ak = P3 +Kk−2. Then

Ck = SP(Ak ).

Proof. First we prove that if a graph G is k-colorable, it is an element of SP(Ak ). Let F = { f : f :
G → Ak } be the set of all homomorphisms of G to Ak . The set F is nonempty, as G is k-colorable
and therefore admits a homomorphism to Kk , which is a subgraph of Ak .

Let H = (Ak )|F |. We will use the elements of F as indices for the vertices of H ; each vertex x

of H will thus be an |F |-tuple (x f1
, x f2

, . . . , x f|F |
), where f1, f2, . . . , f|F | are all the elements of F .

Two vertices x, y ∈ V (H ) are connected with an edge if and only if for each f ∈ F the vertices x f

and y f form an edge in the graph Ak .
Now we define a mapping φ : G → H and show that it is an embedding of G to H . For v ∈V (G)

and f ∈ F let φ(v) f = f (v).
Let x, y ∈ V (G), x 6= y . If {x, y} ∈ E (G), then for any f ∈ F it is true that { f (x), f (y)} ∈ E (Ak )

because f is a homomorphism. Therefore {φ(x),φ(y)} ∈ E (H ).
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If, on the other hand, {x, y} ∉ E (G), find a k-coloring c of G . The mapping c is a homomor-
phism of G to Kk , which is a subgraph of Ak . Consider a homomorphism f : G → Ak such that
f (z) = c(z) for z ∉ {x, y}, and f (x) and f (y) are two distinct nonadjacent vertices on the path P3

in the graph Ak . Then we have φ(x) f 6=φ(y) f and φ(x) f 6∼φ(y) f

We have shown that φ is an embedding of G to H , so Ck ⊆ SP(Ak ). It is an easy exercise
to show that SP(Ak ) ⊆ Ck —just notice that 1. Ak is k-colorable, 2. the product of k-colorable
graphs is k-colorable, and 3. any subgraph of a k-colorable graph is k-colorable.

Remark. We can generalize the notion of k-coloring to H-coloring, where H is a graph. An H-
coloring of a graph G is simply a homomorphism of G to H and we ask the question whether
G → H . Let CH be the class of all graphs that admit a homomorphism to H . For every graph H

there exists a finite set of graphs A such that CH = SP(A ). The proof is left for the reader as
homework.

It is rather surprising that the complementary class C̄k of all graphs that are not k-colorable
can be generated easily as well.

We need to define a graph operation to be used in the following theorem. Given two graphs G

and G ′ with disjoint vertex sets, and given two vertices x and y of the graph G and two vertices
x ′ and y ′ of the graph G ′ such that {x, y} ∈ E (G) and {x ′, y ′} ∈ E (G ′), we define the H-join (Hajós
join) of the two graphs to be the graph created from the union of G and G ′ by identifying x

with x ′, deleting the edges {x, y} and {x ′, y ′} and adding the edge {y, y ′}; so it is the graph (V ,E ),
where

V = (V (G)∪V (G ′)) \ {x ′},

E = (E (G)∪E (G ′)∪ {{x, z ′} : {x ′, z ′} ∈ E (G ′)}∪ {{y, y ′}}) \

({{x ′, z ′} : {x ′, z ′} ∈ E (G ′)}∪ {{x, y}, {x ′, y ′}}).

Theorem 5.10 (Hajós [4]). Every graph G ∈ C̄k can be generated from the complete graph Kk+1

by a finite (possibly empty) sequence of the following four operations:

1. adding a new vertex,

2. adding a new edge connecting two existing vertices,

3. contracting a non-edge, i.e., identifying two nonadjacent vertices (and replacing any mul-

tiple edges that may appear by a single edge),

4. H-joins.

Conversely, no graph generated from Kk+1 by a finite sequence of the above four operations is

k-colorable.

Proof. We prove the first part of the theorem by induction on |V | and on
(n

2

)

−|E |. Suppose that
there exists a graph G = (V ,E ) such that G is not k-colorable but it cannot be generated by the
four operations (we will say that it is not constructible); moreover suppose that all graphs that
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are not k-colorable and have less than |V | vertices or have |V | vertices and more than |E | edges
are constructible.

Obviously, |E | <
(n

2

)

, because complete graphs are constructible (just using operations 1. and
2.). We may assume that G contains K1 ∪K2 as an induced subgraph—otherwise it would be a
complete multipartite graph, contain Kk+1 and therefore be constructible. So there are vertices
x, y and y ′ such that {y, y ′} is an edge of the graph G and {x, y} and {x, y ′} are not. Let G ′ be a
copy of G with the edge {x, y} added, let G ′′ be a copy of G with the edge {x, y ′} added. Both G ′

and G ′′ are constructible, because they are not k-colorable and have more edges than G .
Let H be the H-join of the graphs G ′ and G ′′, identifying x in G ′ with x in G ′′, deleting {x, y}

in G ′ and {x, y ′} in G ′′ and adding the edge {y
G ′ , y ′

G ′′}. Then H is constructible and identifying all
pairs of corresponding vertices in G ′ and G ′′ (operation 3.) yields the graph G . This implies that
G is constructible—a contradiction.

Remark (open problem). As a consequence of Hajós’ theorem, we get that the shift graphs are
constructible. However, the sequence of operations leading to shift graphs has not been de-
scribed yet.

6 Graph product

6.1 The definition

Many types of products have been described by mathematicians so far. The product we will be
talking about is called the direct product or the category product or simply just the product of
graphs. The vertex set of the product G × H is the Cartesian product of the vertex sets of the
factors. Two vertices x = (g ,h) and y = (g ′,h′) are joined by an edge in the product if and only if
{g , g ′} ∈ E (G) and {h,h′} ∈ (H ). Formally,

V (G ×H ) = V (G)×V (H ),

E (G ×H ) = {{(g ,h), (g ′,h′)} : {g , g ′} ∈ E (G)∧ {h,h′} ∈ E (H )}.

Example 6.1. The product K2 ×K3 is isomorphic to the cycle C6 and it is shown in Figure 3.

K2

K3

K2 ×K3

Figure 3: Illustrating the direct product of graphs
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6.2 Independence problem

Given a graph G , does there exist a graph H such that G is incomparable with H , i.e., G 9 H and
H 9 G? Given a finite set of graphs G , does there exist a graph H that is incomparable with any
graph in G ? The answer to both questions is positive.

Theorem 6.1. Let G be a finite set of graphs such that χ(G) ≥ 3 for each G ∈G . Then there exists a

graph H incomparable with every G ∈G .

Proof. Let n = max{|V (G)| : G ∈G }, g = max{girth(G); G ∈G } and k = max{χ(G) : G ∈G } . Let H ′

be a graph with odd girth greater than g and chromatic number greater than nk+1. Finally, let
H =Kk+1 ×H ′.

Now the argument is similar to that we used in the proof of the density theorem. For any
G ∈G , we have G 9 H , because H has no short odd cycles.

Suppose that there is a graph G ∈G such that f : H →G . For x ∈V (H ′), let fx : V (Kk+1)→V (G)
be the mapping defined by fx (u) = f (u, x). As there are |V (G)|k+1 mutually different mappings
of V (Kk+1) to V (G) and χ(H ′) > nk+1 ≥ |V (G)|k+1, there must be an edge {x, y} of H ′ such that
fx = fy . The mapping fx is a homomorphism of Kk+1 to G because for {u, v} ∈ E (Kk+1), the set
{(u, x), (v, y)} is an edge of Kk+1×H ′ and so { fx (u), fx (v)} = { f (u, x), f (v, y)} is an edge of G . Since
G is k-colorable, we have Kk+1 →G → Kk and that is a contradiction.

Remark. The previous theorem is not true for directed graphs. There is an infinite number of of
finite maximal antichains, classified by Foniok, Nešetřil and Tardif [3].

Remark. If G is a countable graph, then there exists a countable graph H incomparable with G

(proved by Nešetřil and Shelah [12]). The generalization for a finite set of countable graphs is
not true, however. There is no countable graph incomparable both with K3 and a universal K3-
free graph. The latter can be constructed by induction: V1 = {0}, E1 = ;. If we have Vk and Ek ,
let

V ′ =

{

u : u : Vk → {0,1}∧
(u−1(1)

2

)

∩Ek =;

}

E ′
= {{u, x} : u ∈V ′

∧x ∈Vk ∧u(x)= 1}

Vk+1 = Vk ∪V ′

Ek+1 = Ek ∪E ′

Then

G =
( ∞⋃

k=1

Vk ,
∞⋃

k=1

Ek

)

is a universal K3-free graph (every countable K3-free graph is embeddable in G).

6.3 Homomorphism cancellation property

Let F and G be graphs. We say that F is pointed for G if for any two homomorphisms f and f ′

of G to F and each vertex x of G it holds that f (y) = f ′(y) for all y 6= x implies that f (x) = f ′(x)
as well.
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Theorem 6.2. Let F , G and H be graphs with χ(H ) > |V (F )||V (G)|. Then G ×H → F if and only if

G → F .

Moreover, if G is connected and F is pointed for G, then homomorphisms G → F and homo-

morphisms G ×H → F are in a one-to-one correspondence.

Proof. Proof of the existence is the same as in the previous theorem.
Let A = {g : g : G → F } and B = { f : f : G ×H → F }. We are looking for a bijection of A to B .
Let f : G ×H → F , fx (u) = f (u, x) for x ∈V (H ). We prove an auxiliary claim that fx = fy when-

ever {x, y} ∈ E (H ) and fx is a homomorphism. Let there be an edge {x, y} of H such that fx 6= fy .
Then there is a vertex u ∈ V (G) that fx (u) 6= fy (u). We define a new homomorphism f ′ : G → H

by f ′(u)= fy (u) and f ′(v)= fx (v) for v 6=u (it is easy to check that f ′ is a homomorphism). This
is a contradiction because f ′ and fx only differ at u but F is pointed for G .

Let p : G ×H → G be the projection. We define φ : A → B by φ : g 7→ g ◦p . Obviously φ is an
injection. To see that φ is a surjection, let f ∈ B . Take an arbitrary x ∈V (H ). Then we have

(φ( fx ))(u, y)= ( fx ◦p)(u, y)= fx (u)= fy (u)= f (u, y),

where the third equality is a consequence of the auxiliary claim and the fact that G is connected.
Therefore we get φ( fx )= f .

Remark. Setting F = G we get that there are uniquely F -colorable graphs with arbitrarily large
odd girth, because F is pointed for F whenever F is a core.

Setting F =G = Kk we get that there are uniquely k-colorable graphs with arbitrarily large odd
girth.

6.4 Hedetniemi’s conjecture

The homomorphisms π1 : G1 ×G2 → G1 and π2 : G1 ×G2 → G2 defined by π1(v1, v2) = v1 and
π2(v1, v2) = v2 are called projections.

Proposition 6.3. Whenever G is a graph such that g1 : G → G1 and g2 : G → G2 are homomor-

phisms, then there exists a unique homomorphism f : G → G1 ×G2 such that π j ◦ f = g j for

j = 1,2.

The proof is left as an exercise.

Corollary 6.4. A graph G is homomorphic to the product G1 ×G2 if and only if G → G1 and

G →G2.

Corollary 6.5. χ(G1 ×G2) ≤ min{χ(G1),χ(G2)}.

Hedetniemi [5] conjectured that the inequality above actually holds with equality: χ(G1 ×

G2) = min{χ(G1),χ(G2)}. In spite of substantial effort of many mathematicians the problem re-
mains wide open to this day. The conjecture is trivially true when the minimum is at most 3 and
nontrivially true when the minimum is 4.

Let f (k) = min{χ(G1 ×G2) : χ(G1),χ(G2) ≥ k}; this function is called the Poljak-Rödl function.
Hedetniemi’s conjecture states that f (k) = k for all k . At present, however, f is not even known
to be unbounded. It is known that either f (k) is unbounded or f (k)≤ 9 for all k [15, 17].
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7 Isomorphisms of graphs

Let us now concentrate on the issue of deciding, given two finite graphs G and H , whether G is
isomorphic to H (G ∼= H ).

7.1 Lovász’ theorem

The symbol 〈F,G〉 will denote the number of all homomorphisms of F to G . Let F1,F2,F3, . . . be
all non-isomorphic finite graphs. The Lovász vector of a graph G is 〈G〉 = (n1,n2,n3, . . . ), where
nk = 〈Fk ,G〉.

Theorem 7.1 (Lovász [7]). Two finite graphs G and H are isomorphic if and only if 〈G〉 = 〈H〉.

Proof. It is evident that if G ∼= H , then 〈G〉 = 〈H〉.
Let 〈〈F,G〉 denote the number of all monomorphisms (injective homomorphisms) of F to G .
Suppose that 〈G〉 = 〈H〉. Then for an arbitrary graph F , it is true that 〈〈F,G〉 = 〈〈F, H〉. Let us

prove this claim by induction on the number of vertices of the graph F . First, if |V (F )| = 1, then
〈〈F,G〉 = 〈F,G〉 = 〈F, H〉= 〈〈F, H〉. If |V (F )| > 1, then

〈F,G〉 =
∑

Θ∈E q(V (F ))

〈〈F /Θ,G〉

= 〈〈F,G〉+
∑

Θ∈E q(V (F ))
Θ 6=id

〈〈F /Θ,G〉,

where E q(V (F )) is the set of all equivalence relations on V (F ) and F /Θ is the graph whose vertex
set is the set of all equivalence classes of Θ and an edge connects two classes c and c ′ if there
are vertices u ∈ c and u′ ∈ c ′ so that {u,u′} is an edge of F . (Note that loops may occur in F /Θ.)
This is because every homomorphism f : F →G corresponds to a monomorphism of F /Θ to G

for Θ= {(u,u′) : f (u)= f (u′)}.
Similarly, we get

〈F, H〉 = 〈〈F, H〉+
∑

Θ∈E q(V (F ))
Θ 6=id

〈〈F /Θ, H〉.

By induction, we know that for any Θ∈ E q(V (F )), Θ 6= id,

〈〈F /Θ,G〉 = 〈〈F /Θ, H〉,

since |V (F /Θ)| < |V (F )|. Therefore we have 〈〈F,G〉 = 〈〈F, H〉.
Applying the equality for F =G and F = H we get 〈〈G , H〉 = 〈〈G ,G〉 ≥ 1 and 〈〈H ,G〉 = 〈〈H , H〉 ≥

1. If there is a monomorphism of G to H and a monomorphism of H to G , then G and H are
isomorphic.

Lovász’ theorem has a number of interesting consequences.

Corollary 7.2. Let G and H be graphs. If G2 ∼= H 2, then G ∼= H.
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Proof. Let F be a graph. Every homomorphism f : F → G2 corresponds to a pair of homomor-
phisms ( f1, f2) of F to G ; if f (u) = (x1, x2), then fi (u) = xi . Moreover, the correspondence is
one-to-one (due to the categorical properties of the product). Therefore

〈F,G〉
2
= 〈F,G2

〉 = 〈F, H 2
〉 = 〈F, H〉

2

and so 〈F,G〉 = 〈F, H〉.

Corollary 7.3. Let A, B and C be graphs, let C have a loop. If A×C ∼=B ×C , then A ∼= B.

Proof. For a graph F , we have 〈F, A×C〉 = 〈F, A〉 · 〈F,C〉 and 〈F,B ×C〉 = 〈F,B〉 · 〈F,C〉. Since C has
a loop, 〈F,C〉 6= 0. Therefore 〈F, A×C〉 = 〈F,B ×C〉 implies 〈F, A〉 = 〈F,B〉.

Corollary 7.4. Let A, B, C and D be graphs. If D →C and A×C ∼=B ×C , then A×D ∼= B ×D.

Proof. Let F be a graph. If 〈F,D〉 = 0, then

〈F, A×D〉 = 〈F, A〉 · 〈F,D〉 = 0= 〈F,B〉 · 〈F,D〉 = 〈F,B ×D〉.

If 〈F,D〉 6= 0, then 〈F,C〉 6= 0 and 〈F, A〉 = 〈F,B〉 as before. This yields

〈F, A×D〉 = 〈F, A〉 · 〈F,D〉 = 〈F,B〉 · 〈F,D〉 = 〈F,B ×D〉.

Remark. It is not generally true that A×C ∼=B×C implies A ∼=B . A counterexample: A consists of
two isolated loops, B =C = K2. Another counterexample: A = K3, B =C6 (the cycle of length 6),
C = K2.

Remark. If A, B and C are not bipartite, then they have the cancellation property: A ×C ∼= B ×

C =⇒ A ∼= B .

Remark. If we set 〈G〉′ = (〈G ,Fi 〉; i = 1,2,3, . . . ), then it can be proved that 〈G〉′ = 〈H〉′ if and only
if G ∼= H . The proof uses the inclusion-exclusion principle.

7.2 Ulam’s conjecture

For a graph G , let S(G) be the set of all proper induced subgraphs of G . Ulam’s conjecture states
that G is isomorphic to H if and only if there is a bijection ι : S(G) → S(H ) such that ι(G ′) ∼=G ′ (the
existence of such a bijection will be denoted by S(G) ↔ S(H )). This conjecture is called vertex

reconstruction.
Notice that S(G) contains all proper induced subgraphs of G , although some of them may be

isomorphic.
Edge reconstruction is a similar conjecture, taking all (not just induced) subgraphs. So S ′(G) is

the set of all proper subgraphs of G and the conjecture is that G ∼= H if and only if S ′(G) ↔ S ′(H ).
A different formulation of the conjecture is the following: assign each graph G a set s(G) of its

subgraphs, s(G) = {G −v : v ∈V (G)}. The edge version is s′(G) = {G −e : e ∈ E (G)}.
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Knowing S(G) is equivalent to knowing s(G). If we know S(G), then s(G) is formed by the
elements of S(G) with the greatest number of vertices. Conversely, if we know s(G), take the
multiset M = s(G)∪

⋃

H∈s(G) S(H ). Every element H of S(G) is contained |V (G)| − |V (H )| times
in M .

Similarly, knowing S ′(G) is equivalent to knowing s′(G).
The only counterexample known so far for vertex reconstruction is that K2 and the graph con-

sisting of two isolated vertices have the same proper subgraphs. However, vertex reconstruction
does not hold for directed graphs.

It can be shown that vertex reconstruction implies edge reconstruction.
Vertex reconstruction is known to be true for trees, disconnected graphs (with some excep-

tions) and planar graphs. Edge reconstruction is true for regular graphs as well.
We will prove the following theorem.

Theorem 7.5 (Müller). Let G = (V ,E ) and G ′ = (V ′,E ′). Let |V | =n and |E | ≥ 1+n(log n−1). Then

G ∼= H if and only if s′(G) ↔ s′(H ).

Proof. Suppose that s′(G) ↔ s′(H ). Then, of course, G and H have the same number of vertices
and the same number of edges |E | = |E ′| = m. For a bijection f : V → V ′, we define the defect

of f to be the set D( f ) = {e ∈ E : f [e]∉ E ′}. For D ⊆ E , let 〈〈G , H〉D be the number of all bijections
of V to V ′ whose defect is D, and for a non-negative integer d let 〈〈G , H〉d be the number of all
bijections f : V → V ′ such that |D( f )| = d . Note that D( f ) = ; if and only if f is a monomor-
phism.

Further, notice that
∑

D⊆E(G)

〈〈G , H〉D =
m∑

d=0

〈G , H〉d = n!

Assume, by way of contradiction, that G ≇ H and, without loss of generality, that 〈〈G , H〉 = 0.

Let H̄ = (V ′,
(V ′

2

)

\ E ′) be the complement of H . Using the inclusion-exclusion principle we have

〈〈G , H̄〉 = 〈〈(V ,;), H〉−
∑

e∈E

〈〈(V , {e}), H〉+
∑

D∈(E
2)
〈〈(V ,D), H〉

−
∑

D∈(E
3)
〈〈(V ,D), H〉+ · · ·+ (−1)m

〈〈G , H〉

and

〈〈H , H̄〉 = 〈〈(V ′,;), H〉−
∑

e∈E ′

〈〈(V ′, {e}), H〉+
∑

D∈(E′

2 )

〈〈(V ′,D), H〉

−
∑

D∈(E′

3 )

〈〈(V ′,D), H〉+ · · ·+ (−1)m
〈〈H , H〉.

Since G and H have the same proper subgraphs,

|〈〈G , H̄〉−〈〈H , H̄〉| = |〈〈G , H〉−〈〈H , H〉| = 〈〈H , H〉 6= 0
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and therefore m ≤
(n

2

)

/2, because otherwise 〈〈G , H̄〉 = 〈〈H , H̄〉 = 0 as the existence of a monomor-
phism of a graph A to a graph B implies that |E (A)| ≤ |E (B )|.

However, we want to show that m is even smaller, and that is what we need the defects for.
Let D = {e1,e2, . . . ,ed }. Then

〈〈G , H̄〉D = 〈〈(V ,D), H〉−
∑

e∈E\D

〈〈(V ,D ∪ {e}), H〉+
∑

D ′∈(E\D
2 )

〈〈(V ,D ∪D ′), H〉

−
∑

D ′∈(E\D
3 )

〈〈(V ,D ∪D ′), H〉+ · · ·+ (−1)m−d 〈〈G , H〉

and

〈〈G , H̄〉d =
∑

D∈(E
d)
〈〈G , H̄〉D

=
∑

D∈(E
d)
〈〈(V ,D), H〉−

(

d +1

d

)

∑

D ′∈( E
d+1)

〈〈(V ,D ′), H〉

+

(

d +2

d

)

∑

D ′∈( E
d+2)

〈〈(V ,D ′), H〉

−

(

d +3

d

)

∑

D ′∈( E
d+3)

〈〈(V ,D ′), H〉

+· · ·+ (−1)m−d

(

m

d

)

〈〈G , H〉.

The same is true for 〈〈H , H̄〉d :

〈〈H , H̄〉d =
∑

D∈(E′

d )

〈〈(V ′,D), H〉−

(

d +1

d

)

∑

D ′∈( E′

d+1)

〈〈(V ′,D ′), H〉

+

(

d +2

d

)

∑

D ′∈( E′

d+2)

〈〈(V ′,D ′), H〉

−

(

d +3

d

)

∑

D ′∈( E′

d+3)

〈〈(V ′,D ′), H〉

+· · ·+ (−1)m−d

(

m

d

)

〈〈H , H〉.

By subtracting the two formulas, we get

|〈〈G , H̄〉d −〈〈H , H̄〉d | =

(

m

d

)

|〈〈G , H〉−〈〈H , H〉| =

(

m

d

)

〈〈H , H〉.
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Therefore
m∑

d=0

|〈〈G , H̄〉d −〈〈H , H̄〉d | = 2m · 〈〈H , H〉≥ 2m .

On the other hand,

m∑

d=0

|〈〈G , H̄〉d −〈〈H , H̄〉d | ≤
m∑

d=0

〈〈G , H̄〉d +
m∑

d=0

〈〈H , H̄〉d

= 2n! < 2 ·
(n

2

)n
,

if n > 2.
We have proved that if s′(G) ↔ s′(H ) and G ≇ H , then 2m < 2 ·

(
n
2

)n
and so m < 1+n(log2 n −

1).

8 Projective graphs

A graph G is projective, if every homomorphism f : G ×G × ·· ·×G → G satisfying the property
that f (x, x, . . . , x) = x is a projection.

Remark. Every projective graph is connected.

Theorem 8.1 (Larose, Tardif). A graph G is projective if and only if every homomorphism f :
G ×G →G satisfying the property that f (x, x)= x is a projection.

Remark. A rigid graph is projective if and only if every homomorphism f : G ×G → G is a pro-
jection.

A graph G has the k-extension property, if for any A,B ⊆ V (G) such that A ∩B = ; and |A| +

|B | ≤ k , there exists a vertex x of G (x ∉ A ∪B ) connected by an edge to all vertices in A and not
connected to any vertex in B .

A graph G is fair, if for any four distinct vertices u, v , w and x of G there exists a vertex z ∉

{u, v, w, x} connected to x, u and v and not connected to x.

Theorem 8.2 (Erdős). Asymptotically almost all graphs have the k-extension property.

Corollary 8.3. Asymptotically almost all graphs are fair.

Remark. Cherlin’s problem: It is not known whether there exist arbitrarily large triangle-free
graphs with the k-extension property for triangle-free graphs (i.e., for any A,B ⊆V (G) such that
A is an independent set in G , A ∩B =; and |A|+ |B | ≤ k , there exists a vertex x of G , x ∉ A ∪B ,
connected by an edge to all vertices in A and not connected to any vertex in B ).

Lemma 8.4. If G is fair and f : G ×G →G satisfies f (x, x)= x, then f (v, w )∈ {v, w }.

Proof. Suppose f (v, w )= u ∉ {v, w }. As G is fair, there exists a vertex t connected to v and w and
not connected to u. Then (t , t ) ∼ (v, w ) in G ×G and t = f (t , t ) ∼ f (u, v) = u is a contradiction.
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Lemma 8.5. If G is fair, f : G ×G → G satisfies f (x, x) = x and v, w, r and s are distinct vertices

of G such that f (v, w )= v, then f (r, s)= r .

Proof. For contradiction, suppose that f (r, s) = s. Since G is fair, there exists a vertex s′ of G

connected to r , v and w and not connected to s and a vertex v ′ connected to r , s and w and not
connected to v .

Then both {(s′, v ′), (v, w )} and {(s′, v ′), (r, s)} are edges of G ×G and therefore f (s′, v ′) is con-
nected to both f (v, w ) = v and f (r, s) = s. That is a contradiction since we know that f (s′, v ′) ∈
{s′, v ′}.

Theorem 8.6 (Łuczak, Nešetřil [8]). Asymptotically almost all graphs are projective.

Proof. Asymptotically almost all graphs are fair (Corollary 8.3). All fair graphs are projective
(Lemma 8.4, Lemma 8.5).

Remark. Recall that if a graph F is pointed for a connected graph G , then for a graph H with
sufficiently large chromatic number, homomorphisms of G to F are in a one-to-one correspon-
dence with homomorphisms of G ×H to F .

Applying this to F = Kk and G = K t
k

yields that there are graphs with arbitrarily large odd girth
which have exactly t non-equivalent k-colorings.

More generally, we can get the following: if H is a projective graph, A is a set, ρ1, ρ2,. . . , ρt

are partitions of A into |V (H )| parts, then there exists a graph G (with large odd girth) such that
A ⊆V (G) and any homomorphism f : G → H coincides on A with one of the partitions.

Remark. Nešetřil and Zhu [14] proved that for k ≥ 2d the graph Kk/d is projective and therefore
the complete graph Kk is projective.
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