Introduction into Mathematics of Constraint Satisfaction

Andrei Krokhin Durham University

Part III

Outline of the Course

- 1. The CSP and its forms
 - Examples of CSPs
- 2. Complexity issues and computational questions
 - What questions do we ask about CSPs?
- 3. Mathematical techniques
 - Treewidth and its generalisations
 - Based on talk by Daniel Marx in Dagstuhl in 2009

The Party Problem

- Problem: Invite some colleagues for a party
- Constraint: Everyone should be having fun
 - Don't invite anyone and their direct boss at the same time
- Goal: Maximize the total fun factor of the invited people

The Party Problem

Solving the Party Problem

- Use dynamic programming
 - T_v subtree rooted at v
 - A[v] weight of max independent set in T_v
 - -B[v] same, but excluding v
- Assume v_1, \ldots, v_k are children of v. Have recurrence relations

$$- B[v] = \sum_{i=1}^{k} A[v_i] - A[v] = \max \left(B[v], w(v) + \sum_{i=1}^{k} B[v_i] \right)$$

- Compute A[v] and B[v] in the bottom-up order
- If r is the root, A[r] is the optimum value

Graphs and Hypergraphs of an Instance

$$I = C_1(x_2, x_1, x_3) \wedge C_2(x_4, x_3) \wedge C_3(x_1, x_4, x_2)$$

Tree-Shaped CSP

- Binary CSP is tractable on instances whose primal graph is a tree is easy.
- Proof 1 Dynamic programming algorithm
 - For each $v \in V$, $d \in D$, let x[v, d] = true if the subtree rooted at v has a solution
 - Leaves are trivial
 - Compute x[v, d] in bottom-up order

Tree-Shaped CSP

- Binary CSP is tractable on instances whose primal graph is a tree is easy.
- Proof 2 Arc-consistency algorithm
 - For each $v \in V$, $d \in D$,
 - If some constraint R(v, u) does not support (d, *)
 - Delete tuples (d, *) from each constraint on (v, *)
 - Repeat
 - When stabilized, either all constraints are empty, or there is a solution.
- How to generalise these two ideas?

Treewidth

- Treewidth measures how tree-like a graph is
- introduced by Robertson and Seymour
- A (hyper)graph G has treewidth $\leq k$ if there is a tree T, called tree decomposition, such that
 - the nodes of T are subsets of V of size $\leq k+1$
 - nodes containing any given element form a subtree
 - for any (hyper)edge e in G, there is a node in T containing e.

Example

CSPs of Bounded Treewidth

- For each fixed k, binary CSP is solvable in polynomial time on instances of treewidth $\leq k$.
- for each fixed k, CSP is solvable in polynomial time on instances whose primal graph has treewidth $\leq k$.
- Two algorithms
 - k-consistency algorithm
 - using tree decomposition

k-Consistency

For a set $S \subseteq V$, a partial solution on S is a function $S \to D$ that satisfies all constraints with scopes in S.

An instance is k-consistent if, for all $X \subseteq Y \subseteq V$ with $|Y| \leq k + 1$, any partial solution on X extends to a partial solution on Y.

Can transform any instance into equivalent k-consistent:

- For each S with $|S| \leq k+1$ generate the list L_S of all partial solutions on S.
- Repeatedly remove violations of *k*-consistency.

Polynomial-time for each fixed k.

2-Consistency by Example

Using Tree Decomposition

Take an instance I and a tree decomposition T of the primal graph of I (of width $\leq k$). Form a binary CSP instance.

Transformation is polynomial-time for fixed k. Solve the tree instance.

Finding Tree Decompositions

- It is **NP**-hard to compute treewidth of graph, but tractable to decide for each fixed k.
- For each fixed k, there is a linear time algorithm that computes a tree decomposition of width k (if exists).
- There is a polynomial-time algorithm that finds a tree decomposition of width $O(k\sqrt{k})$ if there is one of width k.

Gaifman Graph of a Structure

- The Gaifman graph $G(\mathcal{A})$ of a structure \mathcal{A} has
 - set of nodes A
 - edges (a, a') where $a \neq a'$ appear in the same tuple in some relation
- Treewidth of \mathcal{A} = treewidth of $G(\mathcal{A})$
- Each tuple in \mathcal{A} gives a clique in $G(\mathcal{A})$, hence must be contained in one "bag" of any tree decomposition.

Power of *k***-Consistency**

A core of a structure \mathcal{A} is its minimal substructure \mathcal{A}' with $\mathcal{A} \to \mathcal{A}'$.

Fact. All cores of a structure are isomorphic.

Example: The core of any bipartite graph is K_2 .

Theorem 1 (Dalmau,Kolaitis,Vardi'02) If the core of \mathcal{A} has treewidth $\leq k$ then the k-consistency algorithm correctly solves $CSP(\{\mathcal{A}\}, -).$

Theorem 2 (Atserias, Bulatov, Dalmau'07) If the k-consistency algorithm correctly solves $CSP(\{A\}, -)$ then the core of A has treewidth $\leq k$.

Bounded Arity Case

Theorem 3 (Grohe'07) Let \mathfrak{A} be a recursively enumerable class of structures of bounded arity. Assuming $\mathbf{FPT} \neq \mathbf{W}[\mathbf{1}], \ TFAE$

- $CSP(\mathfrak{A}, -)$ is tractable.
- the cores of structures in \mathcal{A} have bounded treewidth.

Theorem 4 (Dalmau, Jonsson'04) Let \mathfrak{A} be a recursively enumerable class of structures of bounded arity. Assuming $\mathbf{FPT} \neq \mathbf{W}[\mathbf{1}]$, TFAE

- counting $CSP(\mathfrak{A}, -)$ is tractable.
- the structures in \mathcal{A} have bounded treewidth.

Unbounded Arities

- For a class \$\vec{H}\$ of hypergraphs, let CSP(\$\vec{H}\$, -) denote all CSP instances with hypergraphs in \$\vec{H}\$.
- Know: bounded treewidth \Rightarrow tractable
- Any instance with a single constraint of arity n has a hypergraph of large treewidth, but is trivial to solve.
- So there are more tractable cases out there.

Another Example

- Let \mathfrak{H}_d be the class of hypergraphs in which all vertices can be covered by d hyperedges.
- For fixed d, need to look only at assignments satisfying those d constraints.
- So can solve corresponding CSP in poly-time.
- Idea: enough to cover bags in tree decomposition with a fixed number of constraints.

Hypertree Width

- Invented by Gottlob, looking for tractable database query languages.
- The generalized hypertree width of a tree decomposition of a hypergraph is the min number of hyperedges needed to cover each bag.
- The generalized hypertree width ghw(H) of a hypergraph H is the min number over all decompositions.
- The original hypertree width had an additional technical condition, but $ghw \leq hw \leq 3 \cdot ghw$.

Using Hypertree Width

- if a bag B is covered by k constraints, can compute the partial solutions on B in time $|I|^k$
- this gives a poly-time algorithm for fixed k if can find good tree decompositions.
- it's **NP**-hard to decide if $ghw(H) \leq 3$.
- For each fixed k, there is a poly-time algorithm that either finds a tree decomposition with $ghw(H) \leq 3k$ or correctly concludes that ghw(H) > k.
- So, if \mathfrak{H} has bounded hypertree width, then $CSP(\mathfrak{H}, -)$ is tractable.

Beyond Hypertree Width

- Is there a more general property for tractability?
- Key feature: small number of solutions in a bag
- When can we ensure this property?

Fractional Edge Cover

Edge cover of a hypergraph H is a family of hyperedges that covers all nodes.

 $\rho(H) =$ size of the smallest cover.

Fractional edge cover is a weight assignment to hyperegdes so that each vertex is covered by total weight ≥ 1 . $\rho^*(H) =$ smallest total weight.

Using Fractional Edge Covers

- If instance I has hypergraph H with $\rho^*(H) = w$ then I has at most $|I|^w$ solutions, and they can be efficiently enumerated [Grohe,Marx'07]
- Hence $CSP(\mathfrak{H}, -)$ is tractable if \mathfrak{H} has bounded fractional edge cover number.

Theorem 5 (Atserias,Grohe,Marx'09)For a class 5 of hypergraphs, TFAE

- Each $CSP(\mathfrak{H}, -)$ instance has poly many solutions.
- Solutions can be enumerated in poly time.
- \mathfrak{H} has bounded fractional edge cover number.

Fractional Hypertree Width

- Can take this further and require that each bag in a decomposition has bounded fractional edge cover number.
- Get the notion of bounded fractional hypertree width.
- For each w, there is a poly-time algorithm that either finds a tree decomposition with $fhw(H) = O(w^3)$ or correctly concludes that fhw(H) > w. [Marx'09]
- So, if \mathfrak{H} has bounded fractional hypertree width, then $CSP(\mathfrak{H}, -)$ is tractable.

FPT and ETH

- Say that $CSP(\mathfrak{H}, -)$ is FPT if can be solved in time $g(k) \cdot |I|^c$ where k is the number of variables.
- ETH (Exponential Time Hypothesis) there is no $2^{o(n)}$ algorithm for *n*-variable 3-SAT.

Structural Restrictions in FPT

- Submodular width, invented by Marx, always $\leq fhw$.
- "optimises" over several different types of decompositions.

Theorem 6 (Marx'10) Assuming ETH, if \mathfrak{H} is an recursively enumerable class of hypergraphs, then $\operatorname{CSP}(\mathfrak{H}, -)$ is FPT iff \mathfrak{H} has bounded submodular width.

