Introduction into Mathematics of Constraint Satisfaction

Andrei Krokhin Durham University

Part II

Outline of the Course

- 1. The CSP and its forms
 - Examples of CSPs
- 2. Complexity issues and computational questions
 - What questions do we ask about CSPs?
- 3. Mathematical techniques
 - What maths do we use to analyse those questions?

Parameterisation of CSP

With any instance of CSP one can associate two natural parameters reflecting

- 1. Which variables constrain which others, i.e.,
 - constraint scopes, or
 - query language, or
 - LHS structure \mathcal{A} (as in $\mathcal{A} \to \mathcal{B}$).
- 2. How values for the variables are constrained, i.e.,
 - constraint relations, or
 - relational database, or
 - RHS structure \mathcal{B} (as in $\mathcal{A} \to \mathcal{B}$).

General restrictions

For classes $\mathfrak{A}, \mathfrak{B}$ of structures, let $CSP(\mathfrak{A}, \mathfrak{B})$ denote the set of all CSP instances $(\mathcal{A}, \mathcal{B})$ with $\mathcal{A} \in \mathfrak{A}$ and $\mathcal{B} \in \mathfrak{B}$.

- Example: $CSP(\mathfrak{A}, \{K_3\})$ is 3-COLOURABILITY for graphs in \mathfrak{A} .
- Can study how the complexity depends on \mathfrak{A} .
- Example:
 - tractable for locally connected graphs
 - **NP**-complete for planar graphs (of degree ≤ 4)

Restricting LHS

For a class \mathfrak{A} of structures, let $CSP(\mathfrak{A}, -)$ denote the set of all CSP instances $(\mathcal{A}, \mathcal{B})$ with $\mathcal{A} \in \mathfrak{A}$.

Terminology: structural restriction.

Example: CLIQUE.

For any fixed \mathcal{A} , $\operatorname{CSP}(\{\mathcal{A}\}, -)$ is in **P**. Simply check each mapping $A \to B$. If |A| = k then $|B|^k$ is polynomial in $|\mathcal{B}|$. Boring... Well, not quite — one can explore when better (faster) algorithms work.

How does the complexity of $CSP(\mathfrak{A}, -)$ depend on \mathfrak{A} ?

Restricting RHS

- Fix a (possibly infinite) relational structure \mathcal{B}
- often called a constraint language or template, or Γ .
- $\operatorname{CSP}(\mathcal{B})$: given a finite structure \mathcal{A} in the same signature as \mathcal{B} , is there a homomorphism $h : \mathcal{A} \to \mathcal{B}$?
- Same as evaluating a given $\exists \land$ -formulas against \mathcal{B} .
- In the variable-value formulation, same as fixing a finite set of available constraint relations.
- Same as $CSP(-, \{\mathcal{B}\})$ except \mathcal{B} is not part of input.

How does the complexity of $CSP(\mathcal{B})$ depend on \mathcal{B} ?

Dichotomy for Boolean Relations

Theorem 1 (Schaefer; STOC'78) Let \mathcal{B} be a Boolean structure. Then $CSP(\mathcal{B})$ is tractable iff all relations in \mathcal{B} satisfy one of the following conditions:

- 1. 0-valid (1-valid), trivial SAT
- 2. Horn (dual Horn), Horn-SAT
- 3. bijunctive, 2-SAT
- 4. affine. Linear Eq's

Otherwise $CSP(\mathcal{B})$ is **NP**-complete.

Dichotomy for Graph *H***-coloring**

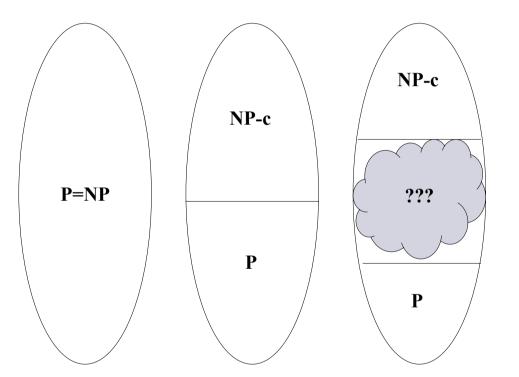
Theorem 2 (Hell,Nešetřil; JCombTh'1990) Let \mathcal{H} be an undirected graph. If it is bipartite or has a loop then $CSP(\mathcal{H})$ is tractable, otherwise $CSP(\mathcal{H})$ is **NP**-complete.

Dichotomy Conjecture

Conjecture 1 (Feder, Vardi; SICOMP'1998) Dichotomy Conjecture: For each fixed finite \mathcal{B} , the problem $CSP(\mathcal{B})$ is either tractable (i.e., in **P**) or **NP**-complete.

Why is This Dichotomy Interesting?

Which of these diagrams is a true picture of **NP**?



Theorem 3 (Ladner'74) If $P \neq NP$ then there are infinitely many complexity classes between P and NP.

Non-Dichotomy Results

Theorem 4 (Bauslaugh'94) For every computational problem L, there is an infinite digraph \mathcal{B} such that L and $CSP(\mathcal{B})$ are polynomial-time equivalent.

Theorem 5 (Bodirsky,Grohe'08)

- 1. There exist "nice" infinite relational structures \mathcal{B} with **coNP**-intermediate $CSP(\mathcal{B})$.
- 2. There is an efficiently decidable class \mathfrak{A} of undirected graphs such that $CSP(\mathfrak{A}, -)$ is **NP**-intermediate.

The Three Approaches

The three main approaches to our classification problems are:

- via Combinatorics (Graphs & Posets)
 - Jarik's lectures, also my 3rd lecture
- via Logic and Games
 - LICS was last week; maybe some in 3rd lecture
- via Algebra
 - Ross' lectures

Combinatorics: Encoding $CSP(\mathcal{B})$

Theorem 6 (FV'98) For every structure \mathcal{B} there exist

- a poset $P_{\mathcal{B}}$;
- a bipartite graph $G_{\mathcal{B}}$;
- a digraph $H_{\mathcal{B}}$

such that these problems are polynomially equivalent:

- $\operatorname{CSP}(\mathcal{B}),$
- poset-retraction($P_{\mathcal{B}}$) = CSP($P_{\mathcal{B}} \cup \{\{b_i\} \mid b_i \in P_{\mathcal{B}}\})$,
- bipartite graph-retraction($G_{\mathcal{B}}$),
- $\operatorname{CSP}(H_{\mathcal{B}}).$

Logic and Games Approach CSP(B)

One can view $CSP(\mathcal{B})$ as the membership problem for the class of structures \mathcal{A} such that $\mathcal{A} \to \mathcal{B}$.

Typical result describes the class $CSP(\mathcal{B})$

- by a logical specification (e.g., formula in a nice logic) that can be checked easily against a given structure, or
- as a class of structures A for which there exists an (easily detectable) winning strategy in a certain game on A and B.

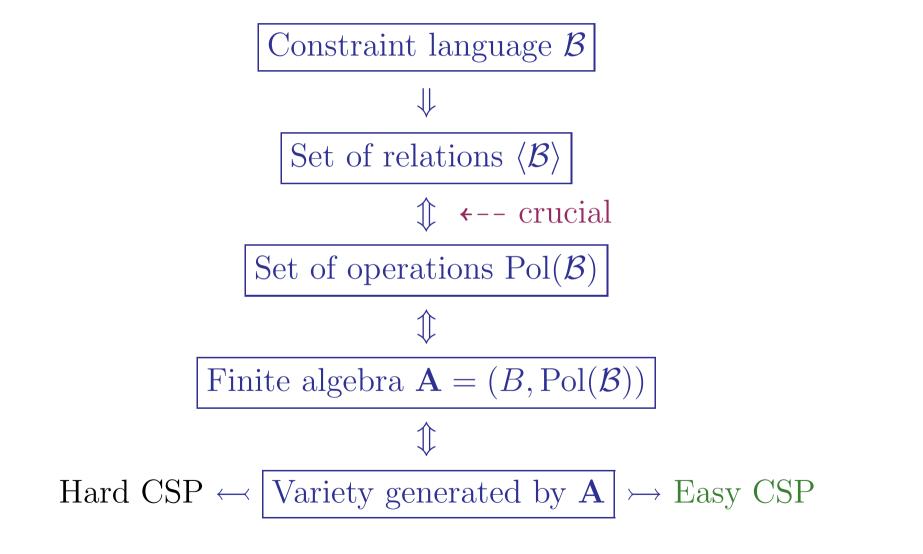
Details and examples: in my 3rd lecture (maybe)

A Semigroup Approach: Encoding CSP

Theorem 7 (Klíma, Tesson, Thérien '07) For every finite structure \mathcal{B} , there is a finite semigroup Ssatisfying $x^2 = x$ and xyz = yxz and such that $CSP(\mathcal{B})$ is poly-time equivalent to SYSTEMS OF EQUATIONS over S.

There's a full classification result for monoids, though ...

An Algebraic Approach: Scheme of Things



CSP-related Problems

- Satisfiability with additional features
- Counting/Enumerating solutions
- Equivalence/Isomorphism of solution spaces
- Unique solution
- Quantified CSP
- Connectivity of the solution graph
- Optimization
 - Max CSP and Min CSP
 - MinCost CSP and Soft/Valued CSP $\,$

Bounded Occurrence CSP

- A structure is said to have degree at most k if each element appears $\leq k$ times in its relations.
- Let \mathfrak{D}_k be the class of all structures of degree $\leq k$.
- For any \mathcal{B} , can consider the problem $\mathrm{CSP}(\mathfrak{D}_k, \{\mathcal{B}\})$.
- Equivalently, restriction to instances where each variable appears $\leq k$ times.

Theorem 8 (Kratochvil, Stavicky, Tuza'93) There is an exponential function $f(k) \ge k$ such that each instance of k-SAT with $\le f(k)$ variable occurrences (and one per constraint) is satisfiable, but k-SAT with $\le f(k) + 1$ variable occurrences is **NP**-complete.

Bounded Occurrence Boolean CSP

- Fix Boolean structure \mathcal{B} , consider $\mathrm{CSP}(\mathfrak{D}_k, \{\mathcal{B}\})$.
- Assume can use constants 0,1 in instances.
- If $k \ge 3$, same as unbounded case [Dalmau,Ford'03]
- Let k = 2. Same as unbounded case when some relation in \mathcal{B} is not a Δ -matroid [Feder'01]

 $-\Delta$ -matroid = 2-step condition

- Some types of Δ -matroids easy [Dalmau,Ford'03]
- Full classification is open
 - closely related to Δ -matroid parity problem

CSP with global constraints

- Global constraint, given additionally need to check the entire assignment to ensure satisfiability
- Very popular in AI, ≥ 350 different kinds of GCs
- Example: surjectivity each value must be used
 - Recent: **NP**-hardness for C_4^r [Martin,Paulusma'11]
 - Open: complexity for NO-RAINBOW-COLOURING
- Example: global cardinality constraint prescribes how many times each value can be used (seen before?)
 - Full classification for $CSP(\mathcal{B})$ with GCC [Bulatov,Marx'10]

Counting CSP

- Goal: count the number of solutions to an instance
- Boolean case done [Creignou,Hermann'95]
 - Linear equations are easy (why?)
 - The rest is hard
- All $CSP(\mathcal{B})$ done [Bulatov,Grohe'05, Bulatov'07]
 - Algebraic approach works
 - Recent simplification [Dyer,Richerby'10]
- All $CSP(\mathfrak{A}, -)$ done [Dalmau, Jonsson'04]
- Recent: approximate counting [Goldberg et al.'10]

Listing/Enumeration CSP

- Goal: list all solutions
- All $CSP(\mathfrak{A}, -)$ done [Atserias, Grohe, Marx'08]
- If too many solutions: list with polynomial delay
 - Done for Boolean $CSP(\mathcal{B})$ [Creignou et al'97]
 - Partial classif. for $CSP(\mathfrak{A}, -)$ [Bulatov et al'09]
 - Full classif. for $CSP(\mathfrak{A}, -) \Rightarrow$ Dichotomy cracked

Equivalence/Isomorphism

- Equivalence: given two instances with the same variables, do they have the same solution sets?
- Isomorphism: can variables be permuted/renamed to make solution sets equal?
- Boolean case done [Böhler et al'02+'04]
- Equations over groups [Nordh'05]
- Strong classification results [Bova,Chen,Valeriote'11]
 - possibly full classification, depending on resolution of one purely universal-algebraic conjecture
- No work for $CSP(\mathfrak{A}, -)$???

Unique Solution

- Goal: decide whether there is a unique solution
 - variant: assuming there is at most one solution
- Belongs to complexity class $\mathbf{DP} = \{L \setminus L' \mid L, L' \in \mathbf{NP}\}$
- Boolean case known to be **DP**-complete only under randomized reductions; derandomization: long standing open problem
 - derandomization: long-standing open problem
- Can relativize uniqueness to a subset of variables
 - Full classif. modulo resolution of Feder-Vardi [Jonsson,K'04]

Quantified CSP

- Goal: evaluate a $\forall \exists \land$ -sentence against a structure \mathcal{B} .
- Example: $\forall x \exists y \forall z [(x \lor \neg y) \land (y \lor \neg z)]$
- standard problem within **PSPACE**.
- many results on complexity of $QCSP(\mathcal{B})$
- algebraic approach works, but not to full extent
- there is not even a good conjecture about dividing lines

Solution Graph Connectivity

- for a $CSP(\mathcal{B})$ instance I, form the solution graph G(I):
 - nodes are solutions
 - two solutions are adjacent if differ in one variable
- Connectivity of G(I) studied
 - Boolean case almost done [Gopalan et al'08]
 - Graph colouring done [Cereceda et al'08]

Why Connectivity?

For a CSP instance I, let d = #constraints/#variables, called the density of I.

Fact 1 (Achlioptas, Coja-Oghlan'08) There are two thresholds $t_1 < t_2$ such that

- a random CSP instance with d > t₂ has no solution with high probability (w.h.p.)
- a random instance with $d < t_2$ has a solution w.h.p.
- there is a simple poly-time algorithm for instances with $d < t_1$
- no poly-time algorithm known for $t_1 < d < t_2$.

Why Connectivity?

It is believed that

- G(I) is connected for $d < t_1$
- G(I) shatters into exponentially many components at $d = t_1$
- as $d \rightsquigarrow t_2$, the components become smaller and farther apart
- G(I) is empty for $d > t_2$

Max CSP and Min CSP

- Given a CSP instance, find an assignment satisfying maximum # constraints (failing to satisfy min # constraints)
- Much work both on exact algorithms/complexity and on approximation algorithms/hardness.
- More in Venkat's and Ryan's lectures

MinCost CSP

- Each instance $(\mathcal{A}, \mathcal{B})$ has an associated family of costs $c_a(b) \in \mathbb{N}$ (of mapping $a \in A$ to $b \in B$)
- Goal: to find homomorphism $h : \mathcal{A} \to \mathcal{B}$ of minimum total cost $\sum_{a \in A} c_a(h(a))$
- Can do analysis with a fixed template ${\cal B}$
- Lots of papers on the (di)graph case [Gutin et al]
 - full solution [Hell,Rafiey'10]
- Algebraic approach works
 - full general solution [Takhanov'07-'10]

Valued CSP

- Used in AI to express preferences (desirability/cost)
- Each constraint has preferences over satisfying assignments, i.e. has a cost function instead of relation.
- Goal: find an assignment minimising overall cost.

VCSP

VALUED CSP (VCSP)

Instance: A collection $f_1(\mathbf{x}_1), \ldots, f_q(\mathbf{x}_q)$ of expressions over $V = \{x_1, \ldots, x_n\}$, each $f_i : B^{n_i} \to \mathbb{Q}_{\geq 0} \cup \{\infty\}$

Goal: Find an assignment $\phi: V \to B$ that minimises the total cost; in other words, minimise the function $f: B^n \to \mathbb{Q}_{\geq 0} \cup \{\infty\}$, defined by

$$f(x_1,\ldots,x_n) = \sum_{i=1}^q f_i(\mathbf{x}_i).$$

VCSP

- All costs in $\{0, \infty\} = CSP$
- All costs in $\{0, 1\} = Max CSP$
- What is MinCost CSP?
- Can do analysis with a fixed "template"
 VCSP day during the Algebra workshop