Approximability of Constraint Satisfaction Problems

Venkatesan Guruswami

Carnegie Mellon University

October 2009

Venkatesan Guruswami (CMU)

Approximability of CSPs

Oct 2009 1 / 1

Definition (CSP)

A CSP (denoted $\text{CSP}_q(\mathcal{F})$), specified by

- finite domain $[q] = \{0, 1, \dots, q-1\}$
- constraint language *F*: a collection of relations over [q], i.e., functions f : [q]^{a(f)} → {0,1} (a(f) = arity of f)

Definition (CSP)

A CSP (denoted $\text{CSP}_q(\mathcal{F})$), specified by

- finite domain $[q] = \{0, 1, \dots, q-1\}$
- constraint language *F*: a collection of relations over [q], i.e., functions f : [q]^{a(f)} → {0,1} (a(f) = arity of f)

Definition (CSP instance)

Variable set V.

A collection C of constraints $\{(f, S)\}$ where $f \in \mathcal{F}$; S = a(f)-tuple from V<u>Question</u>: Is there an assignment $\sigma : V \to [q]$ that satisfies all constraints? i.e., $f(\sigma_{|S}) = 1$ for each $(f, S) \in C$.

Boolean CSP, q = 2, most basic and of special interest.

イロト イポト イヨト イヨト

CSPs capture many well studied problems in NP.

- $\mathcal{F} = \mathsf{CNF}$ formulae: SAT
- $\mathcal{F} = \text{not all equal: Graph or hypergraph } q$ -colorability
- $\mathcal{F} = affine \text{ constraints: Solving linear equations}$

Rich set of problems based on structure of constraints in underlying \mathcal{F} .

Yet, just two possibilities complexity theoretically ...

Schaefer's dichotomy theorem for Boolean CSPs

Theorem

Every Boolean CSP is either in P or NP-complete.

Theorem

Every Boolean CSP is either in P or NP-complete. More specifically, $CSP_2(\mathcal{F})$ is polynomial time solvable if every $f \in \mathcal{F}$ is

- 0-valid
- 1-valid
- a conjunction of Horn clauses (i.e., $(x_1 \land \dots \land x_k \to 0)$ or $(x_1 \land x_2 \land \dots \land x_k \to x_{k+1}))$
- a conjunction of dual Horn clauses
- a 2CNF formula, or
- a conjunction of affine equations

and is NP-complete otherwise.

Dichotomy conjectured for every q [Feder-Vardi], proved for q = 3 [Bulatov]

- Max CSP_q(*F*): Find assignment maximizing fraction of satisfied constraints.
- Can also have weighted constraints, and ask for maximum fractional weight of satisfied constraints

- Max CSP_q(*F*): Find assignment maximizing fraction of satisfied constraints.
- Can also have weighted constraints, and ask for maximum fractional weight of satisfied constraints
- Minimization version: minimize fraction of unsatisfied constraints.
- Can capture problems with *hard constraints* such as independent set or vertex cover as Max ONES(F), Min ONES(F): satisfy *all* constraints with maximum (minimum) fraction of 1's.

Venkatesan Guruswami (CMU)

- Max CSP_q(*F*): Find assignment maximizing fraction of satisfied constraints.
- Can also have weighted constraints, and ask for maximum fractional weight of satisfied constraints
- Minimization version: minimize fraction of unsatisfied constraints.
- Can capture problems with *hard constraints* such as independent set or vertex cover as Max ONES(F), Min ONES(F): satisfy *all* constraints with maximum (minimum) fraction of 1's.
- Let's focus on unweighted Max CSP
 - Example Max CUT. $\mathcal{F} = \{\text{cut}\}\ \text{where } \text{cut}(x, y) = \mathbf{1}(x \neq y).$ Note CSP(cut) is in P. Optimization version Max CUT is NP-hard.

Schaefer's theorem can be strengthened for the following "PCP-like" statement:

Theorem (Khanna, Sudan, Willamson)

For every Boolean constraint language \mathcal{F} , either $CSP(\mathcal{F})$ is polytime decidable, or there exists $\delta_{\mathcal{F}} < 1$ such that it is NP-hard to distinguish satisfiable instances of $CSP(\mathcal{F})$ from instances of $Max \ CSP(\mathcal{F})$ where at most $\delta_{\mathcal{F}}$ fraction of constraints are satisfiable.

Schaefer's theorem can be strengthened for the following "PCP-like" statement:

Theorem (Khanna, Sudan, Willamson)

For every Boolean constraint language \mathcal{F} , either $CSP(\mathcal{F})$ is polytime decidable, or there exists $\delta_{\mathcal{F}} < 1$ such that it is NP-hard to distinguish satisfiable instances of $CSP(\mathcal{F})$ from instances of $Max \ CSP(\mathcal{F})$ where at most $\delta_{\mathcal{F}}$ fraction of constraints are satisfiable.

However, even for Schaefer's tractable \mathcal{F} (other than 0-valid and 1-valid cases), Max CSP(\mathcal{F}) is NP-hard.

Question

Which tractable \mathcal{F} lead to easy optimization versions?

(日) (同) (三) (三)

Theorem (Creignou;KSW)

For every Boolean constraint language \mathcal{F} , Max $CSP(\mathcal{F})$ is polynomial time solvable or APX-complete.

Theorem (Creignou;KSW)

For every Boolean constraint language \mathcal{F} , Max $CSP(\mathcal{F})$ is polynomial time solvable or APX-complete.

Max $CSP(\mathcal{F})$ is polytime solvable iff \mathcal{F} is 0-valid, 1-valid, or 2-monotone.

 $(f(x_1, \ldots, x_k) \text{ is 2-monotone if it is expressible as a 2 term DNF:} (x_{i_1} \land x_{i_2} \land \cdots \land x_{i_p}) \lor (\neg x_{j_1} \land \cdots \land \neg x_{j_q}).$ \mathcal{F} is 2-monotone if every $f \in F$ is 2-monotone.)

Theorem (Creignou;KSW)

For every Boolean constraint language \mathcal{F} , Max $CSP(\mathcal{F})$ is polynomial time solvable or APX-complete. Max $CSP(\mathcal{F})$ is polytime solvable iff \mathcal{F} is 0-valid, 1-valid, or 2-monotone.

$$(f(x_1, \ldots, x_k) \text{ is } 2\text{-monotone if it is expressible as a 2 term DNF:} (x_{i_1} \land x_{i_2} \land \cdots \land x_{i_p}) \lor (\neg x_{j_1} \land \cdots \land \neg x_{j_q}).$$

 \mathcal{F} is 2-monotone if every $f \in F$ is 2-monotone.)

The 2-monotone case reduces to *s*-*t* Min Cut.

Essentially all Max CSP problems are NP-hard, and in fact APX-hard, i.e., hard to approximate within some absolute constant < 1.

Main goal in theory of CSP approximability

Identify **approximation threshold** $\tau_{\mathcal{F}}$ of Max CSP(\mathcal{F}) for all (or at least interesting?) \mathcal{F} !

- Factor $\tau_{\mathcal{F}}$ approximation algorithm (algorithm that finds assignment satisfying a fraction $\geq \tau_{\mathcal{F}} \cdot \text{Opt of constraints}$)
- Hardness of obtaining ratio $\tau_{\mathcal{F}} + \varepsilon$ approximation for every $\varepsilon > 0$.

Essentially all Max CSP problems are NP-hard, and in fact APX-hard, i.e., hard to approximate within some absolute constant < 1.

Main goal in theory of CSP approximability

Identify **approximation threshold** $\tau_{\mathcal{F}}$ of Max CSP(\mathcal{F}) for all (or at least interesting?) \mathcal{F} !

- Factor $\tau_{\mathcal{F}}$ approximation algorithm (algorithm that finds assignment satisfying a fraction $\geq \tau_{\mathcal{F}} \cdot \text{Opt of constraints}$)
- Hardness of obtaining ratio $\tau_{\mathcal{F}} + \varepsilon$ approximation for every $\varepsilon > 0$.

Above quest has been very successful

- probably beyond even original expectations
- we now "almost know" the tight answer for every CSP.

- Positive results: Efficient algorithms with provable approximation ratios.
- Negative results: Achieving certain approx. ratio is NP-hard (or hard under some other complexity assumption)

Let's discuss some algorithmic results first.

Random assignment

For each variable independently, assign a value uniformly at random from the domain [q].

Algorithm completely ignores structure of constraints! In expectation, algorithm satisfies fraction $\ge r_{\mathcal{F}} = \min_{f \in \mathcal{F}} r_f$ of constraints. ($r_f = \text{prob. that } f(a) = 1$ for random $a \in [q]^{a(f)}$.) Can be derandomized via conditional expectations.

Random assignment

For each variable independently, assign a value uniformly at random from the domain [q].

Algorithm completely ignores structure of constraints! In expectation, algorithm satisfies fraction $\ge r_{\mathcal{F}} = \min_{f \in \mathcal{F}} r_f$ of constraints. ($r_f = \text{prob. that } f(a) = 1$ for random $a \in [q]^{a(f)}$.) Can be derandomized via conditional expectations.

Examples of random assignment threshold

- $\mathcal{F} = E3SAT: 7/8$
- $\mathcal{F} = 2SAT: 1/2$
- $\mathcal{F} = affine \text{ constraints over } \mathbb{F}_p: 1/p$
- $\mathcal{F} = k$ -CUT: 1 1/k
- $\mathcal{F} = 3MAJ: 1/2$

Approximation Algorithms

- Wasn't much improvement over random assignment algo till early 90s
- In fact, now we know this is sometimes not possible!

- Wasn't much improvement over random assignment algo till early 90s
- In fact, now we know this is sometimes not possible!
- Most pervasive (essentially only) technique:
 - Solve a convex relaxation of the Max CSP
 - (2) "Round" the solution to an assignment

We will discuss the simplest case, when the convex relaxation is a linear program (LP), first.

Linear Programming

Integer Linear Program formulation of Max SAT (with variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m):

Maximize $\frac{1}{m} \cdot \sum_{j=1}^{m} z_j$ subject to

$$\sum_{x_i \in C_j^{\text{pos}}} y_i + \sum_{x_i \in C_j^{\text{neg}}} (1 - y_i) \ge z_j \quad \forall j = 1, 2, \dots, m$$
$$y_i \in \{0, 1\} \quad \forall i = 1, 2, \dots, n$$
$$0 \le z_j \le 1 \quad \forall j = 1, 2, \dots, m$$

イロト イヨト イヨト イヨト

Linear Programming

Integer Linear Program formulation of Max SAT (with variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m):

Maximize $\frac{1}{m} \cdot \sum_{j=1}^{m} z_j$ subject to

$$\sum_{x_i \in C_j^{\text{pos}}} y_i + \sum_{x_i \in C_j^{\text{neg}}} (1 - y_i) \ge z_j \quad \forall j = 1, 2, \dots, m$$
$$y_i \in \{0, 1\} \quad \forall i = 1, 2, \dots, n$$

$$0\leqslant z_{j}\leqslant 1 \quad \forall j=1,2,\ldots,m$$

Linear program: Relax $y_i \in \{0,1\}$ to $0 \le y_i \le 1$. Can solve resulting LP in polynomial time.

Easy exercise

Above LP can decide Horn Satisfiability.

< 112 ▶

Need to convert fractional solution y_i to an assignment to x_i . Can interpret $y_i \in [0, 1]$ as extent to which $x_i = 1$.

Randomized rounding

For each *i* independently, set $x_i \leftarrow 1$ with prob. y_i .

Need to convert fractional solution y_i to an assignment to x_i . Can interpret $y_i \in [0, 1]$ as extent to which $x_i = 1$.

Randomized rounding

For each *i* independently, set $x_i \leftarrow 1$ with prob. y_i .

Prob. that C_i with k literals is satisfied

$$= 1 - \prod_{x_i \in C_j^{\mathrm{pos}}} (1 - y_i) \prod_{x_i \in C_j^{\mathrm{neg}}} y_i$$

Need to convert fractional solution y_i to an assignment to x_i . Can interpret $y_i \in [0, 1]$ as extent to which $x_i = 1$.

Randomized rounding

For each *i* independently, set $x_i \leftarrow 1$ with prob. y_i .

Prob. that C_i with k literals is satisfied

$$= 1 - \prod_{x_i \in C_j^{\text{pos}}} (1 - y_i) \prod_{x_i \in C_j^{\text{neg}}} y_i$$

$$\geq 1 - \left(\frac{k - \sum_{x_i \in C_j^{\text{pos}}} y_i - \sum_{x_i \in C_j^{\text{neg}}} (1 - y_i)}{k}\right)^k$$

Need to convert fractional solution y_i to an assignment to x_i . Can interpret $y_i \in [0, 1]$ as extent to which $x_i = 1$.

Randomized rounding

For each *i* independently, set $x_i \leftarrow 1$ with prob. y_i .

Prob. that C_i with k literals is satisfied

$$= 1 - \prod_{x_i \in C_j^{\text{pos}}} (1 - y_i) \prod_{x_i \in C_j^{\text{neg}}} y_i$$

$$\ge 1 - \left(\frac{k - \sum_{x_i \in C_j^{\text{pos}}} y_i - \sum_{x_i \in C_j^{\text{neg}}} (1 - y_i)}{k}\right)^k$$

$$\ge 1 - \left(1 - \frac{z_j}{k}\right)^k \ge \left(1 - (1 - 1/k)^k\right) z_j .$$

- Expected fraction of clauses satisfied $\geq \min_k \left(1 - (1 - 1/k)^k \right) \cdot \frac{1}{m} \sum_j z_j.$
- For optimal LP solution, $\frac{1}{m}\sum_{j} z_{j} \ge \text{Opt.}$

- Expected fraction of clauses satisfied $\geq \min_{k} \left(1 - (1 - 1/k)^{k} \right) \cdot \frac{1}{m} \sum_{j} z_{j}.$
- For optimal LP solution, $\frac{1}{m}\sum_{j} z_{j} \ge \text{Opt.}$
- Implies 3/4 approximation algorithm for Max 2SAT. (Random assignment gives 1/2)
- 1 1/e approximation for Max SAT.

- Expected fraction of clauses satisfied $\geq \min_{k} \left(1 - (1 - 1/k)^{k} \right) \cdot \frac{1}{m} \sum_{j} z_{j}.$
- For optimal LP solution, $\frac{1}{m}\sum_{j} z_{j} \ge \text{Opt.}$
- Implies 3/4 approximation algorithm for Max 2SAT. (Random assignment gives 1/2)
- 1 1/e approximation for Max SAT.
- Output better of two randomized algorithms: LP randomized rounding and random assignment

 \Rightarrow 3/4 approximation for Max SAT.

Integrality gap

Can we do better than 3/4 by this method (at least for Max 2SAT)? No, since we get 3/4 times the optimum of the *LP*.

Definition (Integrality gap)

Smallest ratio of integer optimum (Max CSP's true optimum value) to LP optimum.

Integrality gap

Can we do better than 3/4 by this method (at least for Max 2SAT)? No, since we get 3/4 times the optimum of the *LP*.

Definition (Integrality gap)

Smallest ratio of integer optimum (Max CSP's true optimum value) to LP optimum.

For Max 2SAT instance with 4 clauses

$$(x_1 \lor x_2)$$
 $(x_1 \lor \neg x_2)$ $(\neg x_1 \lor x_2)$ $(\neg x_1 \neg x_2)$

- Every assignment satisfies 3 clauses. Integral Opt = 3/4
- Assigning $y_1 = y_2 = 1/2$ gives LP solution of value 1.

Thus 3/4 is the best possible approximation factor using this LP.

Note: Closer the integrality gap is to 1, the better the relaxation.

Question

Could a smarter, more powerful LP yield a better approximation ratio?

Question

Could a smarter, more powerful LP yield a better approximation ratio? Answer: No.

For Max CUT, integrality gap is close to 1/2 for basic as well as more powerful LPs. [de la Vega-Mathieu], [Charikar,Makarychev,Makarychev]

- Implies 3/4 gap for Max 2SAT
- Beating random cut is not possible via LPs!

Let's now digress slightly:

- How does one write a canonical "basic" LP relaxation for every CSP?
- What are these more powerful strengthenings of the basic LP?

A general LP relaxation

CSP asks for a global integral assignment to all variables V.

To make it convex, can allow probability distributions over assignments.

• Same value as integral optimum + Too many variables.

<u>Compromise</u>: Insist on distributions on *local* assignments, say up to *s* variables ($s \ge k$, the arity)

- For each $S \subset V$, $|S| \leqslant s$, a local distribution μ_S over $[q]^{|S|}$.
- Nonnegative variables $y_{i,a}$ for each $i \in V$ and $a \in [q]$, with $\sum_a y_{i,a} = 1$.
A general LP relaxation

CSP asks for a global integral assignment to all variables V.

To make it convex, can allow probability distributions over assignments.

• Same value as integral optimum + Too many variables.

<u>Compromise</u>: Insist on distributions on *local* assignments, say up to *s* variables ($s \ge k$, the arity)

- For each $S \subset V$, $|S| \leqslant s$, a local distribution μ_S over $[q]^{|S|}$.
- Nonnegative variables $y_{i,a}$ for each $i \in V$ and $a \in [q]$, with $\sum_a y_{i,a} = 1$.

Maximize $\sum_{(f,S)\in\mathcal{C}} \mathbb{E}_{x\sim\mu_S}[f(x)]$ subject to:

$$y_{i,a} = \sum_{x \in [q]^S, x_i = a} \mu_S(x)$$
 for all $S \ni i$.

That is, consistency of marginals of local distributions on each variable.

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

A general LP relaxation

CSP asks for a global integral assignment to all variables V.

To make it convex, can allow probability distributions over assignments.

• Same value as integral optimum + Too many variables.

<u>Compromise</u>: Insist on distributions on *local* assignments, say up to *s* variables ($s \ge k$, the arity)

- For each $S \subset V$, $|S| \leqslant s$, a local distribution μ_S over $[q]^{|S|}$.
- Nonnegative variables $y_{i,a}$ for each $i \in V$ and $a \in [q]$, with $\sum_a y_{i,a} = 1$.

Maximize $\sum_{(f,S)\in\mathcal{C}} \mathbb{E}_{x\sim\mu_S}[f(x)]$ subject to:

$$y_{i,a} = \sum_{x \in [q]^S, x_i = a} \mu_S(x)$$
 for all $S \ni i$.

That is, consistency of marginals of local distributions on each variable. Stronger relaxation: Insist on consistency on all subsets of size r, for some $1 \le r \le s$.

Semidefinite Programming

Input: Graph
$$G = (\{1, 2, \dots, n\}, E)$$

Find $x_i \in \{-1, 1\}$ for $i = 1, 2, \dots, n$ that maximizes

$$\frac{1}{|E|}\sum_{(i,j)\in E}\frac{1-x_ix_j}{2}.$$

・ロト ・四ト ・ヨト ・ヨト

Input: Graph $G = (\{1, 2, \dots, n\}, E)$ Find $x_i \in \{-1, 1\}$ for $i = 1, 2, \dots, n$ that maximizes

$$\frac{1}{|E|}\sum_{(i,j)\in E}\frac{1-x_ix_j}{2}.$$

Objective function linear in $y_{ij} = x_i x_j$. Matrix $Y = \{y_{ij}\}, Y = xx^T$.

イロト 不得下 イヨト イヨト 二日

Input: Graph $G = (\{1, 2, \dots, n\}, E)$ Find $x_i \in \{-1, 1\}$ for $i = 1, 2, \dots, n$ that maximizes

$$\frac{1}{|E|} \sum_{(i,j)\in E} \frac{1-x_i x_j}{2}$$

Objective function linear in $y_{ij} = x_i x_j$. Matrix $Y = \{y_{ij}\}, Y = xx^T$. Semidefinite Relaxation: Maximize $\frac{1}{|E|} \sum_{(i,j) \in E} \frac{1-y_{ij}}{2}$ subject to

• Y is positive semidefinite

•
$$y_{ii} = 1$$

Input: Graph $G = (\{1, 2, \dots, n\}, E)$ Find $x_i \in \{-1, 1\}$ for $i = 1, 2, \dots, n$ that maximizes

$$\frac{1}{|E|} \sum_{(i,j)\in E} \frac{1-x_i x_j}{2}$$

Objective function linear in $y_{ij} = x_i x_j$. Matrix $Y = \{y_{ij}\}, Y = xx^T$. Semidefinite Relaxation: Maximize $\frac{1}{|E|} \sum_{(i,j) \in E} \frac{1-y_{ij}}{2}$ subject to

• Y is positive semidefinite

•
$$y_{ii} = 1$$

Can solve above to any desired accuracy in polynomial time [Alizadeh]. Set of PSD matrices is convex, and it is possible to find optimum of linear function over it. Since a positive semidefinite matrix Y admits Cholesky decomposition $Y = V^T V$, the semidefinite program (SDP) finds vectors v_i , $1 \le i \le n$, with $||v_i|| = 1$ maximizing

$$\frac{1}{|E|}\sum_{(i,j)\in E}\frac{1-\langle v_i,v_j\rangle}{2}$$

- SDP allows more general set of solutions: unit vectors in n dimensions instead of one-dimensional ± 1 values.
- In general gives higher objective value (than true Max Cut value)

Since a positive semidefinite matrix Y admits Cholesky decomposition $Y = V^T V$, the semidefinite program (SDP) finds vectors v_i , $1 \le i \le n$, with $||v_i|| = 1$ maximizing

$$\frac{1}{|E|}\sum_{(i,j)\in E}\frac{1-\langle v_i,v_j\rangle}{2}$$

- SDP allows more general set of solutions: unit vectors in n dimensions instead of one-dimensional ± 1 values.
- In general gives higher objective value (than true Max Cut value)

Key question

How to "round" vector solution to a Boolean cut?

Goemans-Williamson

Pick random hyperplane through the origin. Two hemispheres correspond to two sides of cut. Pick random vector r and set

 $x_i = \operatorname{sign}(\langle v_i, r \rangle)$.

Goemans-Williamson

Pick random hyperplane through the origin. Two hemispheres correspond to two sides of cut. Pick random vector r and set

$$x_i = \operatorname{sign}(\langle v_i, r \rangle)$$
.

<u>Intuition</u>: If (i, j) has large contribution $(1 - \langle v_i, v_j \rangle)/2$ to objective function, then angle between v_i, v_j is large, and there is a good chance that v_i, v_j are separated by a random hyperplane.

Rounding analysis

Local analysis for each edge (i, j). θ = angle between v_i and v_j . Contribution to SDP objective function

$$\frac{1-\langle v_i, v_j \rangle}{2} = \frac{1-\cos\theta}{2}$$

Probability that we cut edge (i, j)

$$\Pr_{r}[\operatorname{sign}(\langle v_{i}, r \rangle) \neq \operatorname{sign}(\langle v_{j}, r \rangle)] = \frac{ heta}{\pi} \; .$$

Rounding analysis

Local analysis for each edge (i, j). θ = angle between v_i and v_j . Contribution to SDP objective function

$$\frac{1-\langle v_i, v_j \rangle}{2} = \frac{1-\cos\theta}{2}$$

Probability that we cut edge (i, j)

$$\Pr_{\boldsymbol{r}}[\operatorname{sign}(\langle \boldsymbol{v}_i, \boldsymbol{r} \rangle) \neq \operatorname{sign}(\langle \boldsymbol{v}_j, \boldsymbol{r} \rangle)] = \frac{\theta}{\pi}$$

Minimum quotient gives approximation factor

$$\alpha_{GW} = \min_{\theta} \frac{2\theta}{\pi(1 - \cos\theta)} \approx 0.8785 \; .$$

SDP based algorithms beat the mindless (random assignment) algorithm for all Boolean 2CSPs.

- Max 2SAT: $\alpha_{GW} = 0.8785...$ Many subsequent improvements: [Feige-Goemans] 0.931; [Lewin-Livnat-Zwick] 0.94016.
- Max 2CSP: [GW] 0.796. [LLZ] improved this to 0.87401.

Natural SDP relaxations; more complicated rounding.

Unit vectors v_i for variables x_i , and a global unit vector b_0 (representing False).

For clause $(x_i \lor x_j)$: contribution to objective function

$$\frac{3-\langle b_0,v_i\rangle-\langle b_0,v_j\rangle-\langle v_i,v_j\rangle}{4}$$

SDP maximizes sum of above over all clauses.

Unit vectors v_i for variables x_i , and a global unit vector b_0 (representing False).

For clause $(x_i \lor x_j)$: contribution to objective function

$$\frac{3-\langle b_0,v_i\rangle-\langle b_0,v_j\rangle-\langle v_i,v_j\rangle}{4}$$

SDP maximizes sum of above over all clauses.

Can also add "triangle inequalities"

$$\langle (b_0 \pm v_i), (b_0 \pm v_j) \rangle \geqslant 0$$
.

SDP for general CSP

Variables $V = \{x_1, \ldots, x_n\}$, Domain [q]. Constraints C.

SDP variables and vectors:

- Vectors $v_{i,a}$ for $1 \leq i \leq n$ and $a \in [q]$.
- For each constraint (f, S) ∈ C, a local distribution µ_(f,S) over [q]^S (assignments to variables in S).

SDP for general CSP

Variables $V = \{x_1, \ldots, x_n\}$, Domain [q]. Constraints C.

SDP variables and vectors:

- Vectors $v_{i,a}$ for $1 \leq i \leq n$ and $a \in [q]$.
- For each constraint (f, S) ∈ C, a local distribution µ_(f,S) over [q]^S (assignments to variables in S).

In words..

Consistency of local integral distributions on pairs $+\ positive$ semidefiniteness of pairwise joint probabilities.

Venkatesan Guruswami (CMU)

Approximability of CSPs

Hardness of approximation results

PCP theorem

Starting point for inapproximability results is the famous PCP theorem.

Theorem (PCP theorem)

For some absolute constant $\rho < 1$, there is a polynomial time reduction from NP-complete problem 3SAT to Max 3SAT mapping $\phi \mapsto \psi$ such that:

- (Perfect) completeness: If ϕ is satisfiable, then so is ψ .
- Soundness: If φ is not satisfiable, then every assignment satisfies at most ρ fraction of ψ's clauses.

PCP theorem

Starting point for inapproximability results is the famous PCP theorem.

Theorem (PCP theorem)

For some absolute constant $\rho < 1$, there is a polynomial time reduction from NP-complete problem 3SAT to Max 3SAT mapping $\phi \mapsto \psi$ such that:

- (Perfect) completeness: If ϕ is satisfiable, then so is ψ .
- Soundness: If φ is not satisfiable, then every assignment satisfies at most ρ fraction of ψ's clauses.

Original proof [Arora-Safra], [Arora-Lund-Motwani-Sudan-Szegedy]: Algebraic techniques: arithmetization, low-degree testing; query parallelization, proof composition, etc. New proof [Dinur]: expander graphs, iterative amplification of gap. These give **poor** inapproximability constants ρ . Subsequent improvements to the constants culminated in the following striking optimal result:

Theorem (Håstad)

For every integer $q \ge 2$ and all $\varepsilon, \delta > 0$, it is NP-hard to approximate Max E3-LIN-mod-q within $\frac{1}{q} + \varepsilon$.

• Hard to tell if linear system is $(1 - \varepsilon)$ -satisfiable or at most $(\frac{1}{a} + \delta)$ -satisfiable.

Mindless random assignment algorithm achieves approximation ratio 1/q.

Gives many other tight (or best known) results by gadgets.

Reduce Max E3-Lin-mod-2 to Max E3SAT

- Replace $x \oplus y \oplus z = 0$ by 4 clauses $(\neg x \lor \neg y \lor \neg z)$, $(\neg x \lor y \lor z)$, $(x \lor \neg y \lor z)$, $(x \lor y \lor \neg z)$.
- Gives $7/8 + \varepsilon$ inapproximability factor for Max E3SAT.

Gives $2/3 + \varepsilon$ inapprox. factor for Max 3MAJ. Also tight.

 $21/22+\varepsilon$ for Max 2SAT, $16/17+\varepsilon$ for Max CUT, $15/16+\varepsilon$ for Max NAE3SAT, etc.

• (Probably) not tight, but remain best known NP-hardness bounds.

- 4 同 6 4 日 6 4 日 6

- Reducing 3LIN to 3SAT shows that it is hard to satisfy more than 7/8 of clauses in a (1ε) -satisfiable formula.
- Inherent for 3LIN
- What about satisfiable 3SAT formulae?

- Reducing 3LIN to 3SAT shows that it is hard to satisfy more than 7/8 of clauses in a (1ε) -satisfiable formula.
- Inherent for 3LIN
- What about satisfiable 3SAT formulae?

Theorem (Håstad)

For every $\delta > 0$, given an E3SAT formula ϕ , it is NP-hard to distinguish between the cases when ϕ is satisfiable and when ϕ is at most $(\frac{7}{8} + \delta)$ -satisfiable.

Next:

- Some details about such tight hardness results.
- 2 Approximation resistance

Followed by reductions from Unique Games.

Starting point for strong inapproximability results is almost always the **Label Cover** problem.

Parameterized by integer R. Denote by LabelCover(R).

- 2CSP over large domain (of size R)
- "Projection" constraints

Starting point for strong inapproximability results is almost always the **Label Cover** problem.

Parameterized by integer R. Denote by LabelCover(R).

- 2CSP over large domain (of size R)
- "Projection" constraints

Instance consists of:

- Bipartite graph G = (V, W, E).
- **2** For each $e \in E$, a function $\pi_e : [R] \to [R]$.

The value of an assignment (labeling) $\ell : V \cup W \rightarrow [R]$ is the fraction of edges e = (v, w) for which $\pi_e(\ell(w)) = \ell(v)$.

Optimization goal: Find labeling with maximum value.

・ロン ・聞と ・ ほと ・ ほと

Theorem (PCP theorem + Raz's parallel repetition)

There exists an absolute constant $\gamma_0 > 0$ such that for all R it is NP-hard to tell if an instance of LabelCover(R) has value 1 or value at most $1/R^{\gamma_0}$.

By picking R large enough, get arbitrarily large gap for a rather nice 2CSP (over a large alphabet).

<u>Gadget</u>: "Encode" the projection constraint $\pi(\ell(w)) = \ell(v)$ on labels $\overline{\ell(v)}, \overline{\ell(w)}$ belonging to large alphabet [*R*] as (a collection of) simple *tests* on *few bits*.

- Test should correspond to target CSP
- For example, for Max E3-LIN-Mod-2, check parity of 3 bits $(x \oplus y \oplus z = 0/1)$

Must necessarily have larger soundness error, but amazingly can get the optimal bound for many CSPs (3LIN, 3SAT, 4-set-splitting, etc.)

To reduce projection constraint to some Boolean CSP:

- Expect Boolean tables f and g encoding $\ell(v)$ and $\ell(w)$ respectively (as per some code C).
- Check binary constraints on few locations of f and g (example $f(x) \oplus g(y) \oplus g(z) = 0$)

Property we would like to guarantee:

- Completeness: For a, b satisfying π(b) = a, legal encoding f, g of a, b satisfies all (or most of) the binary constraints.
- **3** Soundness: If f, g satisfy more than $s + \delta$ fraction of constraints, then can "decode" f, g into "consistent" labels.

Which "code" to use (for binary encoding of labels)?

Great suggestion by [Bellare-Goldreich-Sudan]: Long code

Long code encoding LC maps [R] to $\{0,1\}^{2^R}$

- Long encoding of $a \in [R]$, denoted LC^(a), is a Boolean function $\{0,1\}^R \to \{0,1\}$
- LC^(a)(x) = x_a. "Dictator" function projection on the a'th coordinate.

Long code is the *most redundant* of all codes!! (When R is a constant, we can afford it.)

Redundancy enables (approximate) checking of global property (namely, the projection constraint on [R]) by very local constraints.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Long code testing

- Given tables/functions $f : \{0,1\}^R \to \{0,1\}$ and $g : \{0,1\}^R \to \{0,1\}$, and a projection constraint $\pi : [R] \to [R]$.
- <u>Goal</u>: Check if f and g are long codes of "consistent" values a and b that satisfy π(b) = a.
- Only allowed to query very few (randomly picked) locations of *f*, *g*, and check they obey a local constraint.

- Given tables/functions $f : \{0,1\}^R \to \{0,1\}$ and $g : \{0,1\}^R \to \{0,1\}$, and a projection constraint $\pi : [R] \to [R]$.
- <u>Goal</u>: Check if f and g are long codes of "consistent" values a and b that satisfy π(b) = a.
- Only allowed to query very few (randomly picked) locations of *f*, *g*, and check they obey a local constraint.
- A 3-query test (aimed at showing hardness for Max E3LIN-Mod-2):
 - Pick $x, y \in \{0, 1\}^R$ independently and u.a.r.
 - Define $z \in \{0,1\}^R$ by $z_j = y_j \oplus x_{\pi(j)}$.
 - With prob. 1/2 check f(x) ⊕ g(y) ⊕ g(z) = 0, and with prob. 1/2 check f(x) ⊕ g(y) ⊕ g(z̄) = 1 (here z̄ denotes the coordinate-wise complement of the bit vector z).

イロト イヨト イヨト イヨト

Is this a good test?

Completeness: Suppose $f(x) = x_a$ and $g(y) = y_b$ and $\pi(b) = a$. Then

$$g(z)=z_b=y_b\oplus x_{\pi(b)}=y_b\oplus x_a$$
 .

So $f(x) \oplus g(y) \oplus g(z) = x_a \oplus y_b \oplus (y_b \oplus x_a) = 0$. Similarly $f(x) \oplus g(y) \oplus g(\overline{z}) = 1$

Thus all 3LIN constraints are satisfied.

Is this a good test?

Completeness: Suppose $f(x) = x_a$ and $g(y) = y_b$ and $\pi(b) = a$. Then

$$g(z)=z_b=y_b\oplus x_{\pi(b)}=y_b\oplus x_a$$
 .

So $f(x) \oplus g(y) \oplus g(z) = x_a \oplus y_b \oplus (y_b \oplus x_a) = 0$. Similarly $f(x) \oplus g(y) \oplus g(\overline{z}) = 1$

Thus all 3LIN constraints are satisfied.

Soundness?

Question

If most 3LIN constraints are satisfied, does it mean that f, g are "like" long codes (in some reasonable sense)?

Answer: NO.
Polymorphisms: For linear equations mod 2, xor of an odd number of satisfying assignments gives another satisfying assignment.

The functions $g(y) = y_1 \oplus y_2 \oplus \cdots \oplus y_{2k+1}$ and $f(x) = x_{\pi(1)} \oplus x_{\pi(2)} \oplus \cdots \oplus x_{\pi(2k+1)}$ also satisfy all constraints.

For k large, g is "not like" any long code.

Polymorphisms: For linear equations mod 2, xor of an odd number of satisfying assignments gives another satisfying assignment.

The functions $g(y) = y_1 \oplus y_2 \oplus \cdots \oplus y_{2k+1}$ and $f(x) = x_{\pi(1)} \oplus x_{\pi(2)} \oplus \cdots \oplus x_{\pi(2k+1)}$ also satisfy all constraints.

For k large, g is "not like" any long code.

Håstad's insight: add noise to attenuate linear functions of many variables ("dampen high frequencies")

 Must lose perfect completeness as satisfiability of linear equations is in P.

イロト 不得下 イヨト イヨト 二日

3LIN test with noise

- Sample $x, y \in \{0, 1\}^R$ independently and u.a.r.
- Sample $\mu \in \{0,1\}^R$ as follows: for each $j \in [R]$ independently

$$\mu_j = \begin{cases} 0 & \text{with prob. } 1 - \varepsilon \\ 1 & \text{with prob. } \varepsilon \end{cases}$$

- Define $z \in \{0,1\}^R$ by $z_j = x_{\pi(j)} \oplus y_j \oplus \mu_j$.
- With prob. 1/2 check f(x) ⊕ g(y) ⊕ g(z) = 0, and with prob. 1/2 check f(x) ⊕ g(y) ⊕ g(z̄) = 1

3LIN test with noise

- Sample $x, y \in \{0, 1\}^R$ independently and u.a.r.
- Sample $\mu \in \{0,1\}^R$ as follows: for each $j \in [R]$ independently

$$\mu_j = \begin{cases} 0 & \text{with prob. } 1 - \varepsilon \\ 1 & \text{with prob. } \varepsilon \end{cases}$$

- Define $z \in \{0,1\}^R$ by $z_j = x_{\pi(j)} \oplus y_j \oplus \mu_j$.
- With prob. 1/2 check f(x) ⊕ g(y) ⊕ g(z) = 0, and with prob. 1/2 check f(x) ⊕ g(y) ⊕ g(z̄) = 1

Completeness: If $g(y) = y_b$ and $f(x) = x_{\pi(b)}$, $(1 - \varepsilon)$ of the 3LIN constraints are satisfied (whenever $\mu_b = 0$).

Easy calculation

For odd k, probability that xor of k long codes (i.e., linear function of k variables) satisfies the tested 3LIN constraint equals $\frac{1}{2} + \frac{(1-2\varepsilon)^k}{2}$.

Venkatesan Guruswami (CMU)

Soundness for general functions

By expressing f, g (or rather $(-1)^f, (-1)^g$) as a linear combination of linear functions ("Fourier-Walsh" expansion), can prove that if $(1/2 + \delta)$ of the 3LIN checks are satisfied, then there must exist

 $S, T \subset [R], |S|, |T| \leq c(\delta, \varepsilon), S \cap \pi(T) \neq \emptyset$

for which f (resp. g) has non-trivial agreement with the linear function $\bigoplus_{i \in S} x_i$ (resp. $\bigoplus_{j \in T} y_j$).

• In fact, \exists distributions D_f and D_g on $2^{[R]}$ for which above happens with good probability (for $(S, T) \in_R D_f \times D_g$).

 \exists a randomized "decoding" procedure Dec mapping a Boolean function on $\{0,1\}^R$ to [R] such that, when f,g satisfy above condition,

$$\Pr[\operatorname{Dec}(f) = \pi(\operatorname{Dec}(g))] > \alpha(\delta, \varepsilon) \;.$$

Overall reduction from Label Cover

Plug in long code test on functions f_u , g_v for every edge e = (u, v) with projection constraint π_e .

Completeness $(1 - \varepsilon)$: Just use long codes of a satisfying assignment to Label Cover instance.

Overall reduction from Label Cover

Plug in long code test on functions f_u , g_v for every edge e = (u, v) with projection constraint π_e .

Completeness $(1 - \varepsilon)$: Just use long codes of a satisfying assignment to Label Cover instance.

Soundness $(1/2 + 2\delta)$: Contrapositive: Extract good labeling, satisfying more than $1/R^{\gamma_0}$ constraints of Label Cover, if more than $(1/2 + 2\delta)$ of 3LIN constraints are satisfied.

Overall reduction from Label Cover

Plug in long code test on functions f_u , g_v for every edge e = (u, v) with projection constraint π_e .

Completeness $(1 - \varepsilon)$: Just use long codes of a satisfying assignment to Label Cover instance.

Soundness $(1/2 + 2\delta)$: Contrapositive: Extract good labeling, satisfying more than $1/R^{\gamma_0}$ constraints of Label Cover, if more than $(1/2 + 2\delta)$ of 3LIN constraints are satisfied.

- Run Dec independently for each f_u and each g_v .
- Averaging: $\geq \delta$ fraction of edges (u, v) are *good*, i.e., $\geq (1/2 + \delta)$ of 3LIN constraints on the long code test for (f_u, g_v) are satisfied.
- For each good edge, decoded labels are consistent with prob. $\alpha(\delta, \varepsilon)$.
- Labeling output by Dec satisfies expected $\delta \cdot \alpha(\delta, \varepsilon)$ fraction of Label Cover constraints.
- Pick R large enough so that $\delta \cdot \alpha(\delta, \varepsilon) > R^{-\gamma_0}$.

Approximation resistance

- 4 同 6 4 三 6 4

- Max E3LIN-Mod-2, Max E3SAT, Max 4-set splitting, etc. are **approximation resistant**, in the sense that beating the mindless random assignment algorithm is NP-hard.
- Max 2SAT, Max CUT, Max 2CSP admit non-trivial approximations (via semidefinite programming).

Question

Which predicates lead to approximation resistant Max CSPs?

Every 2CSP (over any domain [q]) is **not** approximation resistant. [Goemans-Williamson], [Engebretsen-G], [Håstad]

Bounded occurrence CSPs approximable beyond random assignment threshold [Håstad]

Complete answer for Boolean 3CSPs

• Approximation resistant iff implied by parity or its complement, otherwise admits non-trivial approximation. [Håstad] + [Zwick]

[Hast] classified 354 of the 400 essentially different arity 4 Boolean CSPs (79 approximation resistant).

Large k:

- Boolean kCSP with 2^{O(\sqrt{k})} satisfying assignments that is approximation resistant. [Samorodnitsky-Trevisan], [Håstad-Khot]
- No predicate with ≤ c · k satisfying assignments is approximation resistant [Hast; Charikar-Makarychev-Makarychev]
- Random predicate is approx. resistant w.h.p. [Håstad]*

Large k:

- Boolean kCSP with 2^{O(\sqrt{k})} satisfying assignments that is approximation resistant. [Samorodnitsky-Trevisan], [Håstad-Khot]
- No predicate with ≤ c · k satisfying assignments is approximation resistant [Hast; Charikar-Makarychev-Makarychev]
- Random predicate is approx. resistant w.h.p. [Håstad]*

If there is a pairwise independent distribution supported within the satisfying assignments of the predicate, then it is approximation resistant* [Austrin-Mossel]

• Implies earlier result of [Samorodnitsky-Trevisan] that Max kCSP is hard to approximate with a factor $\Theta(k/2^k)^*$

For more details, go to Per Austrin's talk.

assuming the Unique Games conjecture

Label Cover + Long Code (LC²) framework \implies many powerful hardness results for CSPs of arity 3 and above.

What about 2CSPs where SDPs give non-trivial (and sometimes bizarre irrational) approximation ratios?

Good 2-query tests for testing consistency (as per projection π) of a pair of purported long codes f, g?

Label Cover + Long Code (LC²) framework \implies many powerful hardness results for CSPs of arity 3 and above.

What about 2CSPs where SDPs give non-trivial (and sometimes bizarre irrational) approximation ratios?

Good 2-query tests for testing consistency (as per projection π) of a pair of purported long codes f, g?

Here's a natural test (that "saves" one query in Håstad's test):

- Pick x ∈ {0,1}^R u.a.r, and noise vector μ ∈ {0,1}^R s.t. μ_l = 0 with prob. 1 − ε for each l ∈ [R].
- For each $j \in [R]$, set $y_j = x_{\pi(j)} \oplus \mu_j$.
- With prob. 1/2, check $f(x) \oplus g(y) = 0$, with prob. 1/2, check $f(x) \oplus g(\bar{y}) = 1$.

- Query $y \in \{0,1\}^R$ to table g is highly non-uniform.
- $y \approx x \circ \pi$ reveals lot of information about π : $y_k = y_l$ whenever $\pi(k) = \pi(l)$ and independent otherwise.
- Thus can "piece together" many inconsistent g, say a different long code for each part of the hypercube corresponding to the different projection constraints π_e in which w participates.
 - No hope of decoding a single global label $\ell(w)$ for w.
- What would/could fix this?

Unique Games CSP

Khot's insight: This problem goes away if π is a *bijection*.

• In this case, y is uniformly distributed (since x is); gives no clue about π !

Unique Games CSP

Khot's insight: This problem goes away if π is a *bijection*.

 In this case, y is uniformly distributed (since x is); gives no clue about π!

Reduce from special case of LabelCover(R) called UniqueGames(R).

Same as Label Cover, except for each $e \in E$, the projection constraint π_e is a **bijection**. Formally, instance consists of

- **1** Bipartite graph G = (V, W, E).
- Solution For each $(v, w) \in E$, a bijection $\pi_{w \to v} : [R] \to [R]$.

<u>Goal</u>: Find labeling $\ell : V \cup W$ with maximum "value", where value = fraction of edges $(v, w) \in E$, $\pi_{w \to v}(\ell(w)) = \ell(v)$.

Example of UniqueGames(R): E2-Lin-mod-R.

• Equations of form $x_i - x_j \equiv c_{ij} \pmod{R}$.

イロン イ団と イヨン ト

Theorem (Easy)

Given a UniqueGames(R) instance, telling if it is satisfiable (i.e., admits labeling with value 1) is in P.

Theorem (Easy)

Given a UniqueGames(R) instance, telling if it is satisfiable (i.e., admits labeling with value 1) is in P.

Unique Games conjecture — UGC [Khot]

For every $\varepsilon, \delta > 0$, there is a large enough R such that given an instance \mathcal{I} of UniqueGames(R), it is hard to distinguish between the following two cases:

- **1** admits a labeling with value $\geq 1 \varepsilon$.
- **2** All labelings to \mathcal{I} have value $\leq \delta$.

Small amount of noise renders problem inapproximable...

UGC has some powerful implications:

- Many optimal inapproximability results: Vertex Cover on graphs and hypergraphs, *every* CSP, *every* ordering CSP.
- Led to new integrality gap constructions (and important consequences for metric embeddings)

UGC has some powerful implications:

- Many optimal inapproximability results: Vertex Cover on graphs and hypergraphs, *every* CSP, *every* ordering CSP.
- Led to new integrality gap constructions (and important consequences for metric embeddings)

Notorious conjecture; no consensus either way ...

- Seemingly no plausible avenue to prove it currently? Suffices to prove conjecture for $\delta = 0.99$, or even $\delta = 1 - \varepsilon^{0.51}$.
- Attempts to disprove (based on natural SDP) have failed, but potential of strengthened SDPs not fully ruled out.
- Not approximation resistant (it is a 2CSP). $\approx 1/R^{\epsilon/2}$ approximation known. Any improvement would refute UGC.

イロト 不得下 イヨト イヨト

Testing bijection constraint $\pi(b) = a$ given purported long codes f, g of a, b:

- Pick $x \in \{0,1\}^R$ u.a.r, and ε -biased noise vector $\mu \in \{0,1\}^R$.
- Set $y = x \circ \pi \oplus \mu$, i.e., for each $j \in [R]$, $y_j = x_{\pi(j)} \oplus \mu_j$.
- With prob. 1/2, check f(x) ⊕ g(y) = 0, with prob. 1/2, check f(x) ⊕ g(y
) = 1.

Now that π is a bijection, turns out it is enough to just test **one** function (essentially assume $\pi = Id$).

Dictatorship testing

Given access to $f: \{0,1\}^R \rightarrow \{0,1\}$.

Make few queries to f, according to some clever distribution, and check constraint Γ on queried bits.

• Γ corresponds to target CSP of interest. Eg. for Max CUT, check $f(x) \neq f(y)$.

<u>Aim</u>: Test must distinguish dictator functions from functions far from every dictator.

Dictatorship testing

Given access to $f: \{0,1\}^R \rightarrow \{0,1\}.$

Make few queries to f, according to some clever distribution, and check constraint Γ on queried bits.

• Γ corresponds to target CSP of interest. Eg. for Max CUT, check $f(x) \neq f(y)$.

<u>Aim</u>: Test must distinguish dictator functions from functions far from every dictator.

Completeness For every $i \in [R]$, if f is the dictator function $f(x) = x_i$, test accepts with probability $\ge c$.

Soundness If Influence_i(f) is "small" for every $i \in [R]$, then test accepts with probability $\leq s$.

 $\operatorname{Influence}_i(f) = \operatorname{Pr}_x[f(x) \neq f(x \oplus e_i)]$

イロト 不得下 イヨト イヨト 二日

Why dictatorship tests?

Parameter $\rho > 1/2$. Testing a function $f : \{0,1\}^R \rightarrow \{0,1\}$

- Pick $x \in \{0, 1\}^R$ u.a.r.
- For each $j \in [R]$,

$$y_j = \begin{cases} x_j & \text{with prob. } 1 - \rho \\ \overline{x_j} & \text{with prob. } \rho \end{cases}$$

• Check the CUT constraint $f(x) \neq f(y)$, accept if so.

Completeness

When f a dictator, say $f(x) = x_i$, Probability test accepts $= \rho$.

Dictatorship test for Max Cut

Soundness

What's the best f that has no influential coordinates?

Dictatorship test for Max Cut

Soundness

What's the best f that has no influential coordinates? Answer: Majority function. Also, $\Pr_{x,y}[Maj(x) \neq Maj(y)] \rightarrow \frac{\arccos(1-2\rho)}{\pi}$ for large R.

Theorem (Majority is Stablest (Mossel-O'Donnell-Oleszkiewicz))

For all $\rho > 1/2$ and $\varepsilon > 0$, there is a small enough $\tau = \tau(\rho, \varepsilon) > 0$ s.t. if $\Pr_{x,y}[f(x) \neq f(y)] \ge \frac{\arccos(1-2\rho)}{\pi} + \varepsilon$, then for some $i \in [R]$, $\operatorname{Influence}_i(f) \ge \tau$.

Soundness

What's the best f that has no influential coordinates? Answer: Majority function. Also, $\Pr_{x,y}[Maj(x) \neq Maj(y)] \rightarrow \frac{\arccos(1-2\rho)}{\pi}$ for large R.

Theorem (Majority is Stablest (Mossel-O'Donnell-Oleszkiewicz))

For all $\rho > 1/2$ and $\varepsilon > 0$, there is a small enough $\tau = \tau(\rho, \varepsilon) > 0$ s.t. if $\Pr_{x,y}[f(x) \neq f(y)] \ge \frac{\arccos(1-2\rho)}{\pi} + \varepsilon$, then for some $i \in [R]$, $\operatorname{Influence}_i(f) \ge \tau$.

Therefore, get
$$\rho - \varepsilon$$
 vs. $\frac{\arccos(1-2\rho)}{\pi} + \varepsilon$ gap (for any $1/2 < \rho < 1$).

• or
$$\frac{1-\cos\theta}{2} - \varepsilon$$
 vs. $\frac{\theta}{\pi} + \varepsilon$ where $\theta = \arccos(1-2\rho) \in (\pi/2,\pi)$.

- Same as SDP optimum vs. cut found by random hyperplane rounding!
- Optimizing over θ , gives 0.8785.. hardness factor for Max CUT [Khot-Kindler-Mossel-O'Donnell]

Polymorphism combines many satisfying assignments to produce a new satisfying assignment.

● Dictator/projection functions ⇔ trivial polymorphism

"Approximate polymorphism" combines assignments satisfying Opt fraction of constraints to a new assignment.

- Dictator function: preserves fraction Opt of satisfied constraints.
- What's the best *non-influential* polymorphism?

Approximate polymorphisms for Max CUT

Majority is a (non-trivial) polymorphism for CSP(cut).

Majority is a (non-trivial) polymorphism for CSP(cut).

In the context of Max CUT:

- Majority is the *best* "low-influence" approximate polymorphism.
- Given R distributions over assignments that satisfy a specific cut constraint with probability ρ
 - coordinate-wise majority satisfies that constraint with probability $\approx \frac{\arccos(1-2\rho)}{2}$
 - And this is largest possible for combining functions with no influential variable.

More about this in Prasad Raghavendra's talk after lunch.

For Max Cut, we "cooked" up a natural test.

In general, how to get a good dictatorship test for a CSP?

Very general answer [Raghavendra]

Can convert **any** integrality gap instance for the "canonical" semidefinite program into dictatorship test with matching parameters!

• Instance with SDP opt c and integral optimum $s \Longrightarrow$ Dictatorship test with completeness $c - \varepsilon$ and soundness $s + \varepsilon$.

Proof proceeds via a rounding algorithm for the SDP.

Corollary

Assuming UGC, the canonical SDP delivers the best possible approximation ratio, for every CSP.

Recall the SDP

Local integral distributions that are consistent on pairs $+\ positive$ semidefiniteness of pairwise joint probabilities.

Recall the SDP

Local integral distributions that are consistent on pairs $+\ positive$ semidefiniteness of pairwise joint probabilities.

Maximize
$$\sum_{(h,S)\in\mathcal{C}} \mathbb{E}_{x\sim\mu_{(h,S)}}[h(x)]$$
 subject to:

 $\sum_{a\in[q]} \langle v_{i,a}, v_{i,a} \rangle = 1 \quad \forall i$
 $\mu_{(h,S)}(x) \ge 0 \text{ and } \sum_{x} \mu_{(h,S)}(x) = 1 \quad \forall (h,S) \in \mathcal{C}.$

 $\langle v_{i,a}, v_{j,b} \rangle = \Pr_{x\sim\mu_{(h,S)}}[x_i = a \land x_j = b]$
 $\forall (h,S) \in \mathcal{C}; \quad x_i, x_j \in S; \quad a, b \in [q].$

Dictatorship test for function $f : [q]^R \to \{0, 1\}$:

- Pick a random constraint $(h, S) \in C$. Let k = |S| be its arity.
- Pick k vectors $y^{(1)}, y^{(2)}, \dots, y^{(k)} \in [q]^R$ where for each $i \in [R]$ independently, the *i*'th coordinates $(y_i^{(1)}, y_i^{(2)}, \dots, y_i^{(k)}) \in_R \mu_{(h,S)}$ are chosen as per the local integral distribution.*
- Check the constraint $h(f(y^{(1)}), f(y^{(2)}), \dots, f(y^{(k)}))$

Actually, one samples from a slightly noisy version of $\mu_{(h,S)}$

Unit vectors v_i for variables x_i , and a global unit vector b_0 (representing False).

Value of any constraint on x_i, x_j can be expressed as linear function of $\langle b_0, v_i \rangle$, $\langle b_0, v_j \rangle$, and $\langle v_i, v_j \rangle$.

SDP maximizes sum of this linear function over all constraints, subject to

$$\langle b_0, b_0
angle = 1; \quad \langle v_i, v_i
angle = 1 \quad \forall i$$

And the "triangle inequalities"

$$\langle (b_0 \pm v_i), (b_0 \pm v_j) \rangle \ge 0$$

for all i, j for which x_i, x_j participate in a constraint.
Topological sorting: Given a directed *acyclic* graph, can order its vertices so that all edges go forward.

- What if digraph is only "nearly" acyclic, say 1% of the edges need to be removed to make it acyclic?
- Can one find an ordering such that most of the edges go forward?
- Equivalently, find acyclic subgraph with maximum fraction of edges.

Picking a random ordering (or better of any ordering and its reverse) finds acyclic subgraph with at least 1/2 the edges.

Theorem [G.-Manokaran-Raghavendra]

Assuming UGC, this is best possible. $\forall \varepsilon, \delta > 0$, given a $(1 - \varepsilon)$ -acyclic graph, it is UG-hard to find an acyclic subgraph with $(1/2 + \delta)$ edges.

(日) (同) (三) (三)

Max Acyclic Subgraph can be expressed "like" a 2CSP:

- Variables = vertices of graph
- Edge $x \rightarrow y = \text{constraint } x < y$
- Large domain [n] where n = number of vertices.

Even though it is not a usual 2CSP due to growing domain size, UniqueGames hardness shown by relating it to a "proxy" CSP over a bounded domain.

Ordering CSP

Ordering constraint of arity $k = \text{subset } \Pi$ of k! possible permutations

• MAS: $x_i < x_j$ $\Pi = \{12\}$

• Betweenness: x_j between x_i and x_ℓ . $\Pi = \{123, 321\}$ applied to triple (x_i, x_j, x_ℓ) .

Instance of ordering kCSP Π :

- Input: *n* variables and collection of *k*-tuples of variables.
- <u>Goal</u>: Find global ordering for which max. fraction of input *k*-tuples are locally ordered according to a permutation in Π.

Ordering CSP

Ordering constraint of arity $k = \text{subset } \Pi$ of k! possible permutations

• MAS: $x_i < x_j$ $\Pi = \{12\}$

• Betweenness: x_j between x_i and x_ℓ . $\Pi = \{123, 321\}$ applied to triple (x_i, x_j, x_ℓ) .

Instance of ordering kCSP Π :

- Input: *n* variables and collection of *k*-tuples of variables.
- <u>Goal</u>: Find global ordering for which max. fraction of input *k*-tuples are locally ordered according to a permutation in Π.

Theorem (Charikar, G., Håstad, Manokaran)

Every ordering CSP is approximation resistant.

• UG-hard to distinguish $(1 - \varepsilon)$ -satisfiable instances from at most $\frac{|\Pi|}{k!} + \delta$ -satisfiable instances, for any $\varepsilon, \delta > 0$.

<ロト </p>

- Lot of progress on approximability of CSPs, both from algorithms and hardness side.
- Natural semidefinite programming relaxation + suitable rounding \Rightarrow best known approximation algorithms for all CSPs.
 - In fact, achieves *the optimal* approximation ratio, under the Unique Games conjecture.
- Many unconditional tight hardness results also known
 - Show approximation resistance of several CSPs
 - A 2CSP called Label Cover is the canonical starting point, of which Unique Games is a particularly nice special case
 - Reduction method: Long code + dictatorship testing.
- "Approximate polymorphisms" (with low influences) give an explanation for the source of a CSP's approximation threshold.

- 4 同 ト 4 ヨ ト 4 ヨ

- Prove or disprove the Unique Games conjecture.
- Approximability of satisfiable CSPs?
- Olassification of approximation resistant CSPs?