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Abstract—A central open question in the study of non-uniform
constraint satisfaction problems (CSPs) is the dichotomy con-
jecture of Feder and Vardi stating that the CSP over a fixed
constraint language is either NP-complete, or tractable. One of
the main achievements in this direction is a result of Bulatov
(LICS’03) confirming the dichotomy conjecture for conservative
CSPs, that is, CSPs over constraint languages containing all
unary relations. Unfortunately, the proof is very long and com-
plicated, and therefore hard to understand even for a specialist.
This paper provides a short and transparent proof.

INTRODUCTION

The constraint satisfaction problem (CSP) provides a com-
mon framework for many theoretical problems in computer
science as well as for many real-life applications. An instance
of the CSP consists of a number of variables and constraints
imposed on them and the objective is to determine whether
variables can be evaluated in such a way that all the constraints
are met. The CSP can also be expressed as the problem of de-
ciding whether a given conjunctive formula is satisfiable, or as
the problem of deciding whether there exists a homomorphism
between two relational structures.

The general CSP is NP-complete, however certain natural
restrictions on the form of the constraints can ensure tractabil-
ity. This paper deals with so called non-uniform CSP — the
same decision problem as the ordinary CSP, but the set of
allowed constraint relations is fixed. A central open problem
in this area is the dichotomy conjecture of Feder and Vardi [1]
stating that, for every finite, fixed set of constraint relations (a
fixed constraint language), the CSP defined by it is NP-
complete or solvable in polynomial time, i.e. the class of CSPs
exhibits a dichotomy.

Most of recent progress toward the dichotomy conjecture
has been made using the algebraic approach to the CSP [2],
[3], [4]. The main achievements include the algorithm for
CSPs with ”Maltsev constraints” [5] (which was substantially
simplified in [6] and generalized in [7], [8]), the characteriza-
tion of CSPs solvable by local consistency methods [9], [10],
the dichotomy theorem for CSPs over a three element domain
[11] (which generalizes the Boolean CSP dichotomy theorem
[12]) and the dichotomy theorem for conservative CSPs [13].

The last result proves the dichotomy conjecture of Feder
and Vardi for the CSP over any template which contains all
unary relations. In other words, this Bulatov’s theorem proves

the dichotomy for the CSPs, in which we can restrict the value
of each variable to an arbitrary subset of the domain (that is
why the conservative CSPs are sometimes called list CSPs, or,
in homomorphism setting, list homomorphism problems). This
result is of major importance in the area, but, unfortunately,
the proof is very involved (the full paper has 80 pages and it
has not yet been published), which makes the study of possible
generalizations and further research harder.

This paper provides a new, shorter and more natural proof.
It relies on techniques developed and successfully applied in
[14], [15], [16], [9], [17], [18].

Related work

The complexity of list homomorphism problems has been
studied by combinatorial methods, e.g., in [19], [20]. A
structural distinction between tractable and NP-complete list
homomorphism problem for digraphs was found in [21]. A
finer complexity classification for the list homomorphism
problem for graphs was given in [22]. The conservative case
is also studied for different variants of the CSP, see, e.g., [23],
[24].

Organization of the paper

In Section I we define the CSP and its non-uniform version.
In Section II we introduce the necessary notions concerning
algebras and the algebraic approach to the CSP. In Section
III we collect all the necessary ingredients. One of them is
a reduction to minimal absorbing subuniverses, details are
provided in Section V. Also the core algebraic result is just
stated in this section and its proof covers Section VI. In Section
IV we formulate the algorithm for tractable conservative CSPs
and prove its correctness.

I. CSP

An n-ary relation on a set A is a subset of the n-th cartesian
power An of the set A.

Definition I.1. An instance of the constraint satisfaction prob-
lem (CSP) is a triple P = (V,A, C) with
• V a nonempty, finite set of variables,
• A a nonempty, finite domain,
• C a finite set of constraints, where each constraint is a

pair C = (x, R) with



– x a tuple of distinct variables of length n, called the
scope of C, and

– R an n-ary relation on A, called the constraint
relation of C.

The question is whether there exists a solution to P , that
is, a function f : V → A such that, for each constraint
C = (x, R) ∈ C, the tuple f(x) belongs to R.

For purely technical reasons we have made a nonstandard
assumption that the scope of a constraint contains distinct
variables. This clearly does not change the complexity modulo
polynomial-time reductions.

In the non-uniform CSP we fix a domain and a set of
allowed constraints:

Definition I.2. A constraint language Γ is a set of relations
on a finite set A. The constraint satisfaction problem over
Γ, denoted CSP(Γ), is the subclass of the CSP defined by
the property that any constraint relation in any instance must
belong to Γ.

The following dichotomy conjecture was originally formulated
in [1] only for finite constraint languages. The known results
suggest that even the following stronger version might be true.

Conjecture I.3. For every constraint language Γ, CSP(Γ) is
either tractable, or NP-complete.

Our main theorem, first proved by Bulatov [13], confirms the
dichotomy conjecture for conservative CSPs:

Definition I.4. A constraint language Γ on A is called
conservative, if Γ contains all unary relations on A (i.e., all
subsets of A).

Theorem I.5. For every conservative constraint language Γ,
CSP(Γ) is either tractable, or NP-complete.

II. ALGEBRA AND CSP
A. Algebraic preliminaries
An n-ary operation on a set A is a mapping f : An → A. An
operation f is called cyclic, if n ≥ 2 and f(a1, a2, . . . , an) =
f(a2, a3, . . . , an, a1) for any a1, a2, . . . , an ∈ A. A ternary
operation m is called Maltsev, if f(a, a, b) = f(b, a, a) = b
for any a, b ∈ A.

A signature is a finite set of symbols with natural num-
bers (the arities) assigned to them. An algebra of a signature
Σ is a pair A = (A, (tA)t∈Σ), where A is a set, called the
universe of A, and tA is an operation on A of arity ar(t).
We use a boldface letter to denote an algebra and the same
letter in the plain type to denote its universe. We omit the
superscripts of operations as the algebra is always clear from
the context.

A term operation of A is an operation which can be
obtained from operations in A using composition and the
projection operations. The set of all term operations of A is
denoted by Clo(A).

There are three fundamental operations on algebras of a
fixed signature Σ: forming subalgebras, factoralgebras and
products.

A subset B of the universe of an algebra A is called a
subuniverse, if it is closed under all operations (equivalently
term operations) of A. Given a subuniverse B of A we can
form the algebra B by restricting all the operations of A to
the set B. In this situation we say that B is a subalgebra of
A and we write B ≤ A or B ≤ A. We call the subuniverse
B (or the subalgebra B) proper if ∅ 6= B 6= A.

We define the product of algebras A1, . . . ,An to be the
algebra with the universe equal to A1 × · · · × An and with
operations computed coordinatewise. The product of n copies
of an algebra A is denoted by An.

An equivalence relation ∼ on the universe of an algebra A
is a congruence, if it is a subalgebra of A2. The corresponding
factor algebra A/ ∼ has, as its universe, the set of ∼-
blocks and operations are defined using (arbitrary chosen)
representatives. Every algebra A has two trivial congruences:
the diagonal congruence ∼= {(a, a) : a ∈ A} and the full
congruence ∼= A × A. A congruence is proper, if it is not
equal to the full congruence. A congruence is maximal, if the
only coarser congruence of A is the full congruence.

For a finite algebra A the class of all factor algebras of
subalgebras of finite powers of A will be denoted by Vfin(A).

An operation f : An → A is idempotent, if f(a, a, . . . , a) =
a for any a ∈ A. An operation f : An → A is conservative, if
f(a1, a2, . . . , an) ∈ {a1, a2, . . . , an} for any a1, a2, . . . , an ∈
A. An algebra is idempotent (resp. conservative), if all op-
erations of A are idempotent (resp. conservative). In other
words, an algebra is idempotent (resp. conservative), if all one-
element subsets of A (resp. all subsets of A) are subuniverses
of A.

B. Algebraic approach

An operation f : An → A is compatible with a relation R ⊆
Am if the tuple
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An operation compatible with all relations in a constraint
language Γ is a polymorphism of Γ. The set A together with
all polymorphisms of Γ is the algebra of polymorphisms of Γ,
it is denoted Pol Γ, or often just A (we formally define the
signature of A to be identical with the set of its operations).
Note that every relation in Γ is a subalgebra of a power of
A. The set of all subalgebras of powers of A is denoted by
Inv A.

In the following discussion we assume, for simplicity, that Γ
contains all singleton unary relations (it is known that CSP can
be reduced to CSP over such a constraint language). Observe
that in such a case the algebra A is idempotent. Moreover, if
Γ is conservative, then A is conservative as well.

Already the first results on the algebraic approach to
CSP [2], [3], [4] show that A fully determines the compu-
tational complexity of CSP(Γ), at least for finite constraint
languages. Moreover, a borderline between tractable and NP-
complete CSPs was conjectured in terms of the algebra of
polymorphisms: if there exists a two-element factor algebra



of a subalgebra of A whose every operation is a projection,
then CSP(Γ) is NP-complete, otherwise CSP(Γ) is tractable.
The hardness part of this algebraic dichotomy conjecture is
known [3], [4]:

Theorem II.1. Let Γ be a constraint language containing all
singleton unary relations, and let A = Pol Γ. If A has a
subalgebra with a two-element factor algebra whose every
operation is a projection, then CSP(Γ) is NP-complete.

The algebras, which satisfy this necessary (and conjecturally
sufficient) condition for tractability, are called Taylor algebras,
that is, A is Taylor if no two-element factor algebra of a
subalgebra A has projection operations only. We will use the
following characterization of Taylor algebras from [17], [18]
although the characterization in terms of weak near-unanimity
operations [25] would suffice for our purposes.

Theorem II.2. Let A be a finite idempotent algebra and let
p > |A| be a prime number. The following are equivalent.
• A is a Taylor algebra.
• A has a cyclic term operation of arity p.

In view of Theorem II.1, the dichotomy for conservative CSPs
will follow when we prove:

Theorem II.3. Let A be a finite conservative Taylor algebra.
Then CSP(Inv A) is tractable.

A polynomial time algorithm for solving CSP(Inv A), where
A is a finite conservative Taylor algebra, is presented in
Section IV.

III. INGREDIENTS

The building blocks of our algorithm are the (k, l)-minimality
algorithm (Subsection III-B), a reduction to minimal absorbing
subuniverses (Subsection III-D) and the algorithm for Maltsev
instances (Subsection III-F). Subsection III-A and Subsection
III-C cover necessary notation. The main new algebraic tool
for proving correctness is stated in Subsection III-E.

A. Projections and restrictions

Tuples are denoted by boldface letters and their elements
are indexed from 1, for instance a = (a1, a2, . . . , an). For
an n-tuple a and a tuple k = (k1, . . . , km) of elements of
{1, 2, . . . , n} we define the projection of a to k by

a|k = (ak1 , ak2 , . . . , akm
).

For a subset K ⊆ {1, 2, . . . , n} we put a|K = a|k, where k
is the list of elements of K in the ascending order.

The projection of a set R ⊆ A1 × . . . An to k (resp. K) is
defined by

R|k = {a|k : a ∈ R} (resp. R|K = {a|K : a ∈ R}).

The set R is subdirect in A1 × · · · × An (denoted by R ⊆S
A1×· · ·×An), if R|{i} = Ai for all i = 1, . . . , n. If, moreover,
A1, . . . ,An are algebras of the same signature and R is a
subalgebra of their product, we write R ≤S A1 × · · · ×An.

Let P = (V,A, C) be an instance of the CSP. The projection
of a constraint C = ((x1, . . . , xn), R) ∈ C to a tuple of
variables (xk1 , . . . , xkm) is the relation

C|(xk1 ,...,xkm ) = {(ak1 , . . . , akm
) : a ∈ R}.

Finally, we introduce two types of restrictions of a CSP
instance. In the variable restriction we delete some of the vari-
ables and replace the constraints with appropriate projections,
in the domain restriction we restrict the value of some of the
variables to specified subsets of the domain.

The variable restriction of P to a subset W ⊆ V is
the instance P |W = (W,A, C′), where C′ is obtained from
C by replacing each constraint C = (x, R) ∈ C with
(x ∩W,C|x∩W ), where x ∩W is the subtuple of x formed
by the variables belonging to W .

The domain restriction of P to a system E = {Ex :
x ∈ W} of subsets of A indexed by W ⊆ V is the
instance P |E = (V,A, C′), where C′ is obtained from C by
replacing each constraint C = ((x1, . . . , xn), R) ∈ C with
C ′ = ((x1, . . . , xn), {a ∈ R : ∀i xi ∈W ⇒ ai ∈ Exi

}).

B. (k, l)-minimality

The first step in our algorithm will be to ensure a certain
kind of local consistency. The following notion is the most
convenient for our purposes.

Definition III.1. Let l ≥ k > 0 be natural numbers. An
instance P = (V,A, C) of the CSP is (k, l)-minimal, if:
• Every at most l-element tuple of distinct variables is the

scope of some constraint in C,
• For every tuple x of at most k variables and every pair

of constraints C1 and C2 from C whose scopes contain
all variables from x, the projections of the constraints C1

and C2 to x are the same.
A (k, k)-minimal instance is also called k-minimal.

For fixed k, l there is an obvious polynomial time algorithm
for transforming an instance of the CSP to a (k, l)-minimal
instance with the same set of solutions: First we add dummy
constraints to ensure that the first condition is satisfied and then
we gradually remove those tuples from the constraint relations
which falsify the second condition (see [13] for a more detailed
discussion). It is a folklore fact (which is in the literature often
used without mentioning) that an instance of CSP(Inv A) is
in this way transformed to an instance of CSP(Inv A), that is,
the constraint relations of the new instance are still members
of Inv A. See the discussion after Definition III.3 in [9], where
an argument is given for a similar consistency notion.

If an instance P is (at least) 1-minimal, then, for each vari-
able x ∈ V , there is a unique constraint whose scope is (x).
We denote its constraint relation by SPx , i.e. ((x), SPx ) ∈ C.
Then the projection of any constraint whose scope contains
x to (x) is equal to SPx . If, moreover, P is an instance of
CSP(Inv A), the set SPx is a subuniverse of A and we denote
the corresponding subalgebra of A by SPx .

If an instance is 2-minimal, then we have a unique constraint
((x, x′), SP(x,x′)) for each pair of distinct variables x, x′ ∈ V ,



and C|(x,x′) = SP(x,x′) for any constraint C whose scope con-
tains x and x′. We formally define SP(x,x) = {(a, a) : a ∈ SPx }.

(2, 3)-minimal instances have the following useful property.

Lemma III.2. Let P be a (2, 3)-minimal instance and let
x, x′, x′′ ∈ V . Then for any (a, a′) ∈ SP(x,x′) there exists a′′ ∈
A such that (a, a′′) ∈ SP(x,x′′) and (a′, a′′) ∈ SP(x′,x′′).

Proof: Let C ∈ C be a constraint with the scope
(x, x′, x′′), say C = ((x, x′, x′′), R). The projection of C to
(x, x′) is equal to SP(x,x′), therefore there exists a′′ ∈ A such
that (a, a′, a′′) ∈ R. This element satisfies the conclusion of
the lemma.

C. Walking with subsets

Let R ⊆ A1 ×A2 and let B ⊆ A1. We define

R+[B] = {c ∈ A2 : ∃ b ∈ B (b, c) ∈ R}.

A qoset is a set A together with a quasi-ordering on A, i.e.
a reflexive, transitive (binary) relation ≤ on A. The blocks of
the induced equivalence ∼, given by a ∼ b iff a ≤ b ≤ a, are
called components of the qoset. A component C is maximal,
if a ∼ c for any a ∈ A, c ∈ C such that c ≤ a. A subqoset is
a subset of A together with ≤ restricted to A.

For a 1-minimal instance P = (V,A, C) we introduce a
qoset Qoset(P ) as follows. The elements are all the pairs
(x,B), where x ∈ V and B is a subset of SPx . We put
(x,B) ≤ (x′, B′), if there exists a constraint C ∈ C whose
scope contains {x, x′} such that C|(x,x′)

+[B] = B′. The
ordering of the qoset Qoset(P ) is the transitive closure of
≤.

If the instance P is (2, 3)-minimal, the components of
Qoset(P ) are nicely behaved:

Proposition III.3. Let P = (V,A, C) be a (2, 3)-minimal
instance of the CSP and let (x,B) and (x′, B′) be two
elements of the same component of the qoset Qoset(P ). Then
SP(x,x′)

+[B] = B′. In particular, if x = x′, then B = B′.

Proof: Let (x,B) = (x1, B1), (x2, B2), . . . , (xk, Bk) =
(x′, B′) be a sequence of elements of Qoset(P ) such that
SP(xi,xi+1)

+[Bi] = Bi+1 for all i = 1, . . . , k−1. From Lemma
III.2 it follows that

SP(x1,xi+1)

+
[B1] ⊆ SP(xi,xi+1)

+
[
SP(x1,xi)

+
[B1]

]
,

therefore SP(x,x′)

+[B] ⊆ B′. Similarly, SP(x′,x)

+[B′] ⊆ B.
For each b′ ∈ B′ (⊆ SPx′ ) there exists b ∈ A such that
(b, b′) ∈ SP(x,x′)

+[B]. This element b has to belong to B (since

SP(x′,x)

+[B′] ⊆ B), which proves the inclusion SP(x,x′)

+[B] ⊇
B′.
Let P be a (2, 3)-minimal instance and E = {Ex : x ∈ V } be
a system of subsets of A such that Ex ⊆ SPx for each x ∈ V .
A (P, E)-strand is a maximal subset W of V such that all the
pairs (x,Ex), x ∈ W belong to the same component of the
qoset Qoset(P ). The name of this concept is justified by the
previous proposition: For example, any solution f : V → A

to P with f(x) ∈ Ex for some x ∈ W satisfies f(x) ∈ Ex
for all x ∈W .

D. Absorbing subuniverses

Definition III.4. Let A be a finite idempotent algebra and
t ∈ Clo(A). We say that a subalgebra B of A is an absorbing
subalgebra of A with respect to t if, for any k ≤ ar(t), any
choice of ai ∈ A such that ai ∈ B for all i 6= k we have
t(a1, . . . , aar(t)) ∈ B.

We say that B is an absorbing subalgebra of A, or that B
absorbs A (and write B /A), if there exists t ∈ Clo(A) such
that B is an absorbing subalgebra of A with respect to t.

We say that A is an absorption free algebra, if it has no
proper absorbing subalgebras.

We also speak about absorbing subuniverses i.e. universes of
absorbing subalgebras.

Definition III.5. If B / A and no proper subalgebra of B
absorbs A, we call B a minimal absorbing subalgebra of
A (and write B // A).

Alternatively, we can say that B is a minimal absorbing
subalgebra of A, if B/A and B is an absorption free algebra.
Equivalence of these definitions follows from transitivity of /
(see Proposition III.2 in [17]).

Algorithm 1 finds, for a given (2, 3)-minimal instance P of
the CSP, a domain restriction Q of P which is 1-minimal and
satisfies SQx // SPx for any x ∈ V .

The algorithms uses a subqoset AbsQoset(P ) of Qoset(P )
formed by the elements (x,B) such that B is a proper
absorbing subuniverse of SPx .

Fig. 1. Algorithm 1: Minimal absorbing subuniverses
Input: (2, 3)-minimal instance P = (V,A, C) of CSP(Inv A)
Output: E = {Ex : x ∈ V } such that Ex // SPx , x ∈ V , and

P |E is 1-minimal
1: while some SPx has a proper absorbing subuniverse do
2: find a maximal component F = {(x,Ex) : x ∈W}

of the qoset AbsQoset(P )
3: P := P |F
4: return {SPx : x ∈ V }

Theorem III.6. Algorithm 1 is correct and, for a fixed
idempotent algebra A, works in polynomial time.

Proof: The qoset AbsQoset(P ) contains at most 2|A||V |
elements, therefore its maximal component can be found in a
polynomial time. In each while loop at least one of the sets
SPx becomes smaller, thus the while loop is repeated at most
|V ||A| times, and the algorithm is therefore polynomial.

The correctness follows from a slightly generalized results
from [9] (the generalized version will be in [10]): In the
beginning of the while loop, P is so called Prague strategy.
An analogue of Proposition III.3 remains valid for Prague
strategies (Lemma IV.10 in [9], Lemma V.5 part (iii) in Section
V), in particular, for each variable x ∈ V , there is at most



one element (x,Ex) in the maximal component, therefore the
definition of F in step 2 makes sense. Finally, the restriction
of P to F is again a Prague strategy (Theorem IV.15 in [9],
Lemma V.6 in Section V). The details are in Section V.

E. Rectangularity

The core result for proving correctness of our algorithm for
conservative CSPs is the “Rectangularity Theorem”. We state
the theorem here, its proof spans Section VI.

We need one more notion. Let A1, . . . , An, B1, . . . , Bn be
sets such that Bi ⊆ Ai and let R ⊆S A1 × · · · × An. We
define a quasi-ordering � on the set {1, 2, . . . , n} by

i � j if R|(i,j)
+[Bi] ⊆ Bj .

Components of this qoset are called (R,B)-strands.

Theorem III.7. Let A be a finite Taylor algebra, let
A1, . . . ,An,B1, . . . ,Bn ∈ Vfin(A) be conservative algebras
such that Bi / / Ai for all i, let R ≤S A1 × · · · × An

and assume that R ∩ (B1 × . . . , Bn) 6= ∅. Then a tuple
a ∈ B1 × · · · × Bn belongs to R whenever a|K ∈ R|K for
each (R,B)-strand K.

F. Maltsev instances

Our final ingredient is the polynomial time algorithm by Bu-
latov and Dalmau [6] for the CSPs over constraint languages
with a Maltsev polymorphism. Their algorithm can be used
without any change in the following setting:

Theorem III.8. [6] Let A be a finite algebra with a ternary
term operation m. Then there is a polynomial time algo-
rithm which correctly decides every 1-minimal instance P of
CSP(Inv A) such that, for every variable x, m is a Maltsev
operation of SPx .

IV. ALGORITHM

The algorithm for conservative CSPs is in Figure 2. It uses
a subqoset NafaQoset(P ) of the qoset Qoset(P ) formed by
the elements (x,B) such that B ⊆ SPx and B has a proper
absorbing subalgebra (where B stands for the subalgebra of
A with universe B).

Theorem IV.1. If A is a conservative finite algebra, then
Algorithm 2 is correct and works in polynomial time.

Proof: By induction on k we show that the algorithm
works in polynomial time for all instances such that |SPx | ≤ k.
The base case of the induction is obvious: if every SPx is
at most one-element, then the algorithm proceeds directly to
Step 15 (where the algorithm answers YES iff every SPx is
one-element).

Step 1 can be done in polynomial time as discussed in
Subsection III-B. In Step 3 the qoset has size at most 2|A||V |,
therefore its maximal component can be found in polynomial
time. Step 5 is polynomial according to Theorem III.6. There
are at most |V | repetitions of the for cycle in Step 6. Step
7 is polynomial by the induction hypothesis, since every Ex
is a minimal absorbing subuniverse of Dx and Dx has, as a

Fig. 2. Algorithm 2 for solving CSP (Inv A) for conservative A

Input: Instance P = (V,A, C) of CSP(Inv A)
Output: “YES” if P has a solution, “NO” otherwise

1: Transform P to a (2, 3)-minimal instance with the same
solution set

2: if some subalgebra of SPx has a proper absorbing subal-
gebra then

3: Find a maximal component D = {Dx : x ∈ W} of
NafaQoset(P )

4: Q := (P |W )|D
5: E := the result of Algorithm 1 for the instance Q
6: for each (Q, E)-strand U do
7: Use this algorithm for the instance (Q|U )|{Ex:x∈U}
8: if no solution exists then
9: F := {SPx − Ex : x ∈ U}

10: P := P |F
11: goto step 1
12: F := {SPx − (Dx − Ex) : x ∈W}
13: P := P |F
14: goto step 1
15: Use the algorithm for Maltsev instances (Theorem III.8)

member of NafaQoset(P ), a proper absorbing subuniverse.
Before we return to Step 1 (either in Step 11 or in Step 14)
at least one of the sets SPx becomes strictly smaller. It follows
that there are at most |A||V | returns to the first step. Finally,
the last step is polynomial by Theorem III.8.

Now we show the correctness of the algorithm.
First, we observe that no solution is lost in Step 10. As

the pairs (x,Ex), x ∈ U are in one component of the
qoset Qoset(Q) and the instance Q is the restriction of P
to elements of the same component of Qoset(P ), it follows
that all the pairs (x,Ex), x ∈ U lie in the same component
of Qoset(P ). Therefore, if f : V → A is a solution to P
such that f(x) ∈ Ex for some x ∈ U , then f(x) ∈ Ex for all
x ∈ U (see Proposition III.3 and the discussion bellow). But
the restriction of such a function f to the set U would be a
solution to the instance (Q|U )|{Ex:x∈U}, thus we would not
get to this step. We have shown that in Step 10 every solution
to P misses all the sets Ex, x ∈ U , and hence we do not lose
any solution when we restrict P to F .

Next, we show that if P has a solution before Step 13,
then the restricted instance P |F has a solution as well. If f :
V → A is a solution to P such that f(x) 6∈ Dx for some
x ∈ W , then f(x) ∈ Dx for all x ∈ W , because (x,Dx),
x ∈ W are in the same component of Qoset(P ) and we can
use Proposition III.3 as above. In this case f is a solution to the
restricted instance. Now we assume that f is a solution to P
such that f(x) ∈ Dx for all x ∈W . For each (Q, E)-strand U
let gU : U → A be a solution to the instance (Q|U )|{Ex:x∈U}.
Let h : V → A be the mapping satisfying h|V−W = f |V−W
and h|U = f |U for each (Q, E)-strand U . We claim that this
mapping is a solution to the instance P |F .

Clearly, h(x) ∈ SPx − (Dx − Ex) for every x ∈W .



We define Dx for x ∈ V −W by Dx = SP(y,x)

+[Dy], where
y is an arbitrarily chosen element of W . The definition of Dx

does not depend on the choice of y: Let y, y′ ∈ W and take
an arbitrary a ∈ SP(y,x)

+[Dy]. From the choice of a it follows
that there is b ∈ Dy such that (b, a) ∈ SP(y,x). Lemma III.2
provides us with an element b′ ∈ A such that (b′, a) ∈ SP(y′,x)

and (b, b′) ∈ SP(y,y′). The latter fact together with Proposition

III.3 implies b′ ∈ Dy′ , therefore a ∈ SP(y′,x)

+[Dy′ ]. We

have proved the inclusion SP(y,x)

+[Dy] ⊆ SP(y′,x)

+[Dy′ ], the
opposite inclusion is proved similarly.

We put Ex = Dx for x ∈ V −W . Let Dx (resp. Ex) denote
the subalgebra of A with universe Dx (resp. Ex), x ∈ V . For
any x ∈ V − W and y ∈ W , the pair (x,Dx) is greater
than or equal to (y,Dy) in the qoset Qoset(P ). Since D is a
maximal component and x 6∈W , it follows that Dx is outside
the qoset NafaQoset(P ) and thus Dx has no proper absorbing
subuniverse. Therefore Ex // Dx for all x ∈ V (for x ∈ W
it follows from the fact that E is the result of Algorithm 1).

Now we are ready to show that h is a solution to P , i.e.
h satisfies all the constraints in C. So, let C = (x, R) ∈ C,
x = (x1, . . . , xn) be an arbitrary constraint. For each i ∈ V
let Ai = Dxi

and Bi = Exi
, let a = (h(x1), . . . , h(xn)), and

let L = {l1, . . . , lk} := {i : xi ∈ W}. By the choice of Dxs,
the relation R is subdirect in A1 × · · · ×An. Since Q|E is 1-
minimal (it is the result of Algorithm 1), the projection of C to
(xl1 , . . . , xlk) has a nonempty intersection with Bl1×· · ·×Blk .
By the choice of Ex, x ∈ V −W it follows that the relation R
has a nonempty intersection with B1×· · ·×Bn. For any i ∈ L
and j ∈ {1, . . . , n} − L we have R|(j,i)

+[Bj ] = Ai 6⊆ Bi,
therefore no element of L is in the same (R,B)-strand as an
element outside L. Moreover, i, j ⊆ L are in the same (R,B)-
strand if and only if xi, xj are in the same (Q, E)-strand, since
R|(i,j) = SP(xi,xj). It follows that a|K ∈ R|K for each (R,B)-
strand K ⊆ L, and the same is of course true for each (R,B)-
strand K ⊆ {1, 2, . . . , n} − L as f |V−W = h|V−W . We have
checked all the assumptions of Theorem III.7, which gives us
a ∈ R. In other words, h satisfies the constraint C.

From the fact that A is conservative it easily follows that
after both Step 10 and Step 13 the restricted instance is still
an instance of CSP(Inv A).

Finally, we prove that P satisfies the assumptions of Theo-
rem III.8 when we get to Step 15. Note that at this point we
know that no subalgebra of SPx has a proper absorbing subalge-
bra. Let t be a cyclic term operation of the algebra A (guaran-
teed by Theorem II.2). If t(a, a, . . . , a, b) = a for some x ∈ V ,
a, b ∈ SPx , then t(a, a, . . . , a, b) = t(a, a, . . . , a, b, a) = · · · =
t(b, a, a, . . . , a), and hence {a} is an absorbing subuniverse
of {a, b} with respect to t, a contradiction. Therefore, as A
is conservative, t(a, a, . . . , a, b) = b = t(b, a, a, . . . , a) for
any x ∈ V, a, b ∈ SPx . Now the term operation m(x, y, z) =
t(x, y, y, . . . , y, z) satisfies the assumptions of Theorem III.8
and the proof is concluded.

V. PRAGUE STRATEGIES

This section fills the gaps in the proof of Theorem III.6.

Definition V.1. Let P = (V,A, C) be a 1-minimal
instance of the CSP. A pattern in P is a tuple
(x1, C1, x2, C2, . . . , Cn−1, xn), where x1, . . . , xn ∈ V and,
for every i = 1, . . . , n − 1, Ci is a constraint whose scope
contains {xi, xi+1}. The pattern w is closed with base x, if
x1 = xn = x. We define [[w]] = {x1, . . . , xn}.

A sequence a1, . . . , an ∈ A is a realization of w in P , if
(ai, ai+1) ∈ Ci|(xi,xi+1) for any i ∈ {1, . . . , n − 1}. We say
that two elements a, a′ ∈ A are connected via w (in P ), if
there exists a realization a = a1, a2, . . . , an−1, an = a′ of the
pattern w.

For two patterns w = (x1, C1, . . . , xn), w′ =
(x′1, C

′
1, . . . , x

′
m) with xn = x′1 we define their concatenation

by wv = (x1, C1, . . . , xn, C
′
1, . . . , x

′
m). We write wk for a

k-fold concatenation of a closed pattern w with itself.

Definition V.2. A 1-minimal instance P = (V,A, C) is a
Prague strategy, if for every x ∈ V , every pair of closed
patterns v, w in P with base x such that [[v]] ⊆ [[w]], and every
a, a′ ∈ SPx connected via the pattern v in P , there exists a
natural number k such that a is connected to a′ via the pattern
wk.

First we show that every (2, 3)-minimal instance is a Prague
strategy. We need an auxiliary lemma.

Lemma V.3. Let P = (V,A, C) be a (2, 3)-minimal instance,
let x, x′ ∈ V and let w = (x = x1, C1, x2, . . . , xn = x′)
be a pattern. Then a is connected to a′ via w in P for any
a, a′ ∈ A such that (a, a′) ∈ SP(x,x′).

Proof: Using Lemma III.2 we obtain a2 ∈ A such that
(a, a2) ∈ SP(x1,x2) and (a2, a

′) ∈ SP(x2,xn). The element a2 is
the second (after a) element of a realization of the pattern w.
Similarly, there exists an element a3 ∈ A such that (a2, a3) ∈
SP(x2,x3) and (a3, a

′) ∈ SP(x3,xn). Repeated applications of this
reasoning produce a realization of the pattern w connecting a
to a′.

Lemma V.4. Every (2, 3)-minimal instance is a Prague strat-
egy.

Proof: Let x ∈ V , let v, w be closed patterns in P with
base x such that [[v]] ⊆ [[w]], and let a, a′ ∈ SPx be elements
connected via v = (x1, . . . , xn). Let a = a1, . . . an = a′ be a
realization of v. Since x2 appears in w there exists an initial
part of w, say w′, starting with x and ending with x2. Since
(a, a2) ∈ SP(x,x2) we use Lemma V.3 to connect a to a2 via
w′. Since x3 appears in w there exists w′′ such that w′w′′

is an initial part of w2 and such that w′′ ends in x3. Since
(a2, a3) ∈ SP(x2,x3) we use Lemma V.3 again to connect a2

to a3 via the pattern w′′. Now a1 and a3 are connected via
the pattern w′w′′. By continuing this reasoning we obtain the
pattern wk (for some k) connecting a to a′.
Part (iii) of the following lemma generalizes Proposition III.3.

Lemma V.5. Let P = (V,A, C) be a 1-minimal instance. The
following are equivalent.
(i) P is a Prague strategy.



(ii) For every x ∈ V , every pair of closed patterns v, w in P
with base x such that [[v]] ⊆ [[w]], and every a, a′ ∈ SPx
connected via the pattern v in P , there exists a natural
number m such that, for all k ≥ m, the elemenents a, a′

are connected via the pattern wk;
(iii) For every two elements (x,B), (x′, B′) in the same com-

ponent of the qoset Qoset(P ) and every constraint C ∈ C
whose scope contains {x, x′}, we have C|(x,x′)

+[B] =
B′.

Proof: For (i) =⇒ (ii) it is clearly enough to prove
the claim for a = a′. To do so, we obtain (using (i)) a natural
number p such that a is connected to a via wp. Let b be an
element of A such that a is connected to b via w and b is
connected to a via wp−1. We use the property (i) for a, b
and the pattern wp to find a natural number q such that a is
connected to b via wpq . From the facts that a is connected to
a via wp and also via wpq+p−1 (as a is connected to b via
wpq and b to a via wp−1) we get that a is connected to a via
wip+j(pq+p−1) for arbitrary i, j. Since p and pq + p − 1 are
coprime, the claim follows.

For (i) =⇒ (iii) let (x,B) = (x1, B1), (x2, B2),
. . . , (xn, Bn) = (x′, B′) = (xn+1, B

′
1), (xn+2, B

′
2),

. . . , (xm, Bm) = (x,B) be a sequence of elements of
Qoset(P ) and C1, . . . , Cm−1 ∈ C be constraints such that
C|(xi,xi+1)

+[Bi] = Bi+1 for every i = 1, . . . ,m− 1.
Assume that there exists a, a′ ∈ A such that (a, a′) ∈

C|(x,x′) and a′ ∈ B′ while a 6∈ B. We can find an
element b ∈ B such that b is connected to a′ via the
pattern (x1, C1, . . . , xn). The elements b, a are connected
via the pattern (x1, C1, . . . , Cn−1, xn, C, x1), therefore, by
(i), they must be connected via a power of the pattern
(x1, C1, . . . , Cm−1, xm), which contradicts the last prop-
erty from the last paragraph. This contradiction shows that
C|(x′,x)

+[B′] ⊆ B. Similarly C|(x,x′)
+[B] ⊆ B and the proof

can be finished as in Proposition III.3.
We do not need the implication (iii) =⇒ (i) in this paper,

therefore we omit the proof.
The following lemma covers the last gap.

Lemma V.6. Let P = (V,A, C) be an instance of CSP(Inv A)
which is a Prague strategy and let F = {(x,Ex) : x ∈ W}
be a maximal component of the qoset AbsQoset(P ). Then the
restriction Q = P |F is a Prague strategy.

Proof: It is easy to see that, for any x, x′ ∈ V , any B/SPx
and any constraint C whose scope contains {x, x′}, the set
C|(x,x′)

+[B] is an absorbing subuniverse of SPx′ (with respect
to the same term operation of A). Therefore C|(x,x′)

+[Ex] =
SPx′ whenever x ∈ W and x′ ∈ V −W . From this fact and
Lemma V.5 part (iii) it follows that Q is 1-minimal.

To prove that Q is a Prague strategy let v and w = (x =
x1, C1, x2, . . . , Cn−1, xn = x) be closed patterns with base x
such that [[v]] ⊆ [[w]] and let a, a′ ∈ SQx be elements connected
via v in Q. Let t be a k-ary term operation providing the
absorptions Ex / SPx . By Lemma V.5 part (ii) we can find a
natural number m such that any two elements b, b′, which are

connected in P via some closed pattern v′ with base x such
that [[v′]] ⊆ [[w]], are connected via wm.

We form a matrix with k rows and (km(n−1)+1) columns.
The i-th row is formed as follows. We find a realization (1)
of the pattern w(i−1)m connecting a to an element b in Q.
This is possible since Q is 1-minimal. (For i = 1 we consider
the empty sequence.) Then we find a realization (3) of the
pattern w(k−i)m connecting some element b′ to a′ in Q. Finally
we find a realization (2) of the pattern wm connecting b to
b′ in the strategy P (which is possible by the last sentence
in the previous paragraph). Finally we join the realizations
(1),(2),(3). When we apply the operation t to the columns of
this matrix, we get a realization of the pattern wkm connecting
a = t(a, . . . , a) to a′ = t(a′, . . . , a′) in Q, which finishes the
proof.

VI. PROOF OF THEOREM III.7

For the entire section we fix a finite idempotent Taylor algebra
A.

Two absorptions can be provided by different term opera-
tions. A simple trick can unify them:

Lemma VI.1. Let A1,A2,B1,B2 ∈ Vfin(A) and B1 /
A1,B2 /A2. Then there exists a term operation t of A such
that both absorptions are with respect to the operation t.

Proof: If Bi is an absorbing subalgebra of Ai

with respect to an ni-ary operation ti, i = 1, 2, then
the n1n2-ary operation defined by t(a1, . . . , an1n2) =
t1(t2(a1, . . . , an2), t2(an2+1, . . . ), . . . ) satisfies the conclu-
sion.
The main tool for proving Theorem III.7 is the Absorption
Theorem (Theorem III.6. in [17]). We require a definition of
a linked subdirect product:

Definition VI.2. Let R ⊆S A1×A2. We say that two elements
a, a′ ∈ A1 are R-linked via c0, c1, . . . , c2n, if a = c0, c2n =
a′ and (c2i, c2i+1) ∈ R and (c2i+2, c2i+1) ∈ R for all i =
0, 1, . . . , n− 1.

We say that R is linked, if any two elements a, a′ ∈ A1 are
R-linked.

Theorem VI.3. [17], [18] Let A1,A2 ∈ Vfin(T) be absorp-
tion free algebras and let R ≤S A1 × A2 be linked. Then
R = A1 ×A2.

We will need the following consequence.

Lemma VI.4. Let A1,A2 ∈ Vfin(A) be absorption free
algebras, let R ≤S A1 × A2 and let α1 be a maximal
congruence of A1. Then either {R+[C] : C is an α1-block}
is the set of blocks of a maximal congruence α2 of A2, or
R+[C] = A2 for every α1-block C.

Proof: If the sets R+[C] are disjoint, then they are blocks
of an equivalence on A2, and it is straightforward to check that
this equivalence is indeed a maximal congruence of A2.

In the other case we consider the factor algebra A′1 =
A1/α1 and the subdirect subalgebra R′ = {([a1]α1 , a2) :



(a1, a2) ∈ R} of A1 ×A2. Since α1 is maximal, the algebra
A′1 has only trivial congruences. Also, A′1 is an absorption free
algebra, because the preimage of any absorbing subalgebra
C ≤ A′ is an absorbing subalgebra of A.

We define a congruence ∼ on A′1 by [a1] ∼ [a2], if [a1], [a2]
are R′-linked. As not all of the sets R+[C] are disjoint, ∼
is not the diagonal congruence, therefore ∼ must be the full
congruence, and it follows that R′ is linked. By Theorem VI.3
R′ = A′1 × A2. In other words, R+[C] = A2 for every α1-
block C.
Links are absorbed to absorbing subuniverses:

Lemma VI.5. Let A1,A2 ∈ Vfin(A), let R ≤S A1×A2, let
B1 /A1, B2 /A2 and let S = R∩ (B1×B2) be subdirect in
B1×B2. Then every pair b1, b′1 ∈ B1 of R-linked elements is
also S-linked.

Proof: By Lemma VI.1 there exists a term operation t
such that both absorptions are with respect to t. Let b1, b′1 ∈
B1 be arbirary. Since S is subdirect, there exist b2, b′2 ∈ B2

such that (b1, b2), (b′1, b
′
2) ∈ S. Let b1, b′1 be R-linked via

c0, c1, . . . , c2n. Now the following sequence S-links b1 to b′1:

b1 = t(b1 = c0, b1, . . . , b1), t(c1, b2, . . . , b2), t(c2, b1, . . . , b1),

. . . , t(b′1 = c2n, b1, . . . , b1), t(b′2, c1, b2, . . . , b2), . . . ,

t(b′1, b
′
1, b1, . . . , b1), t(b′2, b

′
2, c1, b2, . . . , b2), . . . , . . . ,

t(b′1, . . . , b
′
1) = b′1.

A subalgebra of a conservative absorption free algebra which
hits all block of a proper congruence is absorption free:

Lemma VI.6. Let A1 ∈ Vfin(A) be a conservative absorption
free algebra and let α be a proper congruence of A1. Then
any subalgebra B of A1 which has a nonempty intersection
with every α-block is an absorption free algebra.

Proof: For a contradiction, consider a proper absorbing
subuniverse C of B. Let D1, . . . , Dk be all the α-blocks whose
intersections with B and C are equal and let E1, . . . , El be
the remaining α-blocks which intersect C nonempty.

We claim that, for every m ≤ l, the set F = D1∪· · ·∪Dk∪
E1 ∪ · · · ∪ Em is an absorbing subuniverse of A: Let t be a
term operation providing the absorption C /B and let a be a
tuple of elements in A with all the coordinates in F with the
exception of, say, ai. We take any tuple b such that bj α aj
for all coordinates j, bi ∈ B − C and bj ∈ C for all j 6= i.
As B /C, t(b) is an element of C and, due to conservativity,
t(b) ∈ F . Therefore t(a) ∈ F as this element is α-congruent
to t(b).

For an appropriate choice of m ≤ l, F is a proper nonempty
subset of A and F /A, a contradiction.
A subdirect product of conservative absorption free algebras
is absorption free:

Lemma VI.7. Let R ≤S A1 ×A2 × · · · ×An, where every
Ai ∈ Vfin(A) is a conservative absorption free algebra. Then
R is an absorption free algebra.

Proof: We take a minimal counterexample to the lemma
in the following sense: We assume that the lemma holds true
for every smaller n, and also for every R′ ≤S A′1 × · · · ×
A′n such that |A′i| ≤ |Ai|, i = 1, . . . , n, where at least one
inequality is strict. We can assume that no Ai is one-element,
otherwise we can employ the minimality assumption and use
the lemma for the projection to the remaining coordinates.

Let S be a proper absorbing subuniverse of R. It is easily
seen that the projection of S to any coordinate i is an absorbing
subuniverse of Ai, thus S is subdirect. Let α1 be a maximal
congruence of A1.

For every i ∈ {1, 2, . . . , n} we have two possibilities (see
Lemma VI.4):
(i) {R|(1,i)

+[C] : C is an α1-block} are blocks of a maxi-
mal congruence αi of Ai

(ii) R|(1,i)
+[C] = Ai for every α1-block C

Let G (resp. W ) denote the set of is for which the first (resp.
the second) possibility takes place. By using Lemma VI.4
again, we get that R|(i,j)

+[C] = Aj for any i ∈ G, j ∈ W
and any αi-block C.

We take an arbitrary tuple (a1, . . . , an) ∈ R and we aim
to show that this tuple belongs to S as well. The proof splits
into two cases.

Assume first that for every i ∈ G, αi is the diagonal
congruence. Let A′j = R|(1,j)

+[{a}], j = 1, 2, . . . , n, let
R′ = R∩(A′1×· · ·×A′n) and let S′ = S∩(A′1×· · ·×A′n). Note
that A′i is one element (for i ∈ G) or equal to Ai (for i ∈W ),
and S′ absorbs R′. Therefore R′ = S′ (by the minimality
assumption) and hence (a1, . . . , an) ∈ S.

Now assume that some αi, i ∈ G is not the diagonal
congruence. Take a proper subset B of Ai which contains
ai and which intersects all αi-blocks nonempty. Let A′j =
R|(i,j)

+[B], j = 1, . . . , n, and let R′, S′ be as in the previous
paragraph. By Lemma VI.7 every A′j , j ∈ G is an absorption
free algebra, and A′j = Aj for j ∈ W is absorption free as
well. Now, by the minimality assumption, S′ = R′, hence
(a1, . . . , an) ∈ S.
The following lemma proves a special case of Theorem III.7.
Note that we do not require A2 to be conservative.

Lemma VI.8. Let A1,A2,B1,B2 ∈ Vfin(A) be algebras
such that A1 is conservative, B1 // A1 and B2 // A2. Let
R ≤S A1 × A2. If R ∩ (B1 × B2) 6= ∅ and there exists a
pair (a1, b2) ∈ R such that a1 ∈ A1 −B1 and b2 ∈ B2, then
B1 ×B2 ⊆ R.

Proof: Let S = R∩ (B1×B2). As before, the projection
of S to the first (resp. second) coordinate is an absorbing
subuniverse of B1 (resp. B2), and, by the assumption, S is
nonempty, therefore S ≤S B1×B2. Let b1 ∈ B1 be such that
(b1, b2) ∈ R. We define a congruence on A1 by putting c ∼ d,
if c and d are R-linked.

Let C denote the set of all the elements of B1 which are
not R-linked to b1. If C is empty, then, by Lemma VI.5, S is
linked and therefore S = B1 ×B2 by Theorem VI.3.

Otherwise, C is a proper subuniverse of B1 and we claim
that C/B1: Let t be a term operation providing the absorption



B1 /A1 and let c be a tuple of elements of B1 with all the
coordinates but one, say ci, in C. Let d be the tuple defined
by di = a1, and dj = cj for j 6= i. As di ∼ ci for all i we
have t(c) ∼ t(d). But t(d) lies inside C (as B1 absorbs A1

and A1 is conservative), hence also t(c) ∈ C.
We have found a proper absorbing subuniverse C of B1, a

contradiction.
The next lemma generalizes the previous one. Recall the
definition of the quasi-ordering � introduced in Subsection
III-E.

Lemma VI.9. Let A1, . . . ,An,B1, . . . ,Bn ∈ Vfin(A) be al-
gebras such that A1, . . . ,An−1 are conservative and Bi//Ai

for all i = 1, . . . , n. If {1, 2, . . . , n − 1} is an (R,B)-strand
and there exists a tuple (a1, a2, . . . , an−1, bn) ∈ R such that
bn ∈ Bn and ai ∈ Ai − Bi for some (equivalently every)
i ∈ {1, 2, . . . , n−1}, then every tuple c ∈ B1×· · ·×Bn such
that c|{1,2,...,n−1} ∈ R|{1,2,...,n−1} belongs to R.

Proof: We take a minimal counterexample in the same
sense as in Lemma VI.7, i.e., we assume that the lemma holds
if n is smaller and also if some Ai is smaller.

We may assume that all Bis are at least two-element and let
us also assume that if some of the algebras B1, . . . ,Bn has
a nontrivial congruence, then B1 has a nontrivial congruence
(otherwise we just change the indices).

Let α1 be a maximal congruence of B1. By applying
Lemma VI.4 as in the proof of Lemma VI.7 we get that, for
each i ∈ {1, 2, . . . , n− 1}, either R|(1,i)

+[C] = Bi for every
α1-block C, or {R|+(1,i)[C] : C is an α-block } are blocks of
a maximal congruence αi on Bi.

Let c ∈ B1 × · · · × Bn be an arbitrary tuple such that
c|{1,2,...,n−1} ∈ R|{1,2,...,n−1}.

If α1 is the diagonal congruence, then we put D =
{c1} ∪ (A1 − B1). Otherwise, we take an arbitrary D such
that (A1 − B1) ∪ {c1} ⊆ D ( A1 and D intersects every
α1-block nonempty. Let A′i = R|(1,i)

+[D], B′i = Bi ∩ A′i,
i = 1 . . . , n and R′ = R ∩ (A′1 × · · · ×A′n).

For every i ∈ {1, . . . , n − 1}, B′i is an absorption free
algebra, either because B′i is a singleton, or B′i intersects every
αi block nonempty and we can apply Lemma VI.6. From
Lemma VI.8 it follows that B1×Bn ⊆ R|(1,n), therefore B′n =
Bn, in particular, (a1, a2, . . . , an−1, bn) ∈ R′. Obviously B′i
is an absorbing sublagebra of A′i for every i = 1, . . . , n.
Now c ∈ R′ (⊆ R) follows from the miniminality of our
counterexample.
We are ready to prove Theorem III.7.

Theorem VI.10. Let A1, . . . ,An,B1, . . . ,Bn ∈ Vfin(A) be
conservative algebras such that Bi // Ai for all i = 1, . . . , n,
let R ≤S A1×· · ·×An and assume that R∩(B1×. . . , Bn) 6=
∅. Then a tuple a ∈ B1 × · · · × Bn belongs to R whenever
a|K ∈ R|K for each (R,B)-strand K.

Proof: We again use the minimality assumption, i.e., we
assume that the theorem holds if n is smaller, or if some
Ai is smaller. We can assume that there are at least two
(R,B)-strands and that |Bi| > 1 for all i = 1, . . . , n. Let

a ∈ B1 × · · · × Bn be a tuple such that a|K ∈ R|K for each
(R,B)-strand K, but a 6∈ R. Note that a|L ∈ R|L for every
proper subset L of {1, 2, . . . , n}, because of the minimality
assumption – we can apply the theorem to R|L.

Let D be a minimal (R,B)-strand and let l 6∈ D. Since
l 6� D, there exists a tuple c ∈ R such that cl ∈ Bl and
ci 6∈ Bi for all i ∈ D. Let E = {i ∈ {1, . . . , n} : ci 6∈ Bi}−D
and F = {i ∈ {1, . . . , n} : ci ∈ Bi}. Clearly, E and F are
unions of (R,B)-strands.

Our aim now is to find a tuple c′ ∈ R such that c′i ∈ Ai−Bi
for all i ∈ D, and c′i ∈ Bi for all i 6∈ D. If E = ∅, we can
take c′ = c, so suppose otherwise. We consider the following
subset of R:

R′ = {b ∈ R : bi ∈ {ai} ∪ (Ai −Bi) for all i ∈ D}.

For all i ∈ {1, . . . , n}, let A′i = R′|{i}. Let B′i = {ai} for all
i ∈ D, and B′i = Bi for i 6∈ D.

We have B′i ⊆ Ai for every i 6∈ D: for any b ∈ Bi we
apply the theorem for R|D∪{i} to obtain a tuple e ∈ R such
that ei = b and ej = dj for every j ∈ D.

We know that a|D∪E ∈ R|D∪E , therefore a|E ∈ R′|E .
Similarly, a|F ∈ R′|F .

Observe that any i ∈ E, j ∈ F are in different (R′, B′)-
strands, since c ∈ R′. Therefore, the theorem, used for R′ and
the minimal absorbing subuniverses B′i of A′i, proves a|E∪F ∈
R′|E∪F . Let c′ be a tuple from R′ with c′|E∪F = a|E∪F . The
tuple c′ cannot be equal to a as a 6∈ R, therefore c′i ∈ Ai−Bi
for all i ∈ D, c′i ∈ Bi for i 6∈ D.

Now, when we have the sought after tuple c′, we can finish
the proof by applying Lemma VI.9 for the following choice:
n′ = |D| + 1; A′i = Adi and B′i = Bdi for i = 1, . . . , l,
where D = {d1, . . . , dl}; A′n′ = R|E∪F ; B′n′ = S|E∪F ,
where S = {b ∈ R : bi ∈ Bi for all i ∈ E ∪ F}; and
(a′1, a

′
2, . . . , a

′
n′−1, b

′
n) = (cd1 , cd2 , . . . , cdl

, c′|E∪F ). All the
assumptions are satisfied, the only nontrivial fact is that B′n′

is absorption free and this follows from Lemma VI.7.

VII. CONCLUSION

We have presented a new, simple algorithm for solving
tractable CSPs over conservative languages. We believe that
this simplification can help in the final attack on the dichotomy
conjecture.

No effort has been made to optimize the algorithm, we has
not computed its time complexity and we has not compared
the complexity with the algorithm of Bulatov. This can be a
topic of further research.

We note that some reductions can be done using a trick
from [26], it would be interesting to see whether this trick
can improve the running time.
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