Accuracy and Stability of a
 Predictor-Corrector Crank-Nicolson Method with Many Subdomains

Felix Kwok

Section de Mathématiques
Université de Genève
SciCADE, Toronto, July 11th, 2011

Model Problem

Suppose we want to solve

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\mathcal{L} u+f & & \text { on } \Omega \subset \mathbb{R}^{d}, \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

where

$$
\mathcal{L} u=\sum_{i, j} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)-c(x) u
$$

is uniformly elliptic, i.e., $\left[a_{i j}\right]$ is uniformly s.p.d. and $c(x) \geq 0$.

Method of Lines

- Assume the spatial discretization

$$
\mathcal{L} u \approx-\frac{1}{h^{2}} A \mathbf{u}+O\left(h^{2}\right)
$$

where

- A is large and sparse
- A is symmetric positive definite (due to Dirichlet boundary)
- $\|A\|_{2}$ is independent of h (due to $\frac{1}{h^{2}}$ factor)
- If the time discretization is implicit, one must solve a large sparse linear system involving A at every time step

Domain Decomposition

Domain Decomposition

- Decompose Ω into several subdomains Ω_{i}

Domain Decomposition

- Decompose Ω into several subdomains Ω_{i}
- Define subdomain problems that can be solved in parallel

Domain Decomposition

- Decompose Ω into several subdomains Ω_{i}
- Define subdomain problems that can be solved in parallel
- Exchange interface data between subdomains
- Iterate to get consistent solution across subdomains

Types of DD algorithms

Example : Backward Euler

$$
\frac{\mathbf{u}^{n+1}-\mathbf{u}^{n}}{\Delta t}=-\frac{1}{h^{2}} A \mathbf{u}^{n+1}+\mathbf{f}
$$

1. Domain decomposition in space : at each time step, solve

$$
\left(I+\frac{\Delta t}{h^{2}} A\right) \mathbf{u}^{n+1}=F\left(\mathbf{u}^{n}, \mathbf{f}^{n}\right)
$$

using domain decomposition in space only

Types of DD algorithms

Example : Backward Euler

$$
\frac{\mathbf{u}^{n+1}-\mathbf{u}^{n}}{\Delta t}=-\frac{1}{h^{2}} A \mathbf{u}^{n+1}+\mathbf{f}
$$

2. Schwarz waveform relaxation : solve

$$
\left(I+\frac{\Delta t}{h^{2}} A\right) \mathbf{u}_{i}^{n+1}=F_{i}\left(\mathbf{u}_{i}^{n}, \mathbf{u}_{i \pm 1}^{n}, \mathbf{f}^{n}\right)
$$

on each Ω_{i} independently over many time steps and exchange interface data over the entire time window

- Must iterate to convergence

Types of DD algorithms

Example : Backward Euler

$$
\frac{\mathbf{u}^{n+1}-\mathbf{u}^{n}}{\Delta t}=-\frac{1}{h^{2}} A \mathbf{u}^{n+1}+\mathbf{f}
$$

3. Predictor-corrector method : for each time step,

- Predict interface values explicitly (Forward Euler)
- Solve subdomain problems (Backward Euler) using predicted values
- Correct interface values (Backward Euler) using interior values
- Advantage : No need to iterate to convergence!

Predictor-Corrector Euler

Predictor-Corrector Euler

1. Predict interface values \mathbf{u}_{Γ}^{*} explicitly (Forward Euler)

$$
\frac{\mathbf{u}_{\Gamma}^{*}-\mathbf{u}_{\Gamma}^{n}}{\Delta t}=-\frac{1}{h^{2}}\left(A_{\Gamma} \mathbf{u}_{\Gamma}^{n}+A_{\Gamma /} \mathbf{u}_{l}^{n}\right)+R_{\Gamma} \mathbf{f}
$$

Predictor-Corrector Euler

2. Solve independent problems over Ω_{j} using \mathbf{u}_{Γ}^{*}

$$
\frac{\mathbf{u}_{l}^{n+1 / 2}-\mathbf{u}_{l}^{n}}{\Delta t}=-\frac{1}{h^{2}}\left(A_{l} \mathbf{u}_{l}^{n+1 / 2}+A_{l \Gamma} \mathbf{u}_{\Gamma}^{*}\right)+R_{l} \mathbf{f}
$$

Predictor-Corrector Euler

3. Correct \mathbf{u}_{Γ} implicitly (Backward Euler) using interior values

$$
\frac{\mathbf{u}_{\Gamma}^{n+1}-\mathbf{u}_{\Gamma}^{n}}{\Delta t}=-\frac{1}{h^{2}}\left(A_{\Gamma} \mathbf{u}_{\Gamma}^{n+1}+A_{\Gamma /} \mathbf{u}_{I}^{n+1 / 2}\right)+R_{\Gamma} \mathbf{f}
$$

Predictor-Corrector Crank-Nicolson

- To derive Crank-Nicolson, make a time step to $t_{n+1 / 2}$ using backward Euler, then extrapolate :

$$
\begin{gathered}
\frac{\mathbf{u}^{n+1 / 2}-\mathbf{u}^{n}}{\Delta t / 2}=-\frac{1}{h^{2}} A \mathbf{u}^{n+1 / 2}+\mathbf{f} \\
\mathbf{u}^{n+1}=2 \mathbf{u}^{n+1 / 2}-\mathbf{u}^{n}
\end{gathered}
$$

Predictor-Corrector Crank-Nicolson

- To derive Crank-Nicolson, make a time step to $t_{n+1 / 2}$ using backward Euler, then extrapolate :

$$
\begin{gathered}
\left(I+\frac{k}{2} A\right) \mathbf{u}^{n+1 / 2}=\mathbf{u}^{n}+\frac{\Delta t}{2} \mathbf{f} \\
\mathbf{u}^{n+1}=2 \mathbf{u}^{n+1 / 2}-\mathbf{u}^{n}
\end{gathered}
$$

(where $k=\Delta t / h^{2}$)

Predictor-Corrector Crank-Nicolson

- To derive Crank-Nicolson, make a time step to $t_{n+1 / 2}$ using backward Euler, then extrapolate :

$$
\begin{gathered}
\left(I+\frac{k}{2} A\right) \mathbf{u}^{n+1 / 2}=\mathbf{u}^{n}+\frac{\Delta t}{2} \mathbf{f} \\
\left(I+\frac{k}{2} A\right) \mathbf{u}^{n+1}=\left(I-\frac{k}{2} A\right) \mathbf{u}^{n}+\Delta t \cdot \mathbf{f}
\end{gathered}
$$

(where $k=\Delta t / h^{2}$)

Predictor-Corrector Crank-Nicolson

- To derive Crank-Nicolson, make a time step to $t_{n+1 / 2}$ using backward Euler, then extrapolate :

$$
\begin{gathered}
\left(I+\frac{k}{2} A\right) \mathbf{u}^{n+1 / 2}=\mathbf{u}^{n}+\frac{\Delta t}{2} \mathbf{f} \\
\left(I+\frac{k}{2} A\right) \mathbf{u}^{n+1}=\left(I-\frac{k}{2} A\right) \mathbf{u}^{n}+\Delta t \cdot \mathbf{f}
\end{gathered}
$$

(where $k=\Delta t / h^{2}$)

- Do the same for the predictor-corrector version :

$$
\left(I+\frac{k}{2} X_{2} A\right)\left(I+\frac{k}{2} X_{1} A\right) \mathbf{u}^{n+1}=\left(I-\frac{k}{2} X_{2} A\right)\left(I-\frac{k}{2} X_{1} A\right) \mathbf{u}^{n}+\Delta t \cdot \mathbf{f}
$$

Predictor-Corrector Crank-Nicolson

$\left(I+\frac{k}{2} X_{2} A\right)\left(I+\frac{k}{2} X_{1} A\right) \mathbf{u}^{n+1}=\left(I-\frac{k}{2} X_{2} A\right)\left(I-\frac{k}{2} X_{1} A\right) \mathbf{u}^{n}+\Delta t \cdot \mathbf{f}$

- $X_{1}=$ projection onto Γ
- $X_{2}=I-X_{1}=$ projection onto $\Omega \backslash \Gamma$

Predictor-Corrector Crank-Nicolson

- Introduced by Rempe and Chopp (SISC 2006)
- Used to simulate neural activity in branched structures
- Shown experimentally to have formal second order in time and in space
- What about simultaneous refinement? Must analyze :
- Stability
- Accuracy

Stability

$$
\underbrace{\left(I+\frac{k}{2} X_{2} A\right)\left(I+\frac{k}{2} X_{1} A\right)}_{B} \mathbf{u}^{n+1}=\underbrace{\left(I-\frac{k}{2} X_{2} A\right)\left(I-\frac{k}{2} X_{1} A\right)}_{C} \mathbf{u}^{n}+\Delta t \cdot \mathbf{f}
$$

- Stability matrix :

$$
B^{-1} C=\left(I+\frac{k}{2} X_{1} A\right)^{-1}\left(I+\frac{k}{2} X_{2} A\right)^{-1}\left(I-\frac{k}{2} X_{2} A\right)\left(I-\frac{k}{2} X_{1} A\right)
$$

Stability

$$
\underbrace{\left(I+\frac{k}{2} X_{2} A\right)\left(I+\frac{k}{2} X_{1} A\right)}_{B} \mathbf{u}^{n+1}=\underbrace{\left(I-\frac{k}{2} X_{2} A\right)\left(I-\frac{k}{2} X_{1} A\right)}_{C} \mathbf{u}^{n}+\Delta t \cdot \mathbf{f}
$$

- Stability matrix :

$$
B^{-1} C=\left(I+\frac{k}{2} X_{1} A\right)^{-1}\left(I+\frac{k}{2} X_{2} A\right)^{-1}\left(I-\frac{k}{2} X_{2} A\right)\left(I-\frac{k}{2} X_{1} A\right)
$$

- Expect unconditional stability, but
- Factors are non-symmetric
- Factors do not commute

Stability

$$
B^{-1} C=\left(I+\frac{k}{2} X_{1} A\right)^{-1}\left(I+\frac{k}{2} X_{2} A\right)^{-1}\left(I-\frac{k}{2} X_{2} A\right)\left(I-\frac{k}{2} X_{1} A\right)
$$

Stability

$$
\begin{aligned}
A^{1 / 2} B^{-1} C A^{-1 / 2}=(I & \left.+\frac{k}{2} A^{1 / 2} X_{1} A^{1 / 2}\right)^{-1}\left(I+\frac{k}{2} A^{1 / 2} X_{2} A^{1 / 2}\right)^{-1} \\
& \cdot\left(I-\frac{k}{2} A^{1 / 2} X_{2} A^{1 / 2}\right)\left(I-\frac{k}{2} A^{1 / 2} X_{1} A^{1 / 2}\right)
\end{aligned}
$$

- Symmetrize the factors

Stability

$$
A^{1 / 2} B^{-1} C A^{-1 / 2}=\left(I+\frac{k}{2} M_{1}\right)^{-1}\left(I+\frac{k}{2} M_{2}\right)^{-1}\left(I-\frac{k}{2} M_{2}\right)\left(I-\frac{k}{2} M_{1}\right)
$$

- Symmetrize the factors

Stability

$$
\begin{aligned}
& \overbrace{A^{1 / 2}\left(I+\frac{k}{2} M_{1}\right)}^{S} B^{-1} \overbrace{C\left(I+\frac{k}{2} M_{1}\right)^{-1} A^{-1 / 2}}^{s^{-1}}= \\
& \left(I+\frac{k}{2} M_{2}\right)^{-1}\left(I-\frac{k}{2} M_{2}\right)\left(I-\frac{k}{2} M_{1}\right)\left(I+\frac{k}{2} M_{1}\right)^{-1}
\end{aligned}
$$

- Symmetrize the factors
- Move the first factor to the back

Stability

$$
\begin{aligned}
&\left\|S B^{-1} C S^{-1}\right\|_{2}=\left\|\left(I+\frac{k}{2} M_{2}\right)^{-1}\left(I-\frac{k}{2} M_{2}\right)\right\|_{2} \\
& \cdot\left\|\left(I-\frac{k}{2} M_{1}\right)\left(I+\frac{k}{2} M_{1}\right)^{-1}\right\|_{2}
\end{aligned}
$$

- Symmetrize the factors
- Move the first factor to the back
- Bound each piece by the 2-norm

Stability

$$
\begin{aligned}
\left\|S B^{-1} C S^{-1}\right\|_{2}=\|\left(I+\frac{k}{2} M_{2}\right)^{-1}(I- & \left.\frac{k}{2} M_{2}\right) \|_{2} \\
& \cdot\left\|\left(I-\frac{k}{2} M_{1}\right)\left(I+\frac{k}{2} M_{1}\right)^{-1}\right\|_{2}
\end{aligned}
$$

- Each $M_{i}=A^{1 / 2} X_{i} A^{1 / 2}$ is symmetric, with eigenvalues ≥ 0
- $\left(I+\frac{k}{2} M_{i}\right)^{-1}\left(I-\frac{k}{2} M_{i}\right)$ is symmetric and has eigenvalues

$$
\left|\frac{1-k \lambda_{i} / 2}{1+k \lambda_{i} / 2}\right| \leq 1
$$

for all $k>0 \Longrightarrow$ unconditional stablity !

Local Truncation Error

- Would like to pick $\Delta t=h$ like in classical Crank-Nicolson

Local Truncation Error

- Would like to pick $\Delta t=h$ like in classical Crank-Nicolson
- The exact solution $u\left(\cdot, t_{n}\right)$ satisfies

$$
B u\left(\cdot, t_{n+1}\right)=C u\left(\cdot, t_{n}\right)+\Delta t \cdot f\left(\cdot, t_{n+1 / 2}\right)+\rho_{n}
$$

where

$$
\rho_{n}=\Delta t\left[\frac{\Delta t^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t}\left(\cdot, t_{n+1 / 2}\right)+O\left(\Delta t^{2}\right)+O\left(h^{2}\right)\right]
$$

Local Truncation Error

- Would like to pick $\Delta t=h$ like in classical Crank-Nicolson
- The exact solution $u\left(\cdot, t_{n}\right)$ satisfies

$$
B u\left(\cdot, t_{n+1}\right)=C u\left(\cdot, t_{n}\right)+\Delta t \cdot f\left(\cdot, t_{n+1 / 2}\right)+\rho_{n}
$$

where

$$
\rho_{n}=\Delta t\left[\frac{\Delta t^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t}\left(\cdot, t_{n+1 / 2}\right)+O\left(\Delta t^{2}\right)+O\left(h^{2}\right)\right]
$$

- If $\Delta t=h$, method is inconsistent !

Local Truncation Error

- Local truncation error does not decrease!

Global Error, $\Delta t=h$

- But, L^{2} error shows first-order convergence!

Convergence Analysis

- Global error ε_{n} satisfies

$$
\varepsilon_{n}=\sum_{j=1}^{n}\left(B^{-1} C\right)^{n-j} B^{-1} \rho_{j-1}
$$

- Want to bound the discrete H^{1} seminorm of ε_{n} :

$$
C_{1} h^{d-2}\left\|\varepsilon_{n}\right\|_{A}^{2} \leq\left|\varepsilon_{n}\right|_{H^{1}(\Omega)}^{2} \leq C_{2} h^{d-2}\left\|\varepsilon_{n}\right\|_{A}^{2}
$$

- Standard argument using stability shows

$$
\left\|\varepsilon_{n}\right\|_{A} \leq \sum_{j=1}^{n}\left\|\left(I+\frac{k}{2} X_{2} A\right)^{-1} \rho_{j-1}\right\|_{A}
$$

Convergence Analysis

- A-norm of $\left(I+\frac{k}{2} X_{2} A\right)^{-1} \rho_{0}$ decays to zero, but not fast enough!

Another Approach

Observations:

- Local truncation error is a smooth function in time (but not in space!)
- The geometric series $\sum_{j=0}^{\infty}\left(B^{-1} C\right)^{j}$ converges

Another Approach

- Define $\delta_{n}=\rho_{n}-\rho_{n-1}$:

$$
\begin{aligned}
\rho_{n} & =\tau\left[\frac{\tau^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t}\left(\cdot, t_{n+1 / 2}\right)\right] \\
\delta_{n} & =\tau^{2}\left[\frac{\tau^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t t}\left(\cdot, t_{n}\right)\right]
\end{aligned}
$$

- Exchange the order of summation

$$
\varepsilon_{n}=\sum_{j=1}^{n}\left(B^{-1} C\right)^{n-j} B^{-1} \underbrace{\sum_{l=0}^{j-1} \delta_{l}}_{\rho_{j-1}}
$$

Another Approach

- Define $\delta_{n}=\rho_{n}-\rho_{n-1}$:

$$
\begin{aligned}
\rho_{n} & =\tau\left[\frac{\tau^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t}\left(\cdot, t_{n+1 / 2}\right)\right] \\
\delta_{n} & =\tau^{2}\left[\frac{\tau^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t t}\left(\cdot, t_{n}\right)\right]
\end{aligned}
$$

- Exchange the order of summation

$$
\varepsilon_{n}=\sum_{l=0}^{n-1} \sum_{j=l+1}^{n}\left(B^{-1} C\right)^{n-j} B^{-1} \delta_{l}
$$

Another Approach

- Define $\delta_{n}=\rho_{n}-\rho_{n-1}$:

$$
\begin{aligned}
\rho_{n} & =\tau\left[\frac{\tau^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t}\left(\cdot, t_{n+1 / 2}\right)\right] \\
\delta_{n} & =\tau^{2}\left[\frac{\tau^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t t}\left(\cdot, t_{n}\right)\right]
\end{aligned}
$$

- Exchange the order of summation

$$
\varepsilon_{n}=\sum_{l=0}^{n-1}\left(I-\left(B^{-1} C\right)^{n-l}\right)\left(I-B^{-1} C\right)^{-1} B^{-1} \delta_{l}
$$

Another Approach

- Define $\delta_{n}=\rho_{n}-\rho_{n-1}$:

$$
\begin{aligned}
\rho_{n} & =\tau\left[\frac{\tau^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t}\left(\cdot, t_{n+1 / 2}\right)\right] \\
\delta_{n} & =\tau^{2}\left[\frac{\tau^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t t}\left(\cdot, t_{n}\right)\right]
\end{aligned}
$$

- Exchange the order of summation

$$
\varepsilon_{n}=\sum_{l=0}^{n-1}\left(I-\left(B^{-1} C\right)^{n-l}\right)(\underbrace{B-C}_{=k A})^{-1} \delta_{l}
$$

Another Approach

- Define $\delta_{n}=\rho_{n}-\rho_{n-1}$:

$$
\begin{aligned}
\rho_{n} & =\tau\left[\frac{\tau^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t}\left(\cdot, t_{n+1 / 2}\right)\right] \\
\delta_{n} & =\tau^{2}\left[\frac{\tau^{2}}{4 h^{2}} X_{2} A X_{1} \cdot \mathcal{L} u_{t t}\left(\cdot, t_{n}\right)\right]
\end{aligned}
$$

- Exchange the order of summation

$$
\varepsilon_{n}=\frac{1}{k} \sum_{l=0}^{n-1}(\underbrace{I-\left(B^{-1} C\right)^{n-l}}_{\|\cdot\| \leq 2}) A^{-1} \delta_{l}
$$

Convergence

- After some more manipulations, we get

$$
\left\|A^{1 / 2} \varepsilon_{n}\right\|_{2}^{2} \leq C \kappa\left(\mathcal{S}_{\Gamma}\right) h^{-(d-1)} \max _{0 \leq j<n}\left(\tau^{2}\left\|\mathcal{L} u_{t t}\left(\cdot, t_{j}\right)\right\|_{\infty}\right)^{2}
$$

where \mathcal{S}_{Γ} is the Schur complement of A onto the interface Γ

- Under fairly general conditions,

$$
\kappa\left(\mathcal{S}_{\Gamma}\right)=O(1 / h)
$$

- Thus, if $\Delta t=O\left(h^{\alpha}\right)$, then

$$
\left|\varepsilon_{n}\right|_{H^{1}(\Omega)} \leq C \frac{\tau^{2}}{h}=O\left(h^{2 \alpha-1}\right)
$$

- Same estimate in $\|\cdot\|_{L^{2}}$ (using Poincaré inequality)

Convergence

$$
\left|\varepsilon_{n}\right|_{H^{1}(\Omega)} \leq C \frac{\tau^{2}}{h}=O\left(h^{2 \alpha-1}\right)
$$

- $\Delta t=h(\alpha=1) \Longrightarrow$ first order convergence
- $\Delta t=h^{3 / 2}(\alpha=3 / 2) \Longrightarrow$ second order convergence!
- Cannot go beyond second order due to $O\left(\Delta t^{2}+h^{2}\right)$ terms away from the interface

1D Example

- Solve

$$
u_{t}=u_{x x}+f(x, t), \quad u(x, 0)=g(x)
$$

over $(x, t) \in(0,1) \times(0,1]$

- Choose $f(x, t)$ and $g(x)$ to have exact solution

$$
u(x, t)=x \sin (\pi x) \sin (t)
$$

- Two subdomains with interface at $x=0.5$
- Choose $\Delta t=h^{\alpha}$ with $\alpha=1,1.5,2$
- Measure error in L^{2} norm and H^{1} semi-norm

1D Example

$$
(n=20,40,80,160,320,640)
$$

2D Example

- Solve $u_{t}=\Delta u+f(x, t)$ on unit square, $t \in(0,1]$
- Exact solution :

$$
u(x, y, t)=\sin (3 \pi x)\left(1-e^{2 y}\right)\left(1-e^{y-1}\right) \sqrt{1+t}
$$

2D Example

Conclusion

- The Crank-Nicolson predictor-corrector method is
- Unconditionally stable
- Low order (or even inconsistent) near the interface
- Converges with order $\min \{2 \alpha-1,2\}$ for $\Delta t=O\left(h^{\alpha}\right)$
- Ongoing work :
- Influence of number of subdomains on convergence
- Singular A (e.g., Neumann boundary)
- Non-symmetric A (e.g., advection-diffusion equations)

