CONFERENCE PROBLEMS

1. Proposed by Damien Roy (University of Ottawa): Are there solutions $\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{Z}^{3}$ of the equation $x_{0}^{2} x_{2}-x_{1}^{3}=1$ with x_{0}, x_{1}, x_{2} approximately the same size and $x_{0} \rightarrow \infty$? More precisely, are there such integer solutions which converge in the projective sense?

Solution by John Dixon (Carleton University): We address the problem in the form: Does there exist a sequence $\left\{\left(x_{2}^{(k)}, x_{1}^{(k)}, x_{0}^{(k)}\right)\right\}$ of integer solutions to $X_{2}^{3}+1=X_{1}^{2} X_{0}$ such that $x_{2}^{(k)}: x_{1}^{(k)}: x_{0}^{(k)}$ converges to a limit?

To simplify the notation put $X_{2}=Z$. We have $Z^{3}+1=(Z+1)\left(Z^{2}-Z+1\right)$ and try to write $Z+1^{\sim} \lambda X_{0}$ and $Z^{2}-Z+1^{\sim}(1 / \lambda) X_{1}^{2}$. Since $4\left(Z^{2}-Z+1\right)=$ $(2 Z-1)^{2}+3$ we put $X:=2 Z-1$ and consider the Pell equation $X^{2}+3=m Y^{2}$ (eventually we shall take $X_{1}=\frac{1}{2} Y$ where the $\frac{1}{2}$ comes up because of the multiplier 4 which we introduced). The smallest value of m which seems to work well is $m=3$.

Solving $X^{2}-3 Y^{2}=-3$. An obvious solution is $(3,2)$. The equation $U^{2}-$ $3 V^{2}=1$ has a solution $(2,1)$. Since $(a+b \sqrt{3})(2+\sqrt{3})=(2 a+3 b)+(a+2 b) \sqrt{3}$ we put

$$
A:=\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right]
$$

and then obtain the infinite sequence $\left\{\left(a_{n}, b_{n}\right)\right\}$ of solutions to $X^{2}-3 Y^{2}=-3$ given by $\left(a_{n}, b_{n}\right):=(3,2) A^{n}(n=0,1, \ldots)$. By the previous paragraph we need to have X odd so we restrict to $n=0,2,4, \ldots$; for these values a_{n} is odd and b_{n} is even. Now putting $X_{2}=\frac{1}{2}\left(a_{2 n}+1\right), X_{1}=\frac{1}{2} b_{2 n}$ we get

$$
\left(\frac{a_{2 n}+1}{2}\right)^{3}+1=\left(\frac{a_{2 n}+3}{2}\right) 3\left(\frac{b_{2 n}}{2}\right)^{2}
$$

and so can take $X_{0}=\left(\frac{a_{2 n}+3}{2}\right) 3$. This gives infinitely many integers solutions with a triple ratio which converges to $1: \frac{1}{\sqrt{3}}: 3$.

Note. The first few solutions are $(2,1,3),(23,13,72),(314,181,945)$, (4367, 2521, 13104), ...
2. Proposed by Abdellah Sebbar (University of Ottawa): Let n be a positive integer and x a complex variable. What is known about the polynomials $P_{n}(x):=\sum_{d \mid n} x^{d+(n / d)} ?$
3. Proposed by Todd Cochrane (Kansas State University): Does there exist an absolute positive integer n such that if $S \subseteq F_{p}$ is such that $S-S=F_{p}$ then $n S=F_{p}$?
4. Proposed by Todd Cochrane (Kansas State University): Is the congruence $x_{1}^{p}+x_{2}^{p}+x_{3}^{p} \equiv a\left(\bmod p^{2}\right)$ solvable for every integer a and every prime $p>59$?
5. Proposed by Kumar Murty (University of Toronto): Let E / \mathbb{Q} be an elliptic curve. By the Taniyama conjecture (now a theorem due to the fundamental work of Wiles, Taylor, Breull, Conrad and Diamond) E is modular. Therefore there exist Hecke eigenforms f of weight 2 all of whose eigenvalues are integers. Is there a way to produce such f without using the Taniyama conjecture?
6. Proposed by Hester Graves (Queen's University): There are beautiful bases for $E_{2}(\Gamma(N))$ and $E_{2}\left(\Gamma_{1}(N)\right)$, where the coefficients are variations on divisor functions. What about $E_{2}\left(\Gamma_{0}(N)\right)$?

